Mitochondrial Genome Engineering: The Revolution May Not Be CRISPR-Ized
In recent years mitochondrial DNA (mtDNA) has transitioned to greater prominence across diverse areas of biology and medicine. The recognition of mitochondria as a major biochemical hub, contributions of mitochondrial dysfunction to various diseases, and several high-profile attempts to prevent here...
Gespeichert in:
Veröffentlicht in: | Trends in genetics 2018-02, Vol.34 (2), p.101-110 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 110 |
---|---|
container_issue | 2 |
container_start_page | 101 |
container_title | Trends in genetics |
container_volume | 34 |
creator | Gammage, Payam A. Moraes, Carlos T. Minczuk, Michal |
description | In recent years mitochondrial DNA (mtDNA) has transitioned to greater prominence across diverse areas of biology and medicine. The recognition of mitochondria as a major biochemical hub, contributions of mitochondrial dysfunction to various diseases, and several high-profile attempts to prevent hereditary mtDNA disease through mitochondrial replacement therapy have roused interest in the organellar genome. Subsequently, attempts to manipulate mtDNA have been galvanized, although with few robust advances and much controversy. Re-engineered protein-only nucleases such as mtZFN and mitoTALEN function effectively in mammalian mitochondria, although efficient delivery of nucleic acids into the organelle remains elusive. Such an achievement, in concert with a mitochondria-adapted CRISPR/Cas9 platform, could prompt a revolution in mitochondrial genome engineering and biological understanding. However, the existence of an endogenous mechanism for nucleic acid import into mammalian mitochondria, a prerequisite for mitochondrial CRISPR/Cas9 gene editing, remains controversial.
Engineering of mammalian mtDNA has been hampered by an inability to import nucleic acids into mitochondria.
A limited toolkit exists for manipulation of mammalian mtDNA, relying on protein-only nucleolysis and heteroplasmy-shifting approaches.
Although present in lower metazoans, the weight of evidence against an efficient endogenous RNA import mechanism in mammalian mitochondria is considerable.
Controversially, the application of CRISPR/Cas9 for manipulation of mammalian mtDNA in human cells has been reported. |
doi_str_mv | 10.1016/j.tig.2017.11.001 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5783712</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0168952517301919</els_id><sourcerecordid>1969935143</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-d1e990ffd4403585be7d50c7884f389cfa616cd3d5593d1857d80120729b0fae3</originalsourceid><addsrcrecordid>eNp9kE1P4zAQhn1gBSzwA7igHPeS4InjOt6VVoIKSiW-VOBsufakdZXaYKeV4NcTVEBw4TTSzDPvjB5CDoEWQGFwvCg6NytKCqIAKCiFLbLb9-tc8pLvkN8pLSilXDC-TXZKCULKku6S0ZXrgpkHb6PTbTZCH5aYnfmZ84jR-dnf7H6O2QTXoV11LvjsSj9n16HLTjEbTsZ3t5N8_IJ2n_xqdJvw4L3ukYfzs_vhRX55MxoPTy5zU3HocgsoJW0aW1WU8ZpPUVhOjajrqmG1NI0ewMBYZjmXzELNha0plFSUckobjWyP_N_kPq6mS7QGfRd1qx6jW-r4rIJ26vvEu7mahbXiomYCyj7gz3tADE8rTJ1aumSwbbXHsEoK5EBKxqFiPQob1MSQUsTm8wxQ9SZdLVQvXb1JVwCql97vHH3973Pjw3gP_NsA2FtaO4wqGYfeoHURTadscD_EvwIGl5PY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1969935143</pqid></control><display><type>article</type><title>Mitochondrial Genome Engineering: The Revolution May Not Be CRISPR-Ized</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Gammage, Payam A. ; Moraes, Carlos T. ; Minczuk, Michal</creator><creatorcontrib>Gammage, Payam A. ; Moraes, Carlos T. ; Minczuk, Michal</creatorcontrib><description>In recent years mitochondrial DNA (mtDNA) has transitioned to greater prominence across diverse areas of biology and medicine. The recognition of mitochondria as a major biochemical hub, contributions of mitochondrial dysfunction to various diseases, and several high-profile attempts to prevent hereditary mtDNA disease through mitochondrial replacement therapy have roused interest in the organellar genome. Subsequently, attempts to manipulate mtDNA have been galvanized, although with few robust advances and much controversy. Re-engineered protein-only nucleases such as mtZFN and mitoTALEN function effectively in mammalian mitochondria, although efficient delivery of nucleic acids into the organelle remains elusive. Such an achievement, in concert with a mitochondria-adapted CRISPR/Cas9 platform, could prompt a revolution in mitochondrial genome engineering and biological understanding. However, the existence of an endogenous mechanism for nucleic acid import into mammalian mitochondria, a prerequisite for mitochondrial CRISPR/Cas9 gene editing, remains controversial.
Engineering of mammalian mtDNA has been hampered by an inability to import nucleic acids into mitochondria.
A limited toolkit exists for manipulation of mammalian mtDNA, relying on protein-only nucleolysis and heteroplasmy-shifting approaches.
Although present in lower metazoans, the weight of evidence against an efficient endogenous RNA import mechanism in mammalian mitochondria is considerable.
Controversially, the application of CRISPR/Cas9 for manipulation of mammalian mtDNA in human cells has been reported.</description><identifier>ISSN: 0168-9525</identifier><identifier>DOI: 10.1016/j.tig.2017.11.001</identifier><identifier>PMID: 29179920</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Animals ; Biolistics - methods ; Biological Transport ; CRISPR-Cas Systems ; CRISPR/Cas9 ; Dependovirus - genetics ; Dependovirus - metabolism ; DNA, Mitochondrial - genetics ; DNA, Mitochondrial - metabolism ; Endodeoxyribonucleases - genetics ; Endodeoxyribonucleases - metabolism ; Gene Editing - methods ; Genetic Vectors - chemistry ; Genetic Vectors - metabolism ; Genome, Mitochondrial ; Mammals ; mitochondria ; Mitochondria - genetics ; Mitochondria - metabolism ; mitoTALEN ; mtDNA ; mtZFN ; Polyribonucleotide Nucleotidyltransferase - genetics ; Polyribonucleotide Nucleotidyltransferase - metabolism ; RNA import ; RNA, Guide, CRISPR-Cas Systems - genetics ; RNA, Guide, CRISPR-Cas Systems - metabolism ; Transcription Activator-Like Effector Nucleases - genetics ; Transcription Activator-Like Effector Nucleases - metabolism ; Transcription Factors - genetics ; Transcription Factors - metabolism</subject><ispartof>Trends in genetics, 2018-02, Vol.34 (2), p.101-110</ispartof><rights>2017 The Authors</rights><rights>Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.</rights><rights>2017 The Authors 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-d1e990ffd4403585be7d50c7884f389cfa616cd3d5593d1857d80120729b0fae3</citedby><cites>FETCH-LOGICAL-c451t-d1e990ffd4403585be7d50c7884f389cfa616cd3d5593d1857d80120729b0fae3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.tig.2017.11.001$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29179920$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gammage, Payam A.</creatorcontrib><creatorcontrib>Moraes, Carlos T.</creatorcontrib><creatorcontrib>Minczuk, Michal</creatorcontrib><title>Mitochondrial Genome Engineering: The Revolution May Not Be CRISPR-Ized</title><title>Trends in genetics</title><addtitle>Trends Genet</addtitle><description>In recent years mitochondrial DNA (mtDNA) has transitioned to greater prominence across diverse areas of biology and medicine. The recognition of mitochondria as a major biochemical hub, contributions of mitochondrial dysfunction to various diseases, and several high-profile attempts to prevent hereditary mtDNA disease through mitochondrial replacement therapy have roused interest in the organellar genome. Subsequently, attempts to manipulate mtDNA have been galvanized, although with few robust advances and much controversy. Re-engineered protein-only nucleases such as mtZFN and mitoTALEN function effectively in mammalian mitochondria, although efficient delivery of nucleic acids into the organelle remains elusive. Such an achievement, in concert with a mitochondria-adapted CRISPR/Cas9 platform, could prompt a revolution in mitochondrial genome engineering and biological understanding. However, the existence of an endogenous mechanism for nucleic acid import into mammalian mitochondria, a prerequisite for mitochondrial CRISPR/Cas9 gene editing, remains controversial.
Engineering of mammalian mtDNA has been hampered by an inability to import nucleic acids into mitochondria.
A limited toolkit exists for manipulation of mammalian mtDNA, relying on protein-only nucleolysis and heteroplasmy-shifting approaches.
Although present in lower metazoans, the weight of evidence against an efficient endogenous RNA import mechanism in mammalian mitochondria is considerable.
Controversially, the application of CRISPR/Cas9 for manipulation of mammalian mtDNA in human cells has been reported.</description><subject>Animals</subject><subject>Biolistics - methods</subject><subject>Biological Transport</subject><subject>CRISPR-Cas Systems</subject><subject>CRISPR/Cas9</subject><subject>Dependovirus - genetics</subject><subject>Dependovirus - metabolism</subject><subject>DNA, Mitochondrial - genetics</subject><subject>DNA, Mitochondrial - metabolism</subject><subject>Endodeoxyribonucleases - genetics</subject><subject>Endodeoxyribonucleases - metabolism</subject><subject>Gene Editing - methods</subject><subject>Genetic Vectors - chemistry</subject><subject>Genetic Vectors - metabolism</subject><subject>Genome, Mitochondrial</subject><subject>Mammals</subject><subject>mitochondria</subject><subject>Mitochondria - genetics</subject><subject>Mitochondria - metabolism</subject><subject>mitoTALEN</subject><subject>mtDNA</subject><subject>mtZFN</subject><subject>Polyribonucleotide Nucleotidyltransferase - genetics</subject><subject>Polyribonucleotide Nucleotidyltransferase - metabolism</subject><subject>RNA import</subject><subject>RNA, Guide, CRISPR-Cas Systems - genetics</subject><subject>RNA, Guide, CRISPR-Cas Systems - metabolism</subject><subject>Transcription Activator-Like Effector Nucleases - genetics</subject><subject>Transcription Activator-Like Effector Nucleases - metabolism</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><issn>0168-9525</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1P4zAQhn1gBSzwA7igHPeS4InjOt6VVoIKSiW-VOBsufakdZXaYKeV4NcTVEBw4TTSzDPvjB5CDoEWQGFwvCg6NytKCqIAKCiFLbLb9-tc8pLvkN8pLSilXDC-TXZKCULKku6S0ZXrgpkHb6PTbTZCH5aYnfmZ84jR-dnf7H6O2QTXoV11LvjsSj9n16HLTjEbTsZ3t5N8_IJ2n_xqdJvw4L3ukYfzs_vhRX55MxoPTy5zU3HocgsoJW0aW1WU8ZpPUVhOjajrqmG1NI0ewMBYZjmXzELNha0plFSUckobjWyP_N_kPq6mS7QGfRd1qx6jW-r4rIJ26vvEu7mahbXiomYCyj7gz3tADE8rTJ1aumSwbbXHsEoK5EBKxqFiPQob1MSQUsTm8wxQ9SZdLVQvXb1JVwCql97vHH3973Pjw3gP_NsA2FtaO4wqGYfeoHURTadscD_EvwIGl5PY</recordid><startdate>201802</startdate><enddate>201802</enddate><creator>Gammage, Payam A.</creator><creator>Moraes, Carlos T.</creator><creator>Minczuk, Michal</creator><general>Elsevier Ltd</general><general>Elsevier Trends Journals</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201802</creationdate><title>Mitochondrial Genome Engineering: The Revolution May Not Be CRISPR-Ized</title><author>Gammage, Payam A. ; Moraes, Carlos T. ; Minczuk, Michal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-d1e990ffd4403585be7d50c7884f389cfa616cd3d5593d1857d80120729b0fae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>Biolistics - methods</topic><topic>Biological Transport</topic><topic>CRISPR-Cas Systems</topic><topic>CRISPR/Cas9</topic><topic>Dependovirus - genetics</topic><topic>Dependovirus - metabolism</topic><topic>DNA, Mitochondrial - genetics</topic><topic>DNA, Mitochondrial - metabolism</topic><topic>Endodeoxyribonucleases - genetics</topic><topic>Endodeoxyribonucleases - metabolism</topic><topic>Gene Editing - methods</topic><topic>Genetic Vectors - chemistry</topic><topic>Genetic Vectors - metabolism</topic><topic>Genome, Mitochondrial</topic><topic>Mammals</topic><topic>mitochondria</topic><topic>Mitochondria - genetics</topic><topic>Mitochondria - metabolism</topic><topic>mitoTALEN</topic><topic>mtDNA</topic><topic>mtZFN</topic><topic>Polyribonucleotide Nucleotidyltransferase - genetics</topic><topic>Polyribonucleotide Nucleotidyltransferase - metabolism</topic><topic>RNA import</topic><topic>RNA, Guide, CRISPR-Cas Systems - genetics</topic><topic>RNA, Guide, CRISPR-Cas Systems - metabolism</topic><topic>Transcription Activator-Like Effector Nucleases - genetics</topic><topic>Transcription Activator-Like Effector Nucleases - metabolism</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gammage, Payam A.</creatorcontrib><creatorcontrib>Moraes, Carlos T.</creatorcontrib><creatorcontrib>Minczuk, Michal</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Trends in genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gammage, Payam A.</au><au>Moraes, Carlos T.</au><au>Minczuk, Michal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mitochondrial Genome Engineering: The Revolution May Not Be CRISPR-Ized</atitle><jtitle>Trends in genetics</jtitle><addtitle>Trends Genet</addtitle><date>2018-02</date><risdate>2018</risdate><volume>34</volume><issue>2</issue><spage>101</spage><epage>110</epage><pages>101-110</pages><issn>0168-9525</issn><abstract>In recent years mitochondrial DNA (mtDNA) has transitioned to greater prominence across diverse areas of biology and medicine. The recognition of mitochondria as a major biochemical hub, contributions of mitochondrial dysfunction to various diseases, and several high-profile attempts to prevent hereditary mtDNA disease through mitochondrial replacement therapy have roused interest in the organellar genome. Subsequently, attempts to manipulate mtDNA have been galvanized, although with few robust advances and much controversy. Re-engineered protein-only nucleases such as mtZFN and mitoTALEN function effectively in mammalian mitochondria, although efficient delivery of nucleic acids into the organelle remains elusive. Such an achievement, in concert with a mitochondria-adapted CRISPR/Cas9 platform, could prompt a revolution in mitochondrial genome engineering and biological understanding. However, the existence of an endogenous mechanism for nucleic acid import into mammalian mitochondria, a prerequisite for mitochondrial CRISPR/Cas9 gene editing, remains controversial.
Engineering of mammalian mtDNA has been hampered by an inability to import nucleic acids into mitochondria.
A limited toolkit exists for manipulation of mammalian mtDNA, relying on protein-only nucleolysis and heteroplasmy-shifting approaches.
Although present in lower metazoans, the weight of evidence against an efficient endogenous RNA import mechanism in mammalian mitochondria is considerable.
Controversially, the application of CRISPR/Cas9 for manipulation of mammalian mtDNA in human cells has been reported.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>29179920</pmid><doi>10.1016/j.tig.2017.11.001</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0168-9525 |
ispartof | Trends in genetics, 2018-02, Vol.34 (2), p.101-110 |
issn | 0168-9525 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5783712 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Animals Biolistics - methods Biological Transport CRISPR-Cas Systems CRISPR/Cas9 Dependovirus - genetics Dependovirus - metabolism DNA, Mitochondrial - genetics DNA, Mitochondrial - metabolism Endodeoxyribonucleases - genetics Endodeoxyribonucleases - metabolism Gene Editing - methods Genetic Vectors - chemistry Genetic Vectors - metabolism Genome, Mitochondrial Mammals mitochondria Mitochondria - genetics Mitochondria - metabolism mitoTALEN mtDNA mtZFN Polyribonucleotide Nucleotidyltransferase - genetics Polyribonucleotide Nucleotidyltransferase - metabolism RNA import RNA, Guide, CRISPR-Cas Systems - genetics RNA, Guide, CRISPR-Cas Systems - metabolism Transcription Activator-Like Effector Nucleases - genetics Transcription Activator-Like Effector Nucleases - metabolism Transcription Factors - genetics Transcription Factors - metabolism |
title | Mitochondrial Genome Engineering: The Revolution May Not Be CRISPR-Ized |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T15%3A15%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mitochondrial%20Genome%20Engineering:%20The%20Revolution%20May%20Not%20Be%20CRISPR-Ized&rft.jtitle=Trends%20in%20genetics&rft.au=Gammage,%20Payam%20A.&rft.date=2018-02&rft.volume=34&rft.issue=2&rft.spage=101&rft.epage=110&rft.pages=101-110&rft.issn=0168-9525&rft_id=info:doi/10.1016/j.tig.2017.11.001&rft_dat=%3Cproquest_pubme%3E1969935143%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1969935143&rft_id=info:pmid/29179920&rft_els_id=S0168952517301919&rfr_iscdi=true |