Bacterial Adhesion Is Affected by the Thickness and Stiffness of Poly(ethylene glycol) Hydrogels
Despite lacking visual, auditory, and olfactory perception, bacteria sense and attach to surfaces. Many factors, including the chemistry, topography, and mechanical properties of a surface, are known to alter bacterial attachment, and in this study, using a library of nine protein-resistant poly(et...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2018-01, Vol.10 (3), p.2275-2281 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2281 |
---|---|
container_issue | 3 |
container_start_page | 2275 |
container_title | ACS applied materials & interfaces |
container_volume | 10 |
creator | Kolewe, Kristopher W Zhu, Jiaxin Mako, Natalie R Nonnenmann, Stephen S Schiffman, Jessica D |
description | Despite lacking visual, auditory, and olfactory perception, bacteria sense and attach to surfaces. Many factors, including the chemistry, topography, and mechanical properties of a surface, are known to alter bacterial attachment, and in this study, using a library of nine protein-resistant poly(ethylene glycol) (PEG) hydrogels immobilized on glass slides, we demonstrate that the thickness or amount of polymer concentration also matters. Hydrated atomic force microscopy and rheological measurements corroborated that thin (15 μm), medium (40 μm), and thick (150 μm) PEG hydrogels possessed Young’s moduli in three distinct regimes, soft (20 kPa), intermediate (300 kPa), and stiff (1000 kPa). The attachment of two diverse bacteria, flagellated Gram-negative Escherichia coli and nonmotile Gram-positive Staphylococcus aureus was assessed after a 24 h incubation on the nine PEG hydrogels. On the thickest PEG hydrogels (150 μm), E. coli and S. aureus attachment increased with increasing hydrogel stiffness. However, when the hydrogel’s thickness was reduced to 15 μm, a substantially greater adhesion of E. coli and S. aureus was observed. Twelve times fewer S. aureus and eight times fewer E. coli adhered to thin-soft hydrogels than to thick-soft hydrogels. Although a full mechanism to explain this behavior is beyond the scope of this article, we suggest that because the Young’s moduli of thin-soft and thick-soft hydrogels were statistically equivalent, potentially, the very stiff underlying glass slide was causing the thin-soft hydrogels to feel stiffer to the bacteria. These findings suggest a key takeaway design rule; to optimize fouling-resistance, hydrogel coatings should be thick and soft. |
doi_str_mv | 10.1021/acsami.7b12145 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5785418</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1981813395</sourcerecordid><originalsourceid>FETCH-LOGICAL-a524t-3758a4cd3c7c965253eaac3651c6894c6ee451aaab1ec9b27684bbcd695e01d53</originalsourceid><addsrcrecordid>eNqFkc1v1DAQxS1ERUvhyhH5WJB2iT9jX5CWCmilSkWinM3EmWxcvHGxs0j570nZZVUOFSfb4988vZlHyCtWLVnF2TvwBTZhWTeMM6mekBNmpVwYrvjTw13KY_K8lNuq0oJX6hk55pYbMddPyPcP4EfMASJdtT2WkAZ6Weiq63Cut7SZ6NgjvemD_zFgKRSGln4dQ9f9eaWOfklxOsOxnyIOSNdx8im-oRdTm9MaY3lBjjqIBV_uz1Py7dPHm_OLxdX158vz1dUCFJfjQtTKgPSt8LW3WnElEMALrZjXxkqvEaViANAw9LbhtTayaXyrrcKKtUqckvc73btts8HW4zBmiO4uhw3kySUI7t-fIfRunX45VRslmZkFzvYCOf3cYhndJhSPMcKAaVscr3TNrayF_i_KrGGGCWHvbS13qM-plIzdwRGr3H2Cbpeg2yc4N7x-OMcB_xvZDLzdAXOju03bPMxrfUztN6Yvp0k</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1981813395</pqid></control><display><type>article</type><title>Bacterial Adhesion Is Affected by the Thickness and Stiffness of Poly(ethylene glycol) Hydrogels</title><source>ACS Publications</source><creator>Kolewe, Kristopher W ; Zhu, Jiaxin ; Mako, Natalie R ; Nonnenmann, Stephen S ; Schiffman, Jessica D</creator><creatorcontrib>Kolewe, Kristopher W ; Zhu, Jiaxin ; Mako, Natalie R ; Nonnenmann, Stephen S ; Schiffman, Jessica D</creatorcontrib><description>Despite lacking visual, auditory, and olfactory perception, bacteria sense and attach to surfaces. Many factors, including the chemistry, topography, and mechanical properties of a surface, are known to alter bacterial attachment, and in this study, using a library of nine protein-resistant poly(ethylene glycol) (PEG) hydrogels immobilized on glass slides, we demonstrate that the thickness or amount of polymer concentration also matters. Hydrated atomic force microscopy and rheological measurements corroborated that thin (15 μm), medium (40 μm), and thick (150 μm) PEG hydrogels possessed Young’s moduli in three distinct regimes, soft (20 kPa), intermediate (300 kPa), and stiff (1000 kPa). The attachment of two diverse bacteria, flagellated Gram-negative Escherichia coli and nonmotile Gram-positive Staphylococcus aureus was assessed after a 24 h incubation on the nine PEG hydrogels. On the thickest PEG hydrogels (150 μm), E. coli and S. aureus attachment increased with increasing hydrogel stiffness. However, when the hydrogel’s thickness was reduced to 15 μm, a substantially greater adhesion of E. coli and S. aureus was observed. Twelve times fewer S. aureus and eight times fewer E. coli adhered to thin-soft hydrogels than to thick-soft hydrogels. Although a full mechanism to explain this behavior is beyond the scope of this article, we suggest that because the Young’s moduli of thin-soft and thick-soft hydrogels were statistically equivalent, potentially, the very stiff underlying glass slide was causing the thin-soft hydrogels to feel stiffer to the bacteria. These findings suggest a key takeaway design rule; to optimize fouling-resistance, hydrogel coatings should be thick and soft.</description><identifier>ISSN: 1944-8244</identifier><identifier>ISSN: 1944-8252</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.7b12145</identifier><identifier>PMID: 29283244</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>adhesion ; atomic force microscopy ; bacteria ; bacterial adhesion ; coatings ; Escherichia coli ; glass ; hydrogels ; mechanical properties ; modulus of elasticity ; olfactory perception ; polyethylene glycol ; Staphylococcus aureus ; topography</subject><ispartof>ACS applied materials & interfaces, 2018-01, Vol.10 (3), p.2275-2281</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a524t-3758a4cd3c7c965253eaac3651c6894c6ee451aaab1ec9b27684bbcd695e01d53</citedby><cites>FETCH-LOGICAL-a524t-3758a4cd3c7c965253eaac3651c6894c6ee451aaab1ec9b27684bbcd695e01d53</cites><orcidid>0000-0002-5369-9279 ; 0000-0002-1265-5392</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.7b12145$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.7b12145$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2751,27055,27903,27904,56717,56767</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29283244$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kolewe, Kristopher W</creatorcontrib><creatorcontrib>Zhu, Jiaxin</creatorcontrib><creatorcontrib>Mako, Natalie R</creatorcontrib><creatorcontrib>Nonnenmann, Stephen S</creatorcontrib><creatorcontrib>Schiffman, Jessica D</creatorcontrib><title>Bacterial Adhesion Is Affected by the Thickness and Stiffness of Poly(ethylene glycol) Hydrogels</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Despite lacking visual, auditory, and olfactory perception, bacteria sense and attach to surfaces. Many factors, including the chemistry, topography, and mechanical properties of a surface, are known to alter bacterial attachment, and in this study, using a library of nine protein-resistant poly(ethylene glycol) (PEG) hydrogels immobilized on glass slides, we demonstrate that the thickness or amount of polymer concentration also matters. Hydrated atomic force microscopy and rheological measurements corroborated that thin (15 μm), medium (40 μm), and thick (150 μm) PEG hydrogels possessed Young’s moduli in three distinct regimes, soft (20 kPa), intermediate (300 kPa), and stiff (1000 kPa). The attachment of two diverse bacteria, flagellated Gram-negative Escherichia coli and nonmotile Gram-positive Staphylococcus aureus was assessed after a 24 h incubation on the nine PEG hydrogels. On the thickest PEG hydrogels (150 μm), E. coli and S. aureus attachment increased with increasing hydrogel stiffness. However, when the hydrogel’s thickness was reduced to 15 μm, a substantially greater adhesion of E. coli and S. aureus was observed. Twelve times fewer S. aureus and eight times fewer E. coli adhered to thin-soft hydrogels than to thick-soft hydrogels. Although a full mechanism to explain this behavior is beyond the scope of this article, we suggest that because the Young’s moduli of thin-soft and thick-soft hydrogels were statistically equivalent, potentially, the very stiff underlying glass slide was causing the thin-soft hydrogels to feel stiffer to the bacteria. These findings suggest a key takeaway design rule; to optimize fouling-resistance, hydrogel coatings should be thick and soft.</description><subject>adhesion</subject><subject>atomic force microscopy</subject><subject>bacteria</subject><subject>bacterial adhesion</subject><subject>coatings</subject><subject>Escherichia coli</subject><subject>glass</subject><subject>hydrogels</subject><subject>mechanical properties</subject><subject>modulus of elasticity</subject><subject>olfactory perception</subject><subject>polyethylene glycol</subject><subject>Staphylococcus aureus</subject><subject>topography</subject><issn>1944-8244</issn><issn>1944-8252</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkc1v1DAQxS1ERUvhyhH5WJB2iT9jX5CWCmilSkWinM3EmWxcvHGxs0j570nZZVUOFSfb4988vZlHyCtWLVnF2TvwBTZhWTeMM6mekBNmpVwYrvjTw13KY_K8lNuq0oJX6hk55pYbMddPyPcP4EfMASJdtT2WkAZ6Weiq63Cut7SZ6NgjvemD_zFgKRSGln4dQ9f9eaWOfklxOsOxnyIOSNdx8im-oRdTm9MaY3lBjjqIBV_uz1Py7dPHm_OLxdX158vz1dUCFJfjQtTKgPSt8LW3WnElEMALrZjXxkqvEaViANAw9LbhtTayaXyrrcKKtUqckvc73btts8HW4zBmiO4uhw3kySUI7t-fIfRunX45VRslmZkFzvYCOf3cYhndJhSPMcKAaVscr3TNrayF_i_KrGGGCWHvbS13qM-plIzdwRGr3H2Cbpeg2yc4N7x-OMcB_xvZDLzdAXOju03bPMxrfUztN6Yvp0k</recordid><startdate>20180124</startdate><enddate>20180124</enddate><creator>Kolewe, Kristopher W</creator><creator>Zhu, Jiaxin</creator><creator>Mako, Natalie R</creator><creator>Nonnenmann, Stephen S</creator><creator>Schiffman, Jessica D</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5369-9279</orcidid><orcidid>https://orcid.org/0000-0002-1265-5392</orcidid></search><sort><creationdate>20180124</creationdate><title>Bacterial Adhesion Is Affected by the Thickness and Stiffness of Poly(ethylene glycol) Hydrogels</title><author>Kolewe, Kristopher W ; Zhu, Jiaxin ; Mako, Natalie R ; Nonnenmann, Stephen S ; Schiffman, Jessica D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a524t-3758a4cd3c7c965253eaac3651c6894c6ee451aaab1ec9b27684bbcd695e01d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>adhesion</topic><topic>atomic force microscopy</topic><topic>bacteria</topic><topic>bacterial adhesion</topic><topic>coatings</topic><topic>Escherichia coli</topic><topic>glass</topic><topic>hydrogels</topic><topic>mechanical properties</topic><topic>modulus of elasticity</topic><topic>olfactory perception</topic><topic>polyethylene glycol</topic><topic>Staphylococcus aureus</topic><topic>topography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kolewe, Kristopher W</creatorcontrib><creatorcontrib>Zhu, Jiaxin</creatorcontrib><creatorcontrib>Mako, Natalie R</creatorcontrib><creatorcontrib>Nonnenmann, Stephen S</creatorcontrib><creatorcontrib>Schiffman, Jessica D</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kolewe, Kristopher W</au><au>Zhu, Jiaxin</au><au>Mako, Natalie R</au><au>Nonnenmann, Stephen S</au><au>Schiffman, Jessica D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bacterial Adhesion Is Affected by the Thickness and Stiffness of Poly(ethylene glycol) Hydrogels</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2018-01-24</date><risdate>2018</risdate><volume>10</volume><issue>3</issue><spage>2275</spage><epage>2281</epage><pages>2275-2281</pages><issn>1944-8244</issn><issn>1944-8252</issn><eissn>1944-8252</eissn><abstract>Despite lacking visual, auditory, and olfactory perception, bacteria sense and attach to surfaces. Many factors, including the chemistry, topography, and mechanical properties of a surface, are known to alter bacterial attachment, and in this study, using a library of nine protein-resistant poly(ethylene glycol) (PEG) hydrogels immobilized on glass slides, we demonstrate that the thickness or amount of polymer concentration also matters. Hydrated atomic force microscopy and rheological measurements corroborated that thin (15 μm), medium (40 μm), and thick (150 μm) PEG hydrogels possessed Young’s moduli in three distinct regimes, soft (20 kPa), intermediate (300 kPa), and stiff (1000 kPa). The attachment of two diverse bacteria, flagellated Gram-negative Escherichia coli and nonmotile Gram-positive Staphylococcus aureus was assessed after a 24 h incubation on the nine PEG hydrogels. On the thickest PEG hydrogels (150 μm), E. coli and S. aureus attachment increased with increasing hydrogel stiffness. However, when the hydrogel’s thickness was reduced to 15 μm, a substantially greater adhesion of E. coli and S. aureus was observed. Twelve times fewer S. aureus and eight times fewer E. coli adhered to thin-soft hydrogels than to thick-soft hydrogels. Although a full mechanism to explain this behavior is beyond the scope of this article, we suggest that because the Young’s moduli of thin-soft and thick-soft hydrogels were statistically equivalent, potentially, the very stiff underlying glass slide was causing the thin-soft hydrogels to feel stiffer to the bacteria. These findings suggest a key takeaway design rule; to optimize fouling-resistance, hydrogel coatings should be thick and soft.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29283244</pmid><doi>10.1021/acsami.7b12145</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-5369-9279</orcidid><orcidid>https://orcid.org/0000-0002-1265-5392</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2018-01, Vol.10 (3), p.2275-2281 |
issn | 1944-8244 1944-8252 1944-8252 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5785418 |
source | ACS Publications |
subjects | adhesion atomic force microscopy bacteria bacterial adhesion coatings Escherichia coli glass hydrogels mechanical properties modulus of elasticity olfactory perception polyethylene glycol Staphylococcus aureus topography |
title | Bacterial Adhesion Is Affected by the Thickness and Stiffness of Poly(ethylene glycol) Hydrogels |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T10%3A28%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bacterial%20Adhesion%20Is%20Affected%20by%20the%20Thickness%20and%20Stiffness%20of%20Poly(ethylene%20glycol)%20Hydrogels&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Kolewe,%20Kristopher%20W&rft.date=2018-01-24&rft.volume=10&rft.issue=3&rft.spage=2275&rft.epage=2281&rft.pages=2275-2281&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.7b12145&rft_dat=%3Cproquest_pubme%3E1981813395%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1981813395&rft_id=info:pmid/29283244&rfr_iscdi=true |