Mitochondrial Genome Engineering: The Revolution May Not Be CRISPR-Ized

In recent years mitochondrial DNA (mtDNA) has transitioned to greater prominence across diverse areas of biology and medicine. The recognition of mitochondria as a major biochemical hub, contributions of mitochondrial dysfunction to various diseases, and several high-profile attempts to prevent here...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Trends in genetics 2018-02, Vol.34 (2), p.101-110
Hauptverfasser: Gammage, Payam A., Moraes, Carlos T., Minczuk, Michal
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 110
container_issue 2
container_start_page 101
container_title Trends in genetics
container_volume 34
creator Gammage, Payam A.
Moraes, Carlos T.
Minczuk, Michal
description In recent years mitochondrial DNA (mtDNA) has transitioned to greater prominence across diverse areas of biology and medicine. The recognition of mitochondria as a major biochemical hub, contributions of mitochondrial dysfunction to various diseases, and several high-profile attempts to prevent hereditary mtDNA disease through mitochondrial replacement therapy have roused interest in the organellar genome. Subsequently, attempts to manipulate mtDNA have been galvanized, although with few robust advances and much controversy. Re-engineered protein-only nucleases such as mtZFN and mitoTALEN function effectively in mammalian mitochondria, although efficient delivery of nucleic acids into the organelle remains elusive. Such an achievement, in concert with a mitochondria-adapted CRISPR/Cas9 platform, could prompt a revolution in mitochondrial genome engineering and biological understanding. However, the existence of an endogenous mechanism for nucleic acid import into mammalian mitochondria, a prerequisite for mitochondrial CRISPR/Cas9 gene editing, remains controversial. Engineering of mammalian mtDNA has been hampered by an inability to import nucleic acids into mitochondria. A limited toolkit exists for manipulation of mammalian mtDNA, relying on protein-only nucleolysis and heteroplasmy-shifting approaches. Although present in lower metazoans, the weight of evidence against an efficient endogenous RNA import mechanism in mammalian mitochondria is considerable. Controversially, the application of CRISPR/Cas9 for manipulation of mammalian mtDNA in human cells has been reported.
doi_str_mv 10.1016/j.tig.2017.11.001
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5783712</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0168952517301919</els_id><sourcerecordid>1969935143</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-d1e990ffd4403585be7d50c7884f389cfa616cd3d5593d1857d80120729b0fae3</originalsourceid><addsrcrecordid>eNp9kE1P4zAQhn1gBSzwA7igHPeS4InjOt6VVoIKSiW-VOBsufakdZXaYKeV4NcTVEBw4TTSzDPvjB5CDoEWQGFwvCg6NytKCqIAKCiFLbLb9-tc8pLvkN8pLSilXDC-TXZKCULKku6S0ZXrgpkHb6PTbTZCH5aYnfmZ84jR-dnf7H6O2QTXoV11LvjsSj9n16HLTjEbTsZ3t5N8_IJ2n_xqdJvw4L3ukYfzs_vhRX55MxoPTy5zU3HocgsoJW0aW1WU8ZpPUVhOjajrqmG1NI0ewMBYZjmXzELNha0plFSUckobjWyP_N_kPq6mS7QGfRd1qx6jW-r4rIJ26vvEu7mahbXiomYCyj7gz3tADE8rTJ1aumSwbbXHsEoK5EBKxqFiPQob1MSQUsTm8wxQ9SZdLVQvXb1JVwCql97vHH3973Pjw3gP_NsA2FtaO4wqGYfeoHURTadscD_EvwIGl5PY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1969935143</pqid></control><display><type>article</type><title>Mitochondrial Genome Engineering: The Revolution May Not Be CRISPR-Ized</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Gammage, Payam A. ; Moraes, Carlos T. ; Minczuk, Michal</creator><creatorcontrib>Gammage, Payam A. ; Moraes, Carlos T. ; Minczuk, Michal</creatorcontrib><description>In recent years mitochondrial DNA (mtDNA) has transitioned to greater prominence across diverse areas of biology and medicine. The recognition of mitochondria as a major biochemical hub, contributions of mitochondrial dysfunction to various diseases, and several high-profile attempts to prevent hereditary mtDNA disease through mitochondrial replacement therapy have roused interest in the organellar genome. Subsequently, attempts to manipulate mtDNA have been galvanized, although with few robust advances and much controversy. Re-engineered protein-only nucleases such as mtZFN and mitoTALEN function effectively in mammalian mitochondria, although efficient delivery of nucleic acids into the organelle remains elusive. Such an achievement, in concert with a mitochondria-adapted CRISPR/Cas9 platform, could prompt a revolution in mitochondrial genome engineering and biological understanding. However, the existence of an endogenous mechanism for nucleic acid import into mammalian mitochondria, a prerequisite for mitochondrial CRISPR/Cas9 gene editing, remains controversial. Engineering of mammalian mtDNA has been hampered by an inability to import nucleic acids into mitochondria. A limited toolkit exists for manipulation of mammalian mtDNA, relying on protein-only nucleolysis and heteroplasmy-shifting approaches. Although present in lower metazoans, the weight of evidence against an efficient endogenous RNA import mechanism in mammalian mitochondria is considerable. Controversially, the application of CRISPR/Cas9 for manipulation of mammalian mtDNA in human cells has been reported.</description><identifier>ISSN: 0168-9525</identifier><identifier>DOI: 10.1016/j.tig.2017.11.001</identifier><identifier>PMID: 29179920</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Animals ; Biolistics - methods ; Biological Transport ; CRISPR-Cas Systems ; CRISPR/Cas9 ; Dependovirus - genetics ; Dependovirus - metabolism ; DNA, Mitochondrial - genetics ; DNA, Mitochondrial - metabolism ; Endodeoxyribonucleases - genetics ; Endodeoxyribonucleases - metabolism ; Gene Editing - methods ; Genetic Vectors - chemistry ; Genetic Vectors - metabolism ; Genome, Mitochondrial ; Mammals ; mitochondria ; Mitochondria - genetics ; Mitochondria - metabolism ; mitoTALEN ; mtDNA ; mtZFN ; Polyribonucleotide Nucleotidyltransferase - genetics ; Polyribonucleotide Nucleotidyltransferase - metabolism ; RNA import ; RNA, Guide, CRISPR-Cas Systems - genetics ; RNA, Guide, CRISPR-Cas Systems - metabolism ; Transcription Activator-Like Effector Nucleases - genetics ; Transcription Activator-Like Effector Nucleases - metabolism ; Transcription Factors - genetics ; Transcription Factors - metabolism</subject><ispartof>Trends in genetics, 2018-02, Vol.34 (2), p.101-110</ispartof><rights>2017 The Authors</rights><rights>Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.</rights><rights>2017 The Authors 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-d1e990ffd4403585be7d50c7884f389cfa616cd3d5593d1857d80120729b0fae3</citedby><cites>FETCH-LOGICAL-c451t-d1e990ffd4403585be7d50c7884f389cfa616cd3d5593d1857d80120729b0fae3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.tig.2017.11.001$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29179920$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gammage, Payam A.</creatorcontrib><creatorcontrib>Moraes, Carlos T.</creatorcontrib><creatorcontrib>Minczuk, Michal</creatorcontrib><title>Mitochondrial Genome Engineering: The Revolution May Not Be CRISPR-Ized</title><title>Trends in genetics</title><addtitle>Trends Genet</addtitle><description>In recent years mitochondrial DNA (mtDNA) has transitioned to greater prominence across diverse areas of biology and medicine. The recognition of mitochondria as a major biochemical hub, contributions of mitochondrial dysfunction to various diseases, and several high-profile attempts to prevent hereditary mtDNA disease through mitochondrial replacement therapy have roused interest in the organellar genome. Subsequently, attempts to manipulate mtDNA have been galvanized, although with few robust advances and much controversy. Re-engineered protein-only nucleases such as mtZFN and mitoTALEN function effectively in mammalian mitochondria, although efficient delivery of nucleic acids into the organelle remains elusive. Such an achievement, in concert with a mitochondria-adapted CRISPR/Cas9 platform, could prompt a revolution in mitochondrial genome engineering and biological understanding. However, the existence of an endogenous mechanism for nucleic acid import into mammalian mitochondria, a prerequisite for mitochondrial CRISPR/Cas9 gene editing, remains controversial. Engineering of mammalian mtDNA has been hampered by an inability to import nucleic acids into mitochondria. A limited toolkit exists for manipulation of mammalian mtDNA, relying on protein-only nucleolysis and heteroplasmy-shifting approaches. Although present in lower metazoans, the weight of evidence against an efficient endogenous RNA import mechanism in mammalian mitochondria is considerable. Controversially, the application of CRISPR/Cas9 for manipulation of mammalian mtDNA in human cells has been reported.</description><subject>Animals</subject><subject>Biolistics - methods</subject><subject>Biological Transport</subject><subject>CRISPR-Cas Systems</subject><subject>CRISPR/Cas9</subject><subject>Dependovirus - genetics</subject><subject>Dependovirus - metabolism</subject><subject>DNA, Mitochondrial - genetics</subject><subject>DNA, Mitochondrial - metabolism</subject><subject>Endodeoxyribonucleases - genetics</subject><subject>Endodeoxyribonucleases - metabolism</subject><subject>Gene Editing - methods</subject><subject>Genetic Vectors - chemistry</subject><subject>Genetic Vectors - metabolism</subject><subject>Genome, Mitochondrial</subject><subject>Mammals</subject><subject>mitochondria</subject><subject>Mitochondria - genetics</subject><subject>Mitochondria - metabolism</subject><subject>mitoTALEN</subject><subject>mtDNA</subject><subject>mtZFN</subject><subject>Polyribonucleotide Nucleotidyltransferase - genetics</subject><subject>Polyribonucleotide Nucleotidyltransferase - metabolism</subject><subject>RNA import</subject><subject>RNA, Guide, CRISPR-Cas Systems - genetics</subject><subject>RNA, Guide, CRISPR-Cas Systems - metabolism</subject><subject>Transcription Activator-Like Effector Nucleases - genetics</subject><subject>Transcription Activator-Like Effector Nucleases - metabolism</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><issn>0168-9525</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1P4zAQhn1gBSzwA7igHPeS4InjOt6VVoIKSiW-VOBsufakdZXaYKeV4NcTVEBw4TTSzDPvjB5CDoEWQGFwvCg6NytKCqIAKCiFLbLb9-tc8pLvkN8pLSilXDC-TXZKCULKku6S0ZXrgpkHb6PTbTZCH5aYnfmZ84jR-dnf7H6O2QTXoV11LvjsSj9n16HLTjEbTsZ3t5N8_IJ2n_xqdJvw4L3ukYfzs_vhRX55MxoPTy5zU3HocgsoJW0aW1WU8ZpPUVhOjajrqmG1NI0ewMBYZjmXzELNha0plFSUckobjWyP_N_kPq6mS7QGfRd1qx6jW-r4rIJ26vvEu7mahbXiomYCyj7gz3tADE8rTJ1aumSwbbXHsEoK5EBKxqFiPQob1MSQUsTm8wxQ9SZdLVQvXb1JVwCql97vHH3973Pjw3gP_NsA2FtaO4wqGYfeoHURTadscD_EvwIGl5PY</recordid><startdate>201802</startdate><enddate>201802</enddate><creator>Gammage, Payam A.</creator><creator>Moraes, Carlos T.</creator><creator>Minczuk, Michal</creator><general>Elsevier Ltd</general><general>Elsevier Trends Journals</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201802</creationdate><title>Mitochondrial Genome Engineering: The Revolution May Not Be CRISPR-Ized</title><author>Gammage, Payam A. ; Moraes, Carlos T. ; Minczuk, Michal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-d1e990ffd4403585be7d50c7884f389cfa616cd3d5593d1857d80120729b0fae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>Biolistics - methods</topic><topic>Biological Transport</topic><topic>CRISPR-Cas Systems</topic><topic>CRISPR/Cas9</topic><topic>Dependovirus - genetics</topic><topic>Dependovirus - metabolism</topic><topic>DNA, Mitochondrial - genetics</topic><topic>DNA, Mitochondrial - metabolism</topic><topic>Endodeoxyribonucleases - genetics</topic><topic>Endodeoxyribonucleases - metabolism</topic><topic>Gene Editing - methods</topic><topic>Genetic Vectors - chemistry</topic><topic>Genetic Vectors - metabolism</topic><topic>Genome, Mitochondrial</topic><topic>Mammals</topic><topic>mitochondria</topic><topic>Mitochondria - genetics</topic><topic>Mitochondria - metabolism</topic><topic>mitoTALEN</topic><topic>mtDNA</topic><topic>mtZFN</topic><topic>Polyribonucleotide Nucleotidyltransferase - genetics</topic><topic>Polyribonucleotide Nucleotidyltransferase - metabolism</topic><topic>RNA import</topic><topic>RNA, Guide, CRISPR-Cas Systems - genetics</topic><topic>RNA, Guide, CRISPR-Cas Systems - metabolism</topic><topic>Transcription Activator-Like Effector Nucleases - genetics</topic><topic>Transcription Activator-Like Effector Nucleases - metabolism</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gammage, Payam A.</creatorcontrib><creatorcontrib>Moraes, Carlos T.</creatorcontrib><creatorcontrib>Minczuk, Michal</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Trends in genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gammage, Payam A.</au><au>Moraes, Carlos T.</au><au>Minczuk, Michal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mitochondrial Genome Engineering: The Revolution May Not Be CRISPR-Ized</atitle><jtitle>Trends in genetics</jtitle><addtitle>Trends Genet</addtitle><date>2018-02</date><risdate>2018</risdate><volume>34</volume><issue>2</issue><spage>101</spage><epage>110</epage><pages>101-110</pages><issn>0168-9525</issn><abstract>In recent years mitochondrial DNA (mtDNA) has transitioned to greater prominence across diverse areas of biology and medicine. The recognition of mitochondria as a major biochemical hub, contributions of mitochondrial dysfunction to various diseases, and several high-profile attempts to prevent hereditary mtDNA disease through mitochondrial replacement therapy have roused interest in the organellar genome. Subsequently, attempts to manipulate mtDNA have been galvanized, although with few robust advances and much controversy. Re-engineered protein-only nucleases such as mtZFN and mitoTALEN function effectively in mammalian mitochondria, although efficient delivery of nucleic acids into the organelle remains elusive. Such an achievement, in concert with a mitochondria-adapted CRISPR/Cas9 platform, could prompt a revolution in mitochondrial genome engineering and biological understanding. However, the existence of an endogenous mechanism for nucleic acid import into mammalian mitochondria, a prerequisite for mitochondrial CRISPR/Cas9 gene editing, remains controversial. Engineering of mammalian mtDNA has been hampered by an inability to import nucleic acids into mitochondria. A limited toolkit exists for manipulation of mammalian mtDNA, relying on protein-only nucleolysis and heteroplasmy-shifting approaches. Although present in lower metazoans, the weight of evidence against an efficient endogenous RNA import mechanism in mammalian mitochondria is considerable. Controversially, the application of CRISPR/Cas9 for manipulation of mammalian mtDNA in human cells has been reported.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>29179920</pmid><doi>10.1016/j.tig.2017.11.001</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0168-9525
ispartof Trends in genetics, 2018-02, Vol.34 (2), p.101-110
issn 0168-9525
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5783712
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Animals
Biolistics - methods
Biological Transport
CRISPR-Cas Systems
CRISPR/Cas9
Dependovirus - genetics
Dependovirus - metabolism
DNA, Mitochondrial - genetics
DNA, Mitochondrial - metabolism
Endodeoxyribonucleases - genetics
Endodeoxyribonucleases - metabolism
Gene Editing - methods
Genetic Vectors - chemistry
Genetic Vectors - metabolism
Genome, Mitochondrial
Mammals
mitochondria
Mitochondria - genetics
Mitochondria - metabolism
mitoTALEN
mtDNA
mtZFN
Polyribonucleotide Nucleotidyltransferase - genetics
Polyribonucleotide Nucleotidyltransferase - metabolism
RNA import
RNA, Guide, CRISPR-Cas Systems - genetics
RNA, Guide, CRISPR-Cas Systems - metabolism
Transcription Activator-Like Effector Nucleases - genetics
Transcription Activator-Like Effector Nucleases - metabolism
Transcription Factors - genetics
Transcription Factors - metabolism
title Mitochondrial Genome Engineering: The Revolution May Not Be CRISPR-Ized
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T15%3A15%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mitochondrial%20Genome%20Engineering:%20The%20Revolution%20May%20Not%20Be%20CRISPR-Ized&rft.jtitle=Trends%20in%20genetics&rft.au=Gammage,%20Payam%20A.&rft.date=2018-02&rft.volume=34&rft.issue=2&rft.spage=101&rft.epage=110&rft.pages=101-110&rft.issn=0168-9525&rft_id=info:doi/10.1016/j.tig.2017.11.001&rft_dat=%3Cproquest_pubme%3E1969935143%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1969935143&rft_id=info:pmid/29179920&rft_els_id=S0168952517301919&rfr_iscdi=true