Light-harvesting complexes of Botryococcus braunii

The colonial green alga Botryococcus braunii ( BB ) is a potential source of biofuel due to its natural high hydrocarbon content. Unfortunately, its slow growth limits its biotechnological potential. Understanding its photosynthetic machinery could help to identify possible growth limitations. Here,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Photosynthesis research 2018-03, Vol.135 (1-3), p.191-201
Hauptverfasser: van den Berg, Tomas E., van Oort, Bart, Croce, Roberta
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 201
container_issue 1-3
container_start_page 191
container_title Photosynthesis research
container_volume 135
creator van den Berg, Tomas E.
van Oort, Bart
Croce, Roberta
description The colonial green alga Botryococcus braunii ( BB ) is a potential source of biofuel due to its natural high hydrocarbon content. Unfortunately, its slow growth limits its biotechnological potential. Understanding its photosynthetic machinery could help to identify possible growth limitations. Here, we present the first study on BB light-harvesting complexes (LHCs). We purified two LHC fractions containing the complexes in monomeric and trimeric form. Both fractions contained at least two proteins with molecular weight (MW) around 25 kDa. The chlorophyll composition is similar to that of the LHCII of plants; in contrast, the main xanthophyll is loroxanthin, which substitutes lutein in most binding sites. Circular dichroism and 77 K absorption spectra lack typical differences between monomeric and trimeric complexes, suggesting that intermonomer interactions do not play a role in BB LHCs. This is in agreement with the low stability of the BB LHCII trimers as compared to the complexes of plants, which could be related to loroxanthin binding in the central (L1 and L2) binding sites. The properties of BB LHCII are similar to those of plant LHCII, indicating a similar pigment organization. Differences are a higher content of red chlorophyll a , similar to plant Lhcb3. These differences and the different Xan composition had no effect on excitation energy transfer or fluorescence lifetimes, which were similar to plant LHCII.
doi_str_mv 10.1007/s11120-017-0405-8
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5783996</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A524866156</galeid><sourcerecordid>A524866156</sourcerecordid><originalsourceid>FETCH-LOGICAL-c642t-d00203c195bf77bc1b70ccb30bd10772f7097a0b1616249ea177f5925435a20b3</originalsourceid><addsrcrecordid>eNqFkt1rFDEUxYModq3-Ab7Igi_6kHpvZvL1ItTiR2FB8OM5ZLKZ2ZSZyZrMlPa_N8vU0hVE8nAh93cO3MMh5CXCGQLIdxkRGVBASaEGTtUjskIuK8pB6sdkBSgEVVzzE_Is5ysAUAKrp-SEKc5RCbUibBO63UR3Nl37PIWxW7s47Ht_4_M6tusPcUq30UXn5rxukp3HEJ6TJ63ts39xN0_Jz08ff1x8oZuvny8vzjfUiZpNdAvAoHKoedNK2ThsJDjXVNBsEaRkrQQtLTQoULBae4tStlwzXlfcMmiqU_J-8d3PzeC3zo9Tsr3ZpzDYdGuiDeZ4M4ad6eK14VJVWoti8ObOIMVfcznPDCE73_d29HHOhoGQTDKs2X9R1FDVlarh4Pr6L_QqzmksSRRKF6pGxQt1tlCd7b0JY1uCtK68rR-Ci6NvQ_k_56xWQiA_2L49EhRm8jdTZ-eczeX3b8csLqxLMefk2_tQEMyhGWZphinNMIdmGFU0rx6mea_4U4UCsAXIZTV2Pj2465-uvwHdD8Cf</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1993434185</pqid></control><display><type>article</type><title>Light-harvesting complexes of Botryococcus braunii</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>van den Berg, Tomas E. ; van Oort, Bart ; Croce, Roberta</creator><creatorcontrib>van den Berg, Tomas E. ; van Oort, Bart ; Croce, Roberta</creatorcontrib><description>The colonial green alga Botryococcus braunii ( BB ) is a potential source of biofuel due to its natural high hydrocarbon content. Unfortunately, its slow growth limits its biotechnological potential. Understanding its photosynthetic machinery could help to identify possible growth limitations. Here, we present the first study on BB light-harvesting complexes (LHCs). We purified two LHC fractions containing the complexes in monomeric and trimeric form. Both fractions contained at least two proteins with molecular weight (MW) around 25 kDa. The chlorophyll composition is similar to that of the LHCII of plants; in contrast, the main xanthophyll is loroxanthin, which substitutes lutein in most binding sites. Circular dichroism and 77 K absorption spectra lack typical differences between monomeric and trimeric complexes, suggesting that intermonomer interactions do not play a role in BB LHCs. This is in agreement with the low stability of the BB LHCII trimers as compared to the complexes of plants, which could be related to loroxanthin binding in the central (L1 and L2) binding sites. The properties of BB LHCII are similar to those of plant LHCII, indicating a similar pigment organization. Differences are a higher content of red chlorophyll a , similar to plant Lhcb3. These differences and the different Xan composition had no effect on excitation energy transfer or fluorescence lifetimes, which were similar to plant LHCII.</description><identifier>ISSN: 0166-8595</identifier><identifier>EISSN: 1573-5079</identifier><identifier>DOI: 10.1007/s11120-017-0405-8</identifier><identifier>PMID: 28551868</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Binding sites ; Biochemistry ; biofuels ; Biomass energy ; Biomedical and Life Sciences ; Botryococcus braunii ; Chlorophyll ; Chlorophyta - metabolism ; Circular Dichroism ; circular dichroism spectroscopy ; energy transfer ; Fluorescence ; Life Sciences ; light harvesting complex ; Light-Harvesting Protein Complexes - isolation &amp; purification ; Light-Harvesting Protein Complexes - metabolism ; lutein ; Molecular weight ; Original ; Original Article ; Photosynthesis ; Pigments, Biological - metabolism ; Plant Genetics and Genomics ; Plant Physiology ; Plant Proteins - isolation &amp; purification ; Plant Proteins - metabolism ; Plant Sciences ; Protein Denaturation ; Protein Stability ; Proteins ; spectral analysis ; Spectrometry, Fluorescence ; Temperature ; Thylakoids - metabolism ; Time Factors ; Xanthophylls</subject><ispartof>Photosynthesis research, 2018-03, Vol.135 (1-3), p.191-201</ispartof><rights>The Author(s) 2017</rights><rights>COPYRIGHT 2018 Springer</rights><rights>Photosynthesis Research is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c642t-d00203c195bf77bc1b70ccb30bd10772f7097a0b1616249ea177f5925435a20b3</citedby><cites>FETCH-LOGICAL-c642t-d00203c195bf77bc1b70ccb30bd10772f7097a0b1616249ea177f5925435a20b3</cites><orcidid>0000-0003-3469-834X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11120-017-0405-8$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11120-017-0405-8$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28551868$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>van den Berg, Tomas E.</creatorcontrib><creatorcontrib>van Oort, Bart</creatorcontrib><creatorcontrib>Croce, Roberta</creatorcontrib><title>Light-harvesting complexes of Botryococcus braunii</title><title>Photosynthesis research</title><addtitle>Photosynth Res</addtitle><addtitle>Photosynth Res</addtitle><description>The colonial green alga Botryococcus braunii ( BB ) is a potential source of biofuel due to its natural high hydrocarbon content. Unfortunately, its slow growth limits its biotechnological potential. Understanding its photosynthetic machinery could help to identify possible growth limitations. Here, we present the first study on BB light-harvesting complexes (LHCs). We purified two LHC fractions containing the complexes in monomeric and trimeric form. Both fractions contained at least two proteins with molecular weight (MW) around 25 kDa. The chlorophyll composition is similar to that of the LHCII of plants; in contrast, the main xanthophyll is loroxanthin, which substitutes lutein in most binding sites. Circular dichroism and 77 K absorption spectra lack typical differences between monomeric and trimeric complexes, suggesting that intermonomer interactions do not play a role in BB LHCs. This is in agreement with the low stability of the BB LHCII trimers as compared to the complexes of plants, which could be related to loroxanthin binding in the central (L1 and L2) binding sites. The properties of BB LHCII are similar to those of plant LHCII, indicating a similar pigment organization. Differences are a higher content of red chlorophyll a , similar to plant Lhcb3. These differences and the different Xan composition had no effect on excitation energy transfer or fluorescence lifetimes, which were similar to plant LHCII.</description><subject>Binding sites</subject><subject>Biochemistry</subject><subject>biofuels</subject><subject>Biomass energy</subject><subject>Biomedical and Life Sciences</subject><subject>Botryococcus braunii</subject><subject>Chlorophyll</subject><subject>Chlorophyta - metabolism</subject><subject>Circular Dichroism</subject><subject>circular dichroism spectroscopy</subject><subject>energy transfer</subject><subject>Fluorescence</subject><subject>Life Sciences</subject><subject>light harvesting complex</subject><subject>Light-Harvesting Protein Complexes - isolation &amp; purification</subject><subject>Light-Harvesting Protein Complexes - metabolism</subject><subject>lutein</subject><subject>Molecular weight</subject><subject>Original</subject><subject>Original Article</subject><subject>Photosynthesis</subject><subject>Pigments, Biological - metabolism</subject><subject>Plant Genetics and Genomics</subject><subject>Plant Physiology</subject><subject>Plant Proteins - isolation &amp; purification</subject><subject>Plant Proteins - metabolism</subject><subject>Plant Sciences</subject><subject>Protein Denaturation</subject><subject>Protein Stability</subject><subject>Proteins</subject><subject>spectral analysis</subject><subject>Spectrometry, Fluorescence</subject><subject>Temperature</subject><subject>Thylakoids - metabolism</subject><subject>Time Factors</subject><subject>Xanthophylls</subject><issn>0166-8595</issn><issn>1573-5079</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkt1rFDEUxYModq3-Ab7Igi_6kHpvZvL1ItTiR2FB8OM5ZLKZ2ZSZyZrMlPa_N8vU0hVE8nAh93cO3MMh5CXCGQLIdxkRGVBASaEGTtUjskIuK8pB6sdkBSgEVVzzE_Is5ysAUAKrp-SEKc5RCbUibBO63UR3Nl37PIWxW7s47Ht_4_M6tusPcUq30UXn5rxukp3HEJ6TJ63ts39xN0_Jz08ff1x8oZuvny8vzjfUiZpNdAvAoHKoedNK2ThsJDjXVNBsEaRkrQQtLTQoULBae4tStlwzXlfcMmiqU_J-8d3PzeC3zo9Tsr3ZpzDYdGuiDeZ4M4ad6eK14VJVWoti8ObOIMVfcznPDCE73_d29HHOhoGQTDKs2X9R1FDVlarh4Pr6L_QqzmksSRRKF6pGxQt1tlCd7b0JY1uCtK68rR-Ci6NvQ_k_56xWQiA_2L49EhRm8jdTZ-eczeX3b8csLqxLMefk2_tQEMyhGWZphinNMIdmGFU0rx6mea_4U4UCsAXIZTV2Pj2465-uvwHdD8Cf</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>van den Berg, Tomas E.</creator><creator>van Oort, Bart</creator><creator>Croce, Roberta</creator><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3469-834X</orcidid></search><sort><creationdate>20180301</creationdate><title>Light-harvesting complexes of Botryococcus braunii</title><author>van den Berg, Tomas E. ; van Oort, Bart ; Croce, Roberta</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c642t-d00203c195bf77bc1b70ccb30bd10772f7097a0b1616249ea177f5925435a20b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Binding sites</topic><topic>Biochemistry</topic><topic>biofuels</topic><topic>Biomass energy</topic><topic>Biomedical and Life Sciences</topic><topic>Botryococcus braunii</topic><topic>Chlorophyll</topic><topic>Chlorophyta - metabolism</topic><topic>Circular Dichroism</topic><topic>circular dichroism spectroscopy</topic><topic>energy transfer</topic><topic>Fluorescence</topic><topic>Life Sciences</topic><topic>light harvesting complex</topic><topic>Light-Harvesting Protein Complexes - isolation &amp; purification</topic><topic>Light-Harvesting Protein Complexes - metabolism</topic><topic>lutein</topic><topic>Molecular weight</topic><topic>Original</topic><topic>Original Article</topic><topic>Photosynthesis</topic><topic>Pigments, Biological - metabolism</topic><topic>Plant Genetics and Genomics</topic><topic>Plant Physiology</topic><topic>Plant Proteins - isolation &amp; purification</topic><topic>Plant Proteins - metabolism</topic><topic>Plant Sciences</topic><topic>Protein Denaturation</topic><topic>Protein Stability</topic><topic>Proteins</topic><topic>spectral analysis</topic><topic>Spectrometry, Fluorescence</topic><topic>Temperature</topic><topic>Thylakoids - metabolism</topic><topic>Time Factors</topic><topic>Xanthophylls</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van den Berg, Tomas E.</creatorcontrib><creatorcontrib>van Oort, Bart</creatorcontrib><creatorcontrib>Croce, Roberta</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest Health &amp; Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health &amp; Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Photosynthesis research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van den Berg, Tomas E.</au><au>van Oort, Bart</au><au>Croce, Roberta</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Light-harvesting complexes of Botryococcus braunii</atitle><jtitle>Photosynthesis research</jtitle><stitle>Photosynth Res</stitle><addtitle>Photosynth Res</addtitle><date>2018-03-01</date><risdate>2018</risdate><volume>135</volume><issue>1-3</issue><spage>191</spage><epage>201</epage><pages>191-201</pages><issn>0166-8595</issn><eissn>1573-5079</eissn><abstract>The colonial green alga Botryococcus braunii ( BB ) is a potential source of biofuel due to its natural high hydrocarbon content. Unfortunately, its slow growth limits its biotechnological potential. Understanding its photosynthetic machinery could help to identify possible growth limitations. Here, we present the first study on BB light-harvesting complexes (LHCs). We purified two LHC fractions containing the complexes in monomeric and trimeric form. Both fractions contained at least two proteins with molecular weight (MW) around 25 kDa. The chlorophyll composition is similar to that of the LHCII of plants; in contrast, the main xanthophyll is loroxanthin, which substitutes lutein in most binding sites. Circular dichroism and 77 K absorption spectra lack typical differences between monomeric and trimeric complexes, suggesting that intermonomer interactions do not play a role in BB LHCs. This is in agreement with the low stability of the BB LHCII trimers as compared to the complexes of plants, which could be related to loroxanthin binding in the central (L1 and L2) binding sites. The properties of BB LHCII are similar to those of plant LHCII, indicating a similar pigment organization. Differences are a higher content of red chlorophyll a , similar to plant Lhcb3. These differences and the different Xan composition had no effect on excitation energy transfer or fluorescence lifetimes, which were similar to plant LHCII.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>28551868</pmid><doi>10.1007/s11120-017-0405-8</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3469-834X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0166-8595
ispartof Photosynthesis research, 2018-03, Vol.135 (1-3), p.191-201
issn 0166-8595
1573-5079
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5783996
source MEDLINE; SpringerLink Journals
subjects Binding sites
Biochemistry
biofuels
Biomass energy
Biomedical and Life Sciences
Botryococcus braunii
Chlorophyll
Chlorophyta - metabolism
Circular Dichroism
circular dichroism spectroscopy
energy transfer
Fluorescence
Life Sciences
light harvesting complex
Light-Harvesting Protein Complexes - isolation & purification
Light-Harvesting Protein Complexes - metabolism
lutein
Molecular weight
Original
Original Article
Photosynthesis
Pigments, Biological - metabolism
Plant Genetics and Genomics
Plant Physiology
Plant Proteins - isolation & purification
Plant Proteins - metabolism
Plant Sciences
Protein Denaturation
Protein Stability
Proteins
spectral analysis
Spectrometry, Fluorescence
Temperature
Thylakoids - metabolism
Time Factors
Xanthophylls
title Light-harvesting complexes of Botryococcus braunii
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T12%3A58%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Light-harvesting%20complexes%20of%20Botryococcus%20braunii&rft.jtitle=Photosynthesis%20research&rft.au=van%20den%20Berg,%20Tomas%20E.&rft.date=2018-03-01&rft.volume=135&rft.issue=1-3&rft.spage=191&rft.epage=201&rft.pages=191-201&rft.issn=0166-8595&rft.eissn=1573-5079&rft_id=info:doi/10.1007/s11120-017-0405-8&rft_dat=%3Cgale_pubme%3EA524866156%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1993434185&rft_id=info:pmid/28551868&rft_galeid=A524866156&rfr_iscdi=true