iTRAQ-based comparative proteomic analysis provides insights into somatic embryogenesis in Gossypium hirsutum L
Key message iTRAQ based proteomic identified key proteins and provided new insights into the molecular mechanisms underlying somatic embryogenesis in cotton. Somatic embryogenesis, which involves cell dedifferentiation and redifferentiation, has been used as a model system for understanding molecula...
Gespeichert in:
Veröffentlicht in: | Plant molecular biology 2018-01, Vol.96 (1-2), p.89-102 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 102 |
---|---|
container_issue | 1-2 |
container_start_page | 89 |
container_title | Plant molecular biology |
container_volume | 96 |
creator | Zhu, Hua-Guo Cheng, Wen-Han Tian, Wen-Gang Li, Yang-Jun Liu, Feng Xue, Fei Zhu, Qian-Hao Sun, Yu-Qiang Sun, Jie |
description | Key message
iTRAQ based proteomic identified key proteins and provided new insights into the molecular mechanisms underlying somatic embryogenesis in cotton.
Somatic embryogenesis, which involves cell dedifferentiation and redifferentiation, has been used as a model system for understanding molecular events of plant embryo development in vitro. In this study, we performed comparative proteomics analysis using samples of non-embryogenic callus (NEC), embryogenic callus (EC) and somatic embryo (SE) using the isobaric tags for relative and absolute quantitation (iTRAQ) technology. In total, 5892 proteins were identified amongst the three samples. The majority of these proteins (93.4%) were found to have catalytic activity, binding activity, transporter activity or structural molecular activity. Of these proteins, 1024 and 858 were differentially expressed in NEC versus EC and EC versus SE, respectively. Compared to NEC, EC had 452 and 572 down- and up-regulated proteins, respectively, and compared to EC, SE had 647 and 221 down- and up-regulated proteins, respectively. KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis indicated that genetic information transmission, plant hormone transduction, glycolysis, fatty acid biosynthesis and metabolism, galactose metabolism were the top pathways involved in somatic embryogenesis. Our proteomics results not only confirmed our previous transcriptomic results on the role of the polyamine metabolic pathways and stress responses in cotton somatic embryogenesis, but identified key proteins important for cotton somatic embryogenesis and provided new insights into the molecular mechanisms underlying somatic embryogenesis in cotton. |
doi_str_mv | 10.1007/s11103-017-0681-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5778175</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1973276674</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-9be73dbb6a484096169bd10f98c8a5e3abda912dda0cdc803c70d9299ba2ac53</originalsourceid><addsrcrecordid>eNp1kV9rFDEUxYModq1-AF9kwJe-RHOTzGTyIpRiq7AgLfse8m93U2YmYzKzdL-9GbeWKviUS-7vnJvcg9B7IJ-AEPE5AwBhmIDApGkBP7xAK6gFwzWh7Uu0ItAIzDnQM_Qm53tCioo1r9EZlRQ4p3yFYtjcXd5io7N3lY39qJOewsFXY4qTj32wlR50d8whL1eH4HyuwpDDbj8txRSrHPsisZXvTTrGnR_8Aoehuok5H8cw99U-pDxPpVi_Ra-2usv-3eN5jjbXXzdX3_D6x833q8s1tlyQCUvjBXPGNJq3nMgGGmkckK1sbatrz7RxWgJ1ThPrbEuYFcRJKqXRVNuanaMvJ9txNr131g9T0p0aU-h1Oqqog_q7M4S92sWDqoVoQSwGF48GKf6cfZ5UH7L1XacHH-esQApOADjjBf34D3of51SW9ptiVDSNWCg4UTaVtSS_fXoMELWkqU5pqpKmWtJUD0Xz4fkvnhR_4isAPQG5tIadT89G_9f1F9XJrrI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1973276674</pqid></control><display><type>article</type><title>iTRAQ-based comparative proteomic analysis provides insights into somatic embryogenesis in Gossypium hirsutum L</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Zhu, Hua-Guo ; Cheng, Wen-Han ; Tian, Wen-Gang ; Li, Yang-Jun ; Liu, Feng ; Xue, Fei ; Zhu, Qian-Hao ; Sun, Yu-Qiang ; Sun, Jie</creator><creatorcontrib>Zhu, Hua-Guo ; Cheng, Wen-Han ; Tian, Wen-Gang ; Li, Yang-Jun ; Liu, Feng ; Xue, Fei ; Zhu, Qian-Hao ; Sun, Yu-Qiang ; Sun, Jie</creatorcontrib><description>Key message
iTRAQ based proteomic identified key proteins and provided new insights into the molecular mechanisms underlying somatic embryogenesis in cotton.
Somatic embryogenesis, which involves cell dedifferentiation and redifferentiation, has been used as a model system for understanding molecular events of plant embryo development in vitro. In this study, we performed comparative proteomics analysis using samples of non-embryogenic callus (NEC), embryogenic callus (EC) and somatic embryo (SE) using the isobaric tags for relative and absolute quantitation (iTRAQ) technology. In total, 5892 proteins were identified amongst the three samples. The majority of these proteins (93.4%) were found to have catalytic activity, binding activity, transporter activity or structural molecular activity. Of these proteins, 1024 and 858 were differentially expressed in NEC versus EC and EC versus SE, respectively. Compared to NEC, EC had 452 and 572 down- and up-regulated proteins, respectively, and compared to EC, SE had 647 and 221 down- and up-regulated proteins, respectively. KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis indicated that genetic information transmission, plant hormone transduction, glycolysis, fatty acid biosynthesis and metabolism, galactose metabolism were the top pathways involved in somatic embryogenesis. Our proteomics results not only confirmed our previous transcriptomic results on the role of the polyamine metabolic pathways and stress responses in cotton somatic embryogenesis, but identified key proteins important for cotton somatic embryogenesis and provided new insights into the molecular mechanisms underlying somatic embryogenesis in cotton.</description><identifier>ISSN: 0167-4412</identifier><identifier>EISSN: 1573-5028</identifier><identifier>DOI: 10.1007/s11103-017-0681-x</identifier><identifier>PMID: 29214424</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Biochemistry ; Biomedical and Life Sciences ; Biosynthesis ; Callus ; Catalytic activity ; Cotton ; Embryonic growth stage ; Embryos ; Encyclopedias ; Galactose ; Gene Expression Regulation, Plant - genetics ; Gene Expression Regulation, Plant - physiology ; Genomes ; Glycolysis ; Gossypium - genetics ; Gossypium - metabolism ; Gossypium - physiology ; Information processing ; Life Sciences ; Metabolic pathways ; Metabolism ; Molecular modelling ; Plant hormones ; Plant Pathology ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Plant Sciences ; Polyamines - metabolism ; Proteins ; Proteomics ; Proteomics - methods ; Quantitation ; Seeds - genetics ; Seeds - physiology ; Somatic embryogenesis</subject><ispartof>Plant molecular biology, 2018-01, Vol.96 (1-2), p.89-102</ispartof><rights>The Author(s) 2017</rights><rights>Plant Molecular Biology is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-9be73dbb6a484096169bd10f98c8a5e3abda912dda0cdc803c70d9299ba2ac53</citedby><cites>FETCH-LOGICAL-c470t-9be73dbb6a484096169bd10f98c8a5e3abda912dda0cdc803c70d9299ba2ac53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11103-017-0681-x$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11103-017-0681-x$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29214424$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhu, Hua-Guo</creatorcontrib><creatorcontrib>Cheng, Wen-Han</creatorcontrib><creatorcontrib>Tian, Wen-Gang</creatorcontrib><creatorcontrib>Li, Yang-Jun</creatorcontrib><creatorcontrib>Liu, Feng</creatorcontrib><creatorcontrib>Xue, Fei</creatorcontrib><creatorcontrib>Zhu, Qian-Hao</creatorcontrib><creatorcontrib>Sun, Yu-Qiang</creatorcontrib><creatorcontrib>Sun, Jie</creatorcontrib><title>iTRAQ-based comparative proteomic analysis provides insights into somatic embryogenesis in Gossypium hirsutum L</title><title>Plant molecular biology</title><addtitle>Plant Mol Biol</addtitle><addtitle>Plant Mol Biol</addtitle><description>Key message
iTRAQ based proteomic identified key proteins and provided new insights into the molecular mechanisms underlying somatic embryogenesis in cotton.
Somatic embryogenesis, which involves cell dedifferentiation and redifferentiation, has been used as a model system for understanding molecular events of plant embryo development in vitro. In this study, we performed comparative proteomics analysis using samples of non-embryogenic callus (NEC), embryogenic callus (EC) and somatic embryo (SE) using the isobaric tags for relative and absolute quantitation (iTRAQ) technology. In total, 5892 proteins were identified amongst the three samples. The majority of these proteins (93.4%) were found to have catalytic activity, binding activity, transporter activity or structural molecular activity. Of these proteins, 1024 and 858 were differentially expressed in NEC versus EC and EC versus SE, respectively. Compared to NEC, EC had 452 and 572 down- and up-regulated proteins, respectively, and compared to EC, SE had 647 and 221 down- and up-regulated proteins, respectively. KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis indicated that genetic information transmission, plant hormone transduction, glycolysis, fatty acid biosynthesis and metabolism, galactose metabolism were the top pathways involved in somatic embryogenesis. Our proteomics results not only confirmed our previous transcriptomic results on the role of the polyamine metabolic pathways and stress responses in cotton somatic embryogenesis, but identified key proteins important for cotton somatic embryogenesis and provided new insights into the molecular mechanisms underlying somatic embryogenesis in cotton.</description><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biosynthesis</subject><subject>Callus</subject><subject>Catalytic activity</subject><subject>Cotton</subject><subject>Embryonic growth stage</subject><subject>Embryos</subject><subject>Encyclopedias</subject><subject>Galactose</subject><subject>Gene Expression Regulation, Plant - genetics</subject><subject>Gene Expression Regulation, Plant - physiology</subject><subject>Genomes</subject><subject>Glycolysis</subject><subject>Gossypium - genetics</subject><subject>Gossypium - metabolism</subject><subject>Gossypium - physiology</subject><subject>Information processing</subject><subject>Life Sciences</subject><subject>Metabolic pathways</subject><subject>Metabolism</subject><subject>Molecular modelling</subject><subject>Plant hormones</subject><subject>Plant Pathology</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Plant Sciences</subject><subject>Polyamines - metabolism</subject><subject>Proteins</subject><subject>Proteomics</subject><subject>Proteomics - methods</subject><subject>Quantitation</subject><subject>Seeds - genetics</subject><subject>Seeds - physiology</subject><subject>Somatic embryogenesis</subject><issn>0167-4412</issn><issn>1573-5028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kV9rFDEUxYModq1-AF9kwJe-RHOTzGTyIpRiq7AgLfse8m93U2YmYzKzdL-9GbeWKviUS-7vnJvcg9B7IJ-AEPE5AwBhmIDApGkBP7xAK6gFwzWh7Uu0ItAIzDnQM_Qm53tCioo1r9EZlRQ4p3yFYtjcXd5io7N3lY39qJOewsFXY4qTj32wlR50d8whL1eH4HyuwpDDbj8txRSrHPsisZXvTTrGnR_8Aoehuok5H8cw99U-pDxPpVi_Ra-2usv-3eN5jjbXXzdX3_D6x833q8s1tlyQCUvjBXPGNJq3nMgGGmkckK1sbatrz7RxWgJ1ThPrbEuYFcRJKqXRVNuanaMvJ9txNr131g9T0p0aU-h1Oqqog_q7M4S92sWDqoVoQSwGF48GKf6cfZ5UH7L1XacHH-esQApOADjjBf34D3of51SW9ptiVDSNWCg4UTaVtSS_fXoMELWkqU5pqpKmWtJUD0Xz4fkvnhR_4isAPQG5tIadT89G_9f1F9XJrrI</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Zhu, Hua-Guo</creator><creator>Cheng, Wen-Han</creator><creator>Tian, Wen-Gang</creator><creator>Li, Yang-Jun</creator><creator>Liu, Feng</creator><creator>Xue, Fei</creator><creator>Zhu, Qian-Hao</creator><creator>Sun, Yu-Qiang</creator><creator>Sun, Jie</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20180101</creationdate><title>iTRAQ-based comparative proteomic analysis provides insights into somatic embryogenesis in Gossypium hirsutum L</title><author>Zhu, Hua-Guo ; Cheng, Wen-Han ; Tian, Wen-Gang ; Li, Yang-Jun ; Liu, Feng ; Xue, Fei ; Zhu, Qian-Hao ; Sun, Yu-Qiang ; Sun, Jie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-9be73dbb6a484096169bd10f98c8a5e3abda912dda0cdc803c70d9299ba2ac53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biosynthesis</topic><topic>Callus</topic><topic>Catalytic activity</topic><topic>Cotton</topic><topic>Embryonic growth stage</topic><topic>Embryos</topic><topic>Encyclopedias</topic><topic>Galactose</topic><topic>Gene Expression Regulation, Plant - genetics</topic><topic>Gene Expression Regulation, Plant - physiology</topic><topic>Genomes</topic><topic>Glycolysis</topic><topic>Gossypium - genetics</topic><topic>Gossypium - metabolism</topic><topic>Gossypium - physiology</topic><topic>Information processing</topic><topic>Life Sciences</topic><topic>Metabolic pathways</topic><topic>Metabolism</topic><topic>Molecular modelling</topic><topic>Plant hormones</topic><topic>Plant Pathology</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Plant Sciences</topic><topic>Polyamines - metabolism</topic><topic>Proteins</topic><topic>Proteomics</topic><topic>Proteomics - methods</topic><topic>Quantitation</topic><topic>Seeds - genetics</topic><topic>Seeds - physiology</topic><topic>Somatic embryogenesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Hua-Guo</creatorcontrib><creatorcontrib>Cheng, Wen-Han</creatorcontrib><creatorcontrib>Tian, Wen-Gang</creatorcontrib><creatorcontrib>Li, Yang-Jun</creatorcontrib><creatorcontrib>Liu, Feng</creatorcontrib><creatorcontrib>Xue, Fei</creatorcontrib><creatorcontrib>Zhu, Qian-Hao</creatorcontrib><creatorcontrib>Sun, Yu-Qiang</creatorcontrib><creatorcontrib>Sun, Jie</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Hua-Guo</au><au>Cheng, Wen-Han</au><au>Tian, Wen-Gang</au><au>Li, Yang-Jun</au><au>Liu, Feng</au><au>Xue, Fei</au><au>Zhu, Qian-Hao</au><au>Sun, Yu-Qiang</au><au>Sun, Jie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>iTRAQ-based comparative proteomic analysis provides insights into somatic embryogenesis in Gossypium hirsutum L</atitle><jtitle>Plant molecular biology</jtitle><stitle>Plant Mol Biol</stitle><addtitle>Plant Mol Biol</addtitle><date>2018-01-01</date><risdate>2018</risdate><volume>96</volume><issue>1-2</issue><spage>89</spage><epage>102</epage><pages>89-102</pages><issn>0167-4412</issn><eissn>1573-5028</eissn><abstract>Key message
iTRAQ based proteomic identified key proteins and provided new insights into the molecular mechanisms underlying somatic embryogenesis in cotton.
Somatic embryogenesis, which involves cell dedifferentiation and redifferentiation, has been used as a model system for understanding molecular events of plant embryo development in vitro. In this study, we performed comparative proteomics analysis using samples of non-embryogenic callus (NEC), embryogenic callus (EC) and somatic embryo (SE) using the isobaric tags for relative and absolute quantitation (iTRAQ) technology. In total, 5892 proteins were identified amongst the three samples. The majority of these proteins (93.4%) were found to have catalytic activity, binding activity, transporter activity or structural molecular activity. Of these proteins, 1024 and 858 were differentially expressed in NEC versus EC and EC versus SE, respectively. Compared to NEC, EC had 452 and 572 down- and up-regulated proteins, respectively, and compared to EC, SE had 647 and 221 down- and up-regulated proteins, respectively. KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis indicated that genetic information transmission, plant hormone transduction, glycolysis, fatty acid biosynthesis and metabolism, galactose metabolism were the top pathways involved in somatic embryogenesis. Our proteomics results not only confirmed our previous transcriptomic results on the role of the polyamine metabolic pathways and stress responses in cotton somatic embryogenesis, but identified key proteins important for cotton somatic embryogenesis and provided new insights into the molecular mechanisms underlying somatic embryogenesis in cotton.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>29214424</pmid><doi>10.1007/s11103-017-0681-x</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-4412 |
ispartof | Plant molecular biology, 2018-01, Vol.96 (1-2), p.89-102 |
issn | 0167-4412 1573-5028 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5778175 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Biochemistry Biomedical and Life Sciences Biosynthesis Callus Catalytic activity Cotton Embryonic growth stage Embryos Encyclopedias Galactose Gene Expression Regulation, Plant - genetics Gene Expression Regulation, Plant - physiology Genomes Glycolysis Gossypium - genetics Gossypium - metabolism Gossypium - physiology Information processing Life Sciences Metabolic pathways Metabolism Molecular modelling Plant hormones Plant Pathology Plant Proteins - genetics Plant Proteins - metabolism Plant Sciences Polyamines - metabolism Proteins Proteomics Proteomics - methods Quantitation Seeds - genetics Seeds - physiology Somatic embryogenesis |
title | iTRAQ-based comparative proteomic analysis provides insights into somatic embryogenesis in Gossypium hirsutum L |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T07%3A06%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=iTRAQ-based%20comparative%20proteomic%20analysis%20provides%20insights%20into%20somatic%20embryogenesis%20in%20Gossypium%20hirsutum%20L&rft.jtitle=Plant%20molecular%20biology&rft.au=Zhu,%20Hua-Guo&rft.date=2018-01-01&rft.volume=96&rft.issue=1-2&rft.spage=89&rft.epage=102&rft.pages=89-102&rft.issn=0167-4412&rft.eissn=1573-5028&rft_id=info:doi/10.1007/s11103-017-0681-x&rft_dat=%3Cproquest_pubme%3E1973276674%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1973276674&rft_id=info:pmid/29214424&rfr_iscdi=true |