Bacterial Adhesion Is Affected by the Thickness and Stiffness of Poly(ethylene glycol) Hydrogels

Despite lacking visual, auditory, and olfactory perception, bacteria sense and attach to surfaces. Many factors, including the chemistry, topography, and mechanical properties of a surface, are known to alter bacterial attachment, and in this study, using a library of nine protein-resistant poly­(et...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2018-01, Vol.10 (3), p.2275-2281
Hauptverfasser: Kolewe, Kristopher W, Zhu, Jiaxin, Mako, Natalie R, Nonnenmann, Stephen S, Schiffman, Jessica D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2281
container_issue 3
container_start_page 2275
container_title ACS applied materials & interfaces
container_volume 10
creator Kolewe, Kristopher W
Zhu, Jiaxin
Mako, Natalie R
Nonnenmann, Stephen S
Schiffman, Jessica D
description Despite lacking visual, auditory, and olfactory perception, bacteria sense and attach to surfaces. Many factors, including the chemistry, topography, and mechanical properties of a surface, are known to alter bacterial attachment, and in this study, using a library of nine protein-resistant poly­(ethylene glycol) (PEG) hydrogels immobilized on glass slides, we demonstrate that the thickness or amount of polymer concentration also matters. Hydrated atomic force microscopy and rheological measurements corroborated that thin (15 μm), medium (40 μm), and thick (150 μm) PEG hydrogels possessed Young’s moduli in three distinct regimes, soft (20 kPa), intermediate (300 kPa), and stiff (1000 kPa). The attachment of two diverse bacteria, flagellated Gram-negative Escherichia coli and nonmotile Gram-positive Staphylococcus aureus was assessed after a 24 h incubation on the nine PEG hydrogels. On the thickest PEG hydrogels (150 μm), E. coli and S. aureus attachment increased with increasing hydrogel stiffness. However, when the hydrogel’s thickness was reduced to 15 μm, a substantially greater adhesion of E. coli and S. aureus was observed. Twelve times fewer S. aureus and eight times fewer E. coli adhered to thin-soft hydrogels than to thick-soft hydrogels. Although a full mechanism to explain this behavior is beyond the scope of this article, we suggest that because the Young’s moduli of thin-soft and thick-soft hydrogels were statistically equivalent, potentially, the very stiff underlying glass slide was causing the thin-soft hydrogels to feel stiffer to the bacteria. These findings suggest a key takeaway design rule; to optimize fouling-resistance, hydrogel coatings should be thick and soft.
doi_str_mv 10.1021/acsami.7b12145
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5785418</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1981813395</sourcerecordid><originalsourceid>FETCH-LOGICAL-a524t-3758a4cd3c7c965253eaac3651c6894c6ee451aaab1ec9b27684bbcd695e01d53</originalsourceid><addsrcrecordid>eNqFkc1v1DAQxS1ERUvhyhH5WJB2iT9jX5CWCmilSkWinM3EmWxcvHGxs0j570nZZVUOFSfb4988vZlHyCtWLVnF2TvwBTZhWTeMM6mekBNmpVwYrvjTw13KY_K8lNuq0oJX6hk55pYbMddPyPcP4EfMASJdtT2WkAZ6Weiq63Cut7SZ6NgjvemD_zFgKRSGln4dQ9f9eaWOfklxOsOxnyIOSNdx8im-oRdTm9MaY3lBjjqIBV_uz1Py7dPHm_OLxdX158vz1dUCFJfjQtTKgPSt8LW3WnElEMALrZjXxkqvEaViANAw9LbhtTayaXyrrcKKtUqckvc73btts8HW4zBmiO4uhw3kySUI7t-fIfRunX45VRslmZkFzvYCOf3cYhndJhSPMcKAaVscr3TNrayF_i_KrGGGCWHvbS13qM-plIzdwRGr3H2Cbpeg2yc4N7x-OMcB_xvZDLzdAXOju03bPMxrfUztN6Yvp0k</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1981813395</pqid></control><display><type>article</type><title>Bacterial Adhesion Is Affected by the Thickness and Stiffness of Poly(ethylene glycol) Hydrogels</title><source>ACS Publications</source><creator>Kolewe, Kristopher W ; Zhu, Jiaxin ; Mako, Natalie R ; Nonnenmann, Stephen S ; Schiffman, Jessica D</creator><creatorcontrib>Kolewe, Kristopher W ; Zhu, Jiaxin ; Mako, Natalie R ; Nonnenmann, Stephen S ; Schiffman, Jessica D</creatorcontrib><description>Despite lacking visual, auditory, and olfactory perception, bacteria sense and attach to surfaces. Many factors, including the chemistry, topography, and mechanical properties of a surface, are known to alter bacterial attachment, and in this study, using a library of nine protein-resistant poly­(ethylene glycol) (PEG) hydrogels immobilized on glass slides, we demonstrate that the thickness or amount of polymer concentration also matters. Hydrated atomic force microscopy and rheological measurements corroborated that thin (15 μm), medium (40 μm), and thick (150 μm) PEG hydrogels possessed Young’s moduli in three distinct regimes, soft (20 kPa), intermediate (300 kPa), and stiff (1000 kPa). The attachment of two diverse bacteria, flagellated Gram-negative Escherichia coli and nonmotile Gram-positive Staphylococcus aureus was assessed after a 24 h incubation on the nine PEG hydrogels. On the thickest PEG hydrogels (150 μm), E. coli and S. aureus attachment increased with increasing hydrogel stiffness. However, when the hydrogel’s thickness was reduced to 15 μm, a substantially greater adhesion of E. coli and S. aureus was observed. Twelve times fewer S. aureus and eight times fewer E. coli adhered to thin-soft hydrogels than to thick-soft hydrogels. Although a full mechanism to explain this behavior is beyond the scope of this article, we suggest that because the Young’s moduli of thin-soft and thick-soft hydrogels were statistically equivalent, potentially, the very stiff underlying glass slide was causing the thin-soft hydrogels to feel stiffer to the bacteria. These findings suggest a key takeaway design rule; to optimize fouling-resistance, hydrogel coatings should be thick and soft.</description><identifier>ISSN: 1944-8244</identifier><identifier>ISSN: 1944-8252</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.7b12145</identifier><identifier>PMID: 29283244</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>adhesion ; atomic force microscopy ; bacteria ; bacterial adhesion ; coatings ; Escherichia coli ; glass ; hydrogels ; mechanical properties ; modulus of elasticity ; olfactory perception ; polyethylene glycol ; Staphylococcus aureus ; topography</subject><ispartof>ACS applied materials &amp; interfaces, 2018-01, Vol.10 (3), p.2275-2281</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a524t-3758a4cd3c7c965253eaac3651c6894c6ee451aaab1ec9b27684bbcd695e01d53</citedby><cites>FETCH-LOGICAL-a524t-3758a4cd3c7c965253eaac3651c6894c6ee451aaab1ec9b27684bbcd695e01d53</cites><orcidid>0000-0002-5369-9279 ; 0000-0002-1265-5392</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.7b12145$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.7b12145$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2751,27055,27903,27904,56717,56767</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29283244$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kolewe, Kristopher W</creatorcontrib><creatorcontrib>Zhu, Jiaxin</creatorcontrib><creatorcontrib>Mako, Natalie R</creatorcontrib><creatorcontrib>Nonnenmann, Stephen S</creatorcontrib><creatorcontrib>Schiffman, Jessica D</creatorcontrib><title>Bacterial Adhesion Is Affected by the Thickness and Stiffness of Poly(ethylene glycol) Hydrogels</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Despite lacking visual, auditory, and olfactory perception, bacteria sense and attach to surfaces. Many factors, including the chemistry, topography, and mechanical properties of a surface, are known to alter bacterial attachment, and in this study, using a library of nine protein-resistant poly­(ethylene glycol) (PEG) hydrogels immobilized on glass slides, we demonstrate that the thickness or amount of polymer concentration also matters. Hydrated atomic force microscopy and rheological measurements corroborated that thin (15 μm), medium (40 μm), and thick (150 μm) PEG hydrogels possessed Young’s moduli in three distinct regimes, soft (20 kPa), intermediate (300 kPa), and stiff (1000 kPa). The attachment of two diverse bacteria, flagellated Gram-negative Escherichia coli and nonmotile Gram-positive Staphylococcus aureus was assessed after a 24 h incubation on the nine PEG hydrogels. On the thickest PEG hydrogels (150 μm), E. coli and S. aureus attachment increased with increasing hydrogel stiffness. However, when the hydrogel’s thickness was reduced to 15 μm, a substantially greater adhesion of E. coli and S. aureus was observed. Twelve times fewer S. aureus and eight times fewer E. coli adhered to thin-soft hydrogels than to thick-soft hydrogels. Although a full mechanism to explain this behavior is beyond the scope of this article, we suggest that because the Young’s moduli of thin-soft and thick-soft hydrogels were statistically equivalent, potentially, the very stiff underlying glass slide was causing the thin-soft hydrogels to feel stiffer to the bacteria. These findings suggest a key takeaway design rule; to optimize fouling-resistance, hydrogel coatings should be thick and soft.</description><subject>adhesion</subject><subject>atomic force microscopy</subject><subject>bacteria</subject><subject>bacterial adhesion</subject><subject>coatings</subject><subject>Escherichia coli</subject><subject>glass</subject><subject>hydrogels</subject><subject>mechanical properties</subject><subject>modulus of elasticity</subject><subject>olfactory perception</subject><subject>polyethylene glycol</subject><subject>Staphylococcus aureus</subject><subject>topography</subject><issn>1944-8244</issn><issn>1944-8252</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkc1v1DAQxS1ERUvhyhH5WJB2iT9jX5CWCmilSkWinM3EmWxcvHGxs0j570nZZVUOFSfb4988vZlHyCtWLVnF2TvwBTZhWTeMM6mekBNmpVwYrvjTw13KY_K8lNuq0oJX6hk55pYbMddPyPcP4EfMASJdtT2WkAZ6Weiq63Cut7SZ6NgjvemD_zFgKRSGln4dQ9f9eaWOfklxOsOxnyIOSNdx8im-oRdTm9MaY3lBjjqIBV_uz1Py7dPHm_OLxdX158vz1dUCFJfjQtTKgPSt8LW3WnElEMALrZjXxkqvEaViANAw9LbhtTayaXyrrcKKtUqckvc73btts8HW4zBmiO4uhw3kySUI7t-fIfRunX45VRslmZkFzvYCOf3cYhndJhSPMcKAaVscr3TNrayF_i_KrGGGCWHvbS13qM-plIzdwRGr3H2Cbpeg2yc4N7x-OMcB_xvZDLzdAXOju03bPMxrfUztN6Yvp0k</recordid><startdate>20180124</startdate><enddate>20180124</enddate><creator>Kolewe, Kristopher W</creator><creator>Zhu, Jiaxin</creator><creator>Mako, Natalie R</creator><creator>Nonnenmann, Stephen S</creator><creator>Schiffman, Jessica D</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5369-9279</orcidid><orcidid>https://orcid.org/0000-0002-1265-5392</orcidid></search><sort><creationdate>20180124</creationdate><title>Bacterial Adhesion Is Affected by the Thickness and Stiffness of Poly(ethylene glycol) Hydrogels</title><author>Kolewe, Kristopher W ; Zhu, Jiaxin ; Mako, Natalie R ; Nonnenmann, Stephen S ; Schiffman, Jessica D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a524t-3758a4cd3c7c965253eaac3651c6894c6ee451aaab1ec9b27684bbcd695e01d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>adhesion</topic><topic>atomic force microscopy</topic><topic>bacteria</topic><topic>bacterial adhesion</topic><topic>coatings</topic><topic>Escherichia coli</topic><topic>glass</topic><topic>hydrogels</topic><topic>mechanical properties</topic><topic>modulus of elasticity</topic><topic>olfactory perception</topic><topic>polyethylene glycol</topic><topic>Staphylococcus aureus</topic><topic>topography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kolewe, Kristopher W</creatorcontrib><creatorcontrib>Zhu, Jiaxin</creatorcontrib><creatorcontrib>Mako, Natalie R</creatorcontrib><creatorcontrib>Nonnenmann, Stephen S</creatorcontrib><creatorcontrib>Schiffman, Jessica D</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kolewe, Kristopher W</au><au>Zhu, Jiaxin</au><au>Mako, Natalie R</au><au>Nonnenmann, Stephen S</au><au>Schiffman, Jessica D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bacterial Adhesion Is Affected by the Thickness and Stiffness of Poly(ethylene glycol) Hydrogels</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2018-01-24</date><risdate>2018</risdate><volume>10</volume><issue>3</issue><spage>2275</spage><epage>2281</epage><pages>2275-2281</pages><issn>1944-8244</issn><issn>1944-8252</issn><eissn>1944-8252</eissn><abstract>Despite lacking visual, auditory, and olfactory perception, bacteria sense and attach to surfaces. Many factors, including the chemistry, topography, and mechanical properties of a surface, are known to alter bacterial attachment, and in this study, using a library of nine protein-resistant poly­(ethylene glycol) (PEG) hydrogels immobilized on glass slides, we demonstrate that the thickness or amount of polymer concentration also matters. Hydrated atomic force microscopy and rheological measurements corroborated that thin (15 μm), medium (40 μm), and thick (150 μm) PEG hydrogels possessed Young’s moduli in three distinct regimes, soft (20 kPa), intermediate (300 kPa), and stiff (1000 kPa). The attachment of two diverse bacteria, flagellated Gram-negative Escherichia coli and nonmotile Gram-positive Staphylococcus aureus was assessed after a 24 h incubation on the nine PEG hydrogels. On the thickest PEG hydrogels (150 μm), E. coli and S. aureus attachment increased with increasing hydrogel stiffness. However, when the hydrogel’s thickness was reduced to 15 μm, a substantially greater adhesion of E. coli and S. aureus was observed. Twelve times fewer S. aureus and eight times fewer E. coli adhered to thin-soft hydrogels than to thick-soft hydrogels. Although a full mechanism to explain this behavior is beyond the scope of this article, we suggest that because the Young’s moduli of thin-soft and thick-soft hydrogels were statistically equivalent, potentially, the very stiff underlying glass slide was causing the thin-soft hydrogels to feel stiffer to the bacteria. These findings suggest a key takeaway design rule; to optimize fouling-resistance, hydrogel coatings should be thick and soft.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29283244</pmid><doi>10.1021/acsami.7b12145</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-5369-9279</orcidid><orcidid>https://orcid.org/0000-0002-1265-5392</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2018-01, Vol.10 (3), p.2275-2281
issn 1944-8244
1944-8252
1944-8252
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5785418
source ACS Publications
subjects adhesion
atomic force microscopy
bacteria
bacterial adhesion
coatings
Escherichia coli
glass
hydrogels
mechanical properties
modulus of elasticity
olfactory perception
polyethylene glycol
Staphylococcus aureus
topography
title Bacterial Adhesion Is Affected by the Thickness and Stiffness of Poly(ethylene glycol) Hydrogels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T10%3A28%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bacterial%20Adhesion%20Is%20Affected%20by%20the%20Thickness%20and%20Stiffness%20of%20Poly(ethylene%20glycol)%20Hydrogels&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Kolewe,%20Kristopher%20W&rft.date=2018-01-24&rft.volume=10&rft.issue=3&rft.spage=2275&rft.epage=2281&rft.pages=2275-2281&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.7b12145&rft_dat=%3Cproquest_pubme%3E1981813395%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1981813395&rft_id=info:pmid/29283244&rfr_iscdi=true