Light-harvesting complexes of Botryococcus braunii
The colonial green alga Botryococcus braunii ( BB ) is a potential source of biofuel due to its natural high hydrocarbon content. Unfortunately, its slow growth limits its biotechnological potential. Understanding its photosynthetic machinery could help to identify possible growth limitations. Here,...
Gespeichert in:
Veröffentlicht in: | Photosynthesis research 2018-03, Vol.135 (1-3), p.191-201 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 201 |
---|---|
container_issue | 1-3 |
container_start_page | 191 |
container_title | Photosynthesis research |
container_volume | 135 |
creator | van den Berg, Tomas E. van Oort, Bart Croce, Roberta |
description | The colonial green alga
Botryococcus braunii
(
BB
) is a potential source of biofuel due to its natural high hydrocarbon content. Unfortunately, its slow growth limits its biotechnological potential. Understanding its photosynthetic machinery could help to identify possible growth limitations. Here, we present the first study on
BB
light-harvesting complexes (LHCs). We purified two LHC fractions containing the complexes in monomeric and trimeric form. Both fractions contained at least two proteins with molecular weight (MW) around 25 kDa. The chlorophyll composition is similar to that of the LHCII of plants; in contrast, the main xanthophyll is loroxanthin, which substitutes lutein in most binding sites. Circular dichroism and 77 K absorption spectra lack typical differences between monomeric and trimeric complexes, suggesting that intermonomer interactions do not play a role in
BB
LHCs. This is in agreement with the low stability of the
BB
LHCII trimers as compared to the complexes of plants, which could be related to loroxanthin binding in the central (L1 and L2) binding sites. The properties of
BB
LHCII are similar to those of plant LHCII, indicating a similar pigment organization. Differences are a higher content of red chlorophyll
a
, similar to plant Lhcb3. These differences and the different Xan composition had no effect on excitation energy transfer or fluorescence lifetimes, which were similar to plant LHCII. |
doi_str_mv | 10.1007/s11120-017-0405-8 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5783996</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A524866156</galeid><sourcerecordid>A524866156</sourcerecordid><originalsourceid>FETCH-LOGICAL-c642t-d00203c195bf77bc1b70ccb30bd10772f7097a0b1616249ea177f5925435a20b3</originalsourceid><addsrcrecordid>eNqFkt1rFDEUxYModq3-Ab7Igi_6kHpvZvL1ItTiR2FB8OM5ZLKZ2ZSZyZrMlPa_N8vU0hVE8nAh93cO3MMh5CXCGQLIdxkRGVBASaEGTtUjskIuK8pB6sdkBSgEVVzzE_Is5ysAUAKrp-SEKc5RCbUibBO63UR3Nl37PIWxW7s47Ht_4_M6tusPcUq30UXn5rxukp3HEJ6TJ63ts39xN0_Jz08ff1x8oZuvny8vzjfUiZpNdAvAoHKoedNK2ThsJDjXVNBsEaRkrQQtLTQoULBae4tStlwzXlfcMmiqU_J-8d3PzeC3zo9Tsr3ZpzDYdGuiDeZ4M4ad6eK14VJVWoti8ObOIMVfcznPDCE73_d29HHOhoGQTDKs2X9R1FDVlarh4Pr6L_QqzmksSRRKF6pGxQt1tlCd7b0JY1uCtK68rR-Ci6NvQ_k_56xWQiA_2L49EhRm8jdTZ-eczeX3b8csLqxLMefk2_tQEMyhGWZphinNMIdmGFU0rx6mea_4U4UCsAXIZTV2Pj2465-uvwHdD8Cf</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1993434185</pqid></control><display><type>article</type><title>Light-harvesting complexes of Botryococcus braunii</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>van den Berg, Tomas E. ; van Oort, Bart ; Croce, Roberta</creator><creatorcontrib>van den Berg, Tomas E. ; van Oort, Bart ; Croce, Roberta</creatorcontrib><description>The colonial green alga
Botryococcus braunii
(
BB
) is a potential source of biofuel due to its natural high hydrocarbon content. Unfortunately, its slow growth limits its biotechnological potential. Understanding its photosynthetic machinery could help to identify possible growth limitations. Here, we present the first study on
BB
light-harvesting complexes (LHCs). We purified two LHC fractions containing the complexes in monomeric and trimeric form. Both fractions contained at least two proteins with molecular weight (MW) around 25 kDa. The chlorophyll composition is similar to that of the LHCII of plants; in contrast, the main xanthophyll is loroxanthin, which substitutes lutein in most binding sites. Circular dichroism and 77 K absorption spectra lack typical differences between monomeric and trimeric complexes, suggesting that intermonomer interactions do not play a role in
BB
LHCs. This is in agreement with the low stability of the
BB
LHCII trimers as compared to the complexes of plants, which could be related to loroxanthin binding in the central (L1 and L2) binding sites. The properties of
BB
LHCII are similar to those of plant LHCII, indicating a similar pigment organization. Differences are a higher content of red chlorophyll
a
, similar to plant Lhcb3. These differences and the different Xan composition had no effect on excitation energy transfer or fluorescence lifetimes, which were similar to plant LHCII.</description><identifier>ISSN: 0166-8595</identifier><identifier>EISSN: 1573-5079</identifier><identifier>DOI: 10.1007/s11120-017-0405-8</identifier><identifier>PMID: 28551868</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Binding sites ; Biochemistry ; biofuels ; Biomass energy ; Biomedical and Life Sciences ; Botryococcus braunii ; Chlorophyll ; Chlorophyta - metabolism ; Circular Dichroism ; circular dichroism spectroscopy ; energy transfer ; Fluorescence ; Life Sciences ; light harvesting complex ; Light-Harvesting Protein Complexes - isolation & purification ; Light-Harvesting Protein Complexes - metabolism ; lutein ; Molecular weight ; Original ; Original Article ; Photosynthesis ; Pigments, Biological - metabolism ; Plant Genetics and Genomics ; Plant Physiology ; Plant Proteins - isolation & purification ; Plant Proteins - metabolism ; Plant Sciences ; Protein Denaturation ; Protein Stability ; Proteins ; spectral analysis ; Spectrometry, Fluorescence ; Temperature ; Thylakoids - metabolism ; Time Factors ; Xanthophylls</subject><ispartof>Photosynthesis research, 2018-03, Vol.135 (1-3), p.191-201</ispartof><rights>The Author(s) 2017</rights><rights>COPYRIGHT 2018 Springer</rights><rights>Photosynthesis Research is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c642t-d00203c195bf77bc1b70ccb30bd10772f7097a0b1616249ea177f5925435a20b3</citedby><cites>FETCH-LOGICAL-c642t-d00203c195bf77bc1b70ccb30bd10772f7097a0b1616249ea177f5925435a20b3</cites><orcidid>0000-0003-3469-834X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11120-017-0405-8$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11120-017-0405-8$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28551868$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>van den Berg, Tomas E.</creatorcontrib><creatorcontrib>van Oort, Bart</creatorcontrib><creatorcontrib>Croce, Roberta</creatorcontrib><title>Light-harvesting complexes of Botryococcus braunii</title><title>Photosynthesis research</title><addtitle>Photosynth Res</addtitle><addtitle>Photosynth Res</addtitle><description>The colonial green alga
Botryococcus braunii
(
BB
) is a potential source of biofuel due to its natural high hydrocarbon content. Unfortunately, its slow growth limits its biotechnological potential. Understanding its photosynthetic machinery could help to identify possible growth limitations. Here, we present the first study on
BB
light-harvesting complexes (LHCs). We purified two LHC fractions containing the complexes in monomeric and trimeric form. Both fractions contained at least two proteins with molecular weight (MW) around 25 kDa. The chlorophyll composition is similar to that of the LHCII of plants; in contrast, the main xanthophyll is loroxanthin, which substitutes lutein in most binding sites. Circular dichroism and 77 K absorption spectra lack typical differences between monomeric and trimeric complexes, suggesting that intermonomer interactions do not play a role in
BB
LHCs. This is in agreement with the low stability of the
BB
LHCII trimers as compared to the complexes of plants, which could be related to loroxanthin binding in the central (L1 and L2) binding sites. The properties of
BB
LHCII are similar to those of plant LHCII, indicating a similar pigment organization. Differences are a higher content of red chlorophyll
a
, similar to plant Lhcb3. These differences and the different Xan composition had no effect on excitation energy transfer or fluorescence lifetimes, which were similar to plant LHCII.</description><subject>Binding sites</subject><subject>Biochemistry</subject><subject>biofuels</subject><subject>Biomass energy</subject><subject>Biomedical and Life Sciences</subject><subject>Botryococcus braunii</subject><subject>Chlorophyll</subject><subject>Chlorophyta - metabolism</subject><subject>Circular Dichroism</subject><subject>circular dichroism spectroscopy</subject><subject>energy transfer</subject><subject>Fluorescence</subject><subject>Life Sciences</subject><subject>light harvesting complex</subject><subject>Light-Harvesting Protein Complexes - isolation & purification</subject><subject>Light-Harvesting Protein Complexes - metabolism</subject><subject>lutein</subject><subject>Molecular weight</subject><subject>Original</subject><subject>Original Article</subject><subject>Photosynthesis</subject><subject>Pigments, Biological - metabolism</subject><subject>Plant Genetics and Genomics</subject><subject>Plant Physiology</subject><subject>Plant Proteins - isolation & purification</subject><subject>Plant Proteins - metabolism</subject><subject>Plant Sciences</subject><subject>Protein Denaturation</subject><subject>Protein Stability</subject><subject>Proteins</subject><subject>spectral analysis</subject><subject>Spectrometry, Fluorescence</subject><subject>Temperature</subject><subject>Thylakoids - metabolism</subject><subject>Time Factors</subject><subject>Xanthophylls</subject><issn>0166-8595</issn><issn>1573-5079</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkt1rFDEUxYModq3-Ab7Igi_6kHpvZvL1ItTiR2FB8OM5ZLKZ2ZSZyZrMlPa_N8vU0hVE8nAh93cO3MMh5CXCGQLIdxkRGVBASaEGTtUjskIuK8pB6sdkBSgEVVzzE_Is5ysAUAKrp-SEKc5RCbUibBO63UR3Nl37PIWxW7s47Ht_4_M6tusPcUq30UXn5rxukp3HEJ6TJ63ts39xN0_Jz08ff1x8oZuvny8vzjfUiZpNdAvAoHKoedNK2ThsJDjXVNBsEaRkrQQtLTQoULBae4tStlwzXlfcMmiqU_J-8d3PzeC3zo9Tsr3ZpzDYdGuiDeZ4M4ad6eK14VJVWoti8ObOIMVfcznPDCE73_d29HHOhoGQTDKs2X9R1FDVlarh4Pr6L_QqzmksSRRKF6pGxQt1tlCd7b0JY1uCtK68rR-Ci6NvQ_k_56xWQiA_2L49EhRm8jdTZ-eczeX3b8csLqxLMefk2_tQEMyhGWZphinNMIdmGFU0rx6mea_4U4UCsAXIZTV2Pj2465-uvwHdD8Cf</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>van den Berg, Tomas E.</creator><creator>van Oort, Bart</creator><creator>Croce, Roberta</creator><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3469-834X</orcidid></search><sort><creationdate>20180301</creationdate><title>Light-harvesting complexes of Botryococcus braunii</title><author>van den Berg, Tomas E. ; van Oort, Bart ; Croce, Roberta</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c642t-d00203c195bf77bc1b70ccb30bd10772f7097a0b1616249ea177f5925435a20b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Binding sites</topic><topic>Biochemistry</topic><topic>biofuels</topic><topic>Biomass energy</topic><topic>Biomedical and Life Sciences</topic><topic>Botryococcus braunii</topic><topic>Chlorophyll</topic><topic>Chlorophyta - metabolism</topic><topic>Circular Dichroism</topic><topic>circular dichroism spectroscopy</topic><topic>energy transfer</topic><topic>Fluorescence</topic><topic>Life Sciences</topic><topic>light harvesting complex</topic><topic>Light-Harvesting Protein Complexes - isolation & purification</topic><topic>Light-Harvesting Protein Complexes - metabolism</topic><topic>lutein</topic><topic>Molecular weight</topic><topic>Original</topic><topic>Original Article</topic><topic>Photosynthesis</topic><topic>Pigments, Biological - metabolism</topic><topic>Plant Genetics and Genomics</topic><topic>Plant Physiology</topic><topic>Plant Proteins - isolation & purification</topic><topic>Plant Proteins - metabolism</topic><topic>Plant Sciences</topic><topic>Protein Denaturation</topic><topic>Protein Stability</topic><topic>Proteins</topic><topic>spectral analysis</topic><topic>Spectrometry, Fluorescence</topic><topic>Temperature</topic><topic>Thylakoids - metabolism</topic><topic>Time Factors</topic><topic>Xanthophylls</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van den Berg, Tomas E.</creatorcontrib><creatorcontrib>van Oort, Bart</creatorcontrib><creatorcontrib>Croce, Roberta</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest Health & Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health & Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Photosynthesis research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van den Berg, Tomas E.</au><au>van Oort, Bart</au><au>Croce, Roberta</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Light-harvesting complexes of Botryococcus braunii</atitle><jtitle>Photosynthesis research</jtitle><stitle>Photosynth Res</stitle><addtitle>Photosynth Res</addtitle><date>2018-03-01</date><risdate>2018</risdate><volume>135</volume><issue>1-3</issue><spage>191</spage><epage>201</epage><pages>191-201</pages><issn>0166-8595</issn><eissn>1573-5079</eissn><abstract>The colonial green alga
Botryococcus braunii
(
BB
) is a potential source of biofuel due to its natural high hydrocarbon content. Unfortunately, its slow growth limits its biotechnological potential. Understanding its photosynthetic machinery could help to identify possible growth limitations. Here, we present the first study on
BB
light-harvesting complexes (LHCs). We purified two LHC fractions containing the complexes in monomeric and trimeric form. Both fractions contained at least two proteins with molecular weight (MW) around 25 kDa. The chlorophyll composition is similar to that of the LHCII of plants; in contrast, the main xanthophyll is loroxanthin, which substitutes lutein in most binding sites. Circular dichroism and 77 K absorption spectra lack typical differences between monomeric and trimeric complexes, suggesting that intermonomer interactions do not play a role in
BB
LHCs. This is in agreement with the low stability of the
BB
LHCII trimers as compared to the complexes of plants, which could be related to loroxanthin binding in the central (L1 and L2) binding sites. The properties of
BB
LHCII are similar to those of plant LHCII, indicating a similar pigment organization. Differences are a higher content of red chlorophyll
a
, similar to plant Lhcb3. These differences and the different Xan composition had no effect on excitation energy transfer or fluorescence lifetimes, which were similar to plant LHCII.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>28551868</pmid><doi>10.1007/s11120-017-0405-8</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3469-834X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0166-8595 |
ispartof | Photosynthesis research, 2018-03, Vol.135 (1-3), p.191-201 |
issn | 0166-8595 1573-5079 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5783996 |
source | MEDLINE; SpringerLink Journals |
subjects | Binding sites Biochemistry biofuels Biomass energy Biomedical and Life Sciences Botryococcus braunii Chlorophyll Chlorophyta - metabolism Circular Dichroism circular dichroism spectroscopy energy transfer Fluorescence Life Sciences light harvesting complex Light-Harvesting Protein Complexes - isolation & purification Light-Harvesting Protein Complexes - metabolism lutein Molecular weight Original Original Article Photosynthesis Pigments, Biological - metabolism Plant Genetics and Genomics Plant Physiology Plant Proteins - isolation & purification Plant Proteins - metabolism Plant Sciences Protein Denaturation Protein Stability Proteins spectral analysis Spectrometry, Fluorescence Temperature Thylakoids - metabolism Time Factors Xanthophylls |
title | Light-harvesting complexes of Botryococcus braunii |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T12%3A58%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Light-harvesting%20complexes%20of%20Botryococcus%20braunii&rft.jtitle=Photosynthesis%20research&rft.au=van%20den%20Berg,%20Tomas%20E.&rft.date=2018-03-01&rft.volume=135&rft.issue=1-3&rft.spage=191&rft.epage=201&rft.pages=191-201&rft.issn=0166-8595&rft.eissn=1573-5079&rft_id=info:doi/10.1007/s11120-017-0405-8&rft_dat=%3Cgale_pubme%3EA524866156%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1993434185&rft_id=info:pmid/28551868&rft_galeid=A524866156&rfr_iscdi=true |