Input-Specific NMDAR-Dependent Potentiation of Dendritic GABAergic Inhibition

Preservation of a balance between synaptic excitation and inhibition is critical for normal brain function. A number of homeostatic cellular mechanisms have been suggested to play a role in maintaining this balance, including long-term plasticity of GABAergic inhibitory synapses. Many previous studi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuron (Cambridge, Mass.) Mass.), 2018-01, Vol.97 (2), p.368-377.e3
Hauptverfasser: Chiu, Chiayu Q., Martenson, James S., Yamazaki, Maya, Natsume, Rie, Sakimura, Kenji, Tomita, Susumu, Tavalin, Steven J., Higley, Michael J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 377.e3
container_issue 2
container_start_page 368
container_title Neuron (Cambridge, Mass.)
container_volume 97
creator Chiu, Chiayu Q.
Martenson, James S.
Yamazaki, Maya
Natsume, Rie
Sakimura, Kenji
Tomita, Susumu
Tavalin, Steven J.
Higley, Michael J.
description Preservation of a balance between synaptic excitation and inhibition is critical for normal brain function. A number of homeostatic cellular mechanisms have been suggested to play a role in maintaining this balance, including long-term plasticity of GABAergic inhibitory synapses. Many previous studies have demonstrated a coupling of postsynaptic spiking with modification of perisomatic inhibition. Here, we demonstrate that activation of NMDA-type glutamate receptors leads to input-specific long-term potentiation of dendritic inhibition mediated by somatostatin-expressing interneurons. This form of plasticity is expressed postsynaptically and requires both CaMKIIα and the β2 subunit of the GABA-A receptor. Importantly, this process may function to preserve dendritic inhibition, as genetic deletion of NMDAR signaling results in a selective weakening of dendritic inhibition. Overall, our results reveal a new mechanism for linking excitatory and inhibitory input in neuronal dendrites and provide novel insight into the homeostatic regulation of synaptic transmission in cortical circuits. •Activation of NMDARs potentiates GABAergic inhibition from SOM-INs•Dendritic, but not perisomatic, GABAergic synapses are sensitive to CaMKIIα activity•GABAergic potentiation requires expression of the GABAAR β2 subunit•Loss of NMDARs alters the balance of inhibition along the somatodendritic axis Using electrophysiology and optogenetics, Chiu et al. show that activation of NMDA-type glutamate receptors selectively potentiates inhibition from somatostatin-expressing interneurons onto cortical pyramidal cells. This work suggests a mechanism for regulating the balance of excitation and inhibition in neuronal dendrites.
doi_str_mv 10.1016/j.neuron.2017.12.032
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5777295</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0896627317311807</els_id><sourcerecordid>1989595589</sourcerecordid><originalsourceid>FETCH-LOGICAL-c491t-60577ec68834d70bf78dc63329982b4657c03366290fdefc6cf12a2f39dbad4c3</originalsourceid><addsrcrecordid>eNp9kctuEzEUhi0EoqHwBghFYsNmBt893iCFBkqkFhCXtTVjH7eOEntqz1Ti7XGUUi4LVsfy-c7lPz9CzwluCSby9baNMOcUW4qJagltMaMP0IJgrRpOtH6IFrjTspFUsRP0pJQtxoQLTR6jE6oZl0rwBbrcxHGemq8j2OCDXX68XK--NGsYITqI0_JzmmoI_RRSXCa_XNf_HKZKnq_eriBf1dcmXochHIin6JHvdwWe3cVT9P39u29nH5qLT-ebs9VFY7kmUyOxUAqs7DrGncKDV52zkjGqdUcHLoWymDEpqcbegbfSekJ76pl2Q--4ZafozbHvOA97cLaumPudGXPY9_mHSX0wf2diuDZX6dbUuYpqURu8umuQ080MZTL7UCzsdn2ENBdDdKeFFqLTFX35D7pNc45VnqH1ooJixnml-JGyOZWSwd8vQ7A5-GW25uiXOfhlCDXVr1r24k8h90W_DPqtFOo5bwNkU2yAaMGFDHYyLoX_T_gJKrmodA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2001520344</pqid></control><display><type>article</type><title>Input-Specific NMDAR-Dependent Potentiation of Dendritic GABAergic Inhibition</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><source>Cell Press Free Archives</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Chiu, Chiayu Q. ; Martenson, James S. ; Yamazaki, Maya ; Natsume, Rie ; Sakimura, Kenji ; Tomita, Susumu ; Tavalin, Steven J. ; Higley, Michael J.</creator><creatorcontrib>Chiu, Chiayu Q. ; Martenson, James S. ; Yamazaki, Maya ; Natsume, Rie ; Sakimura, Kenji ; Tomita, Susumu ; Tavalin, Steven J. ; Higley, Michael J.</creatorcontrib><description>Preservation of a balance between synaptic excitation and inhibition is critical for normal brain function. A number of homeostatic cellular mechanisms have been suggested to play a role in maintaining this balance, including long-term plasticity of GABAergic inhibitory synapses. Many previous studies have demonstrated a coupling of postsynaptic spiking with modification of perisomatic inhibition. Here, we demonstrate that activation of NMDA-type glutamate receptors leads to input-specific long-term potentiation of dendritic inhibition mediated by somatostatin-expressing interneurons. This form of plasticity is expressed postsynaptically and requires both CaMKIIα and the β2 subunit of the GABA-A receptor. Importantly, this process may function to preserve dendritic inhibition, as genetic deletion of NMDAR signaling results in a selective weakening of dendritic inhibition. Overall, our results reveal a new mechanism for linking excitatory and inhibitory input in neuronal dendrites and provide novel insight into the homeostatic regulation of synaptic transmission in cortical circuits. •Activation of NMDARs potentiates GABAergic inhibition from SOM-INs•Dendritic, but not perisomatic, GABAergic synapses are sensitive to CaMKIIα activity•GABAergic potentiation requires expression of the GABAAR β2 subunit•Loss of NMDARs alters the balance of inhibition along the somatodendritic axis Using electrophysiology and optogenetics, Chiu et al. show that activation of NMDA-type glutamate receptors selectively potentiates inhibition from somatostatin-expressing interneurons onto cortical pyramidal cells. This work suggests a mechanism for regulating the balance of excitation and inhibition in neuronal dendrites.</description><identifier>ISSN: 0896-6273</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/j.neuron.2017.12.032</identifier><identifier>PMID: 29346754</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Calcium Signaling - physiology ; Calcium-Calmodulin-Dependent Protein Kinase Type 2 - physiology ; CaMKIIα ; Clonal deletion ; Cortex ; Dendrites ; Dendrites - physiology ; Dendritic plasticity ; Experiments ; Female ; Firing pattern ; GABA ; gamma-Aminobutyric Acid - physiology ; Glutamic acid receptors (ionotropic) ; homeostatic ; interneuron ; Interneurons ; Kinases ; Long-term potentiation ; Long-Term Potentiation - physiology ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; N-Methyl-D-aspartic acid receptors ; Nerve Tissue Proteins - physiology ; Neural Inhibition - physiology ; Neurons ; optogenetic ; parvalbumin ; plasticity ; Preservation ; Pyramidal Cells - physiology ; Receptors, GABA-A - physiology ; Receptors, N-Methyl-D-Aspartate - physiology ; Rodents ; Somatostatin ; Synapses ; Synaptic transmission ; γ-Aminobutyric acid A receptors</subject><ispartof>Neuron (Cambridge, Mass.), 2018-01, Vol.97 (2), p.368-377.e3</ispartof><rights>2017 Elsevier Inc.</rights><rights>Copyright © 2017 Elsevier Inc. All rights reserved.</rights><rights>2017. Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c491t-60577ec68834d70bf78dc63329982b4657c03366290fdefc6cf12a2f39dbad4c3</citedby><cites>FETCH-LOGICAL-c491t-60577ec68834d70bf78dc63329982b4657c03366290fdefc6cf12a2f39dbad4c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0896627317311807$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29346754$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chiu, Chiayu Q.</creatorcontrib><creatorcontrib>Martenson, James S.</creatorcontrib><creatorcontrib>Yamazaki, Maya</creatorcontrib><creatorcontrib>Natsume, Rie</creatorcontrib><creatorcontrib>Sakimura, Kenji</creatorcontrib><creatorcontrib>Tomita, Susumu</creatorcontrib><creatorcontrib>Tavalin, Steven J.</creatorcontrib><creatorcontrib>Higley, Michael J.</creatorcontrib><title>Input-Specific NMDAR-Dependent Potentiation of Dendritic GABAergic Inhibition</title><title>Neuron (Cambridge, Mass.)</title><addtitle>Neuron</addtitle><description>Preservation of a balance between synaptic excitation and inhibition is critical for normal brain function. A number of homeostatic cellular mechanisms have been suggested to play a role in maintaining this balance, including long-term plasticity of GABAergic inhibitory synapses. Many previous studies have demonstrated a coupling of postsynaptic spiking with modification of perisomatic inhibition. Here, we demonstrate that activation of NMDA-type glutamate receptors leads to input-specific long-term potentiation of dendritic inhibition mediated by somatostatin-expressing interneurons. This form of plasticity is expressed postsynaptically and requires both CaMKIIα and the β2 subunit of the GABA-A receptor. Importantly, this process may function to preserve dendritic inhibition, as genetic deletion of NMDAR signaling results in a selective weakening of dendritic inhibition. Overall, our results reveal a new mechanism for linking excitatory and inhibitory input in neuronal dendrites and provide novel insight into the homeostatic regulation of synaptic transmission in cortical circuits. •Activation of NMDARs potentiates GABAergic inhibition from SOM-INs•Dendritic, but not perisomatic, GABAergic synapses are sensitive to CaMKIIα activity•GABAergic potentiation requires expression of the GABAAR β2 subunit•Loss of NMDARs alters the balance of inhibition along the somatodendritic axis Using electrophysiology and optogenetics, Chiu et al. show that activation of NMDA-type glutamate receptors selectively potentiates inhibition from somatostatin-expressing interneurons onto cortical pyramidal cells. This work suggests a mechanism for regulating the balance of excitation and inhibition in neuronal dendrites.</description><subject>Animals</subject><subject>Calcium Signaling - physiology</subject><subject>Calcium-Calmodulin-Dependent Protein Kinase Type 2 - physiology</subject><subject>CaMKIIα</subject><subject>Clonal deletion</subject><subject>Cortex</subject><subject>Dendrites</subject><subject>Dendrites - physiology</subject><subject>Dendritic plasticity</subject><subject>Experiments</subject><subject>Female</subject><subject>Firing pattern</subject><subject>GABA</subject><subject>gamma-Aminobutyric Acid - physiology</subject><subject>Glutamic acid receptors (ionotropic)</subject><subject>homeostatic</subject><subject>interneuron</subject><subject>Interneurons</subject><subject>Kinases</subject><subject>Long-term potentiation</subject><subject>Long-Term Potentiation - physiology</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Transgenic</subject><subject>N-Methyl-D-aspartic acid receptors</subject><subject>Nerve Tissue Proteins - physiology</subject><subject>Neural Inhibition - physiology</subject><subject>Neurons</subject><subject>optogenetic</subject><subject>parvalbumin</subject><subject>plasticity</subject><subject>Preservation</subject><subject>Pyramidal Cells - physiology</subject><subject>Receptors, GABA-A - physiology</subject><subject>Receptors, N-Methyl-D-Aspartate - physiology</subject><subject>Rodents</subject><subject>Somatostatin</subject><subject>Synapses</subject><subject>Synaptic transmission</subject><subject>γ-Aminobutyric acid A receptors</subject><issn>0896-6273</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kctuEzEUhi0EoqHwBghFYsNmBt893iCFBkqkFhCXtTVjH7eOEntqz1Ti7XGUUi4LVsfy-c7lPz9CzwluCSby9baNMOcUW4qJagltMaMP0IJgrRpOtH6IFrjTspFUsRP0pJQtxoQLTR6jE6oZl0rwBbrcxHGemq8j2OCDXX68XK--NGsYITqI0_JzmmoI_RRSXCa_XNf_HKZKnq_eriBf1dcmXochHIin6JHvdwWe3cVT9P39u29nH5qLT-ebs9VFY7kmUyOxUAqs7DrGncKDV52zkjGqdUcHLoWymDEpqcbegbfSekJ76pl2Q--4ZafozbHvOA97cLaumPudGXPY9_mHSX0wf2diuDZX6dbUuYpqURu8umuQ080MZTL7UCzsdn2ENBdDdKeFFqLTFX35D7pNc45VnqH1ooJixnml-JGyOZWSwd8vQ7A5-GW25uiXOfhlCDXVr1r24k8h90W_DPqtFOo5bwNkU2yAaMGFDHYyLoX_T_gJKrmodA</recordid><startdate>20180117</startdate><enddate>20180117</enddate><creator>Chiu, Chiayu Q.</creator><creator>Martenson, James S.</creator><creator>Yamazaki, Maya</creator><creator>Natsume, Rie</creator><creator>Sakimura, Kenji</creator><creator>Tomita, Susumu</creator><creator>Tavalin, Steven J.</creator><creator>Higley, Michael J.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20180117</creationdate><title>Input-Specific NMDAR-Dependent Potentiation of Dendritic GABAergic Inhibition</title><author>Chiu, Chiayu Q. ; Martenson, James S. ; Yamazaki, Maya ; Natsume, Rie ; Sakimura, Kenji ; Tomita, Susumu ; Tavalin, Steven J. ; Higley, Michael J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c491t-60577ec68834d70bf78dc63329982b4657c03366290fdefc6cf12a2f39dbad4c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>Calcium Signaling - physiology</topic><topic>Calcium-Calmodulin-Dependent Protein Kinase Type 2 - physiology</topic><topic>CaMKIIα</topic><topic>Clonal deletion</topic><topic>Cortex</topic><topic>Dendrites</topic><topic>Dendrites - physiology</topic><topic>Dendritic plasticity</topic><topic>Experiments</topic><topic>Female</topic><topic>Firing pattern</topic><topic>GABA</topic><topic>gamma-Aminobutyric Acid - physiology</topic><topic>Glutamic acid receptors (ionotropic)</topic><topic>homeostatic</topic><topic>interneuron</topic><topic>Interneurons</topic><topic>Kinases</topic><topic>Long-term potentiation</topic><topic>Long-Term Potentiation - physiology</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Transgenic</topic><topic>N-Methyl-D-aspartic acid receptors</topic><topic>Nerve Tissue Proteins - physiology</topic><topic>Neural Inhibition - physiology</topic><topic>Neurons</topic><topic>optogenetic</topic><topic>parvalbumin</topic><topic>plasticity</topic><topic>Preservation</topic><topic>Pyramidal Cells - physiology</topic><topic>Receptors, GABA-A - physiology</topic><topic>Receptors, N-Methyl-D-Aspartate - physiology</topic><topic>Rodents</topic><topic>Somatostatin</topic><topic>Synapses</topic><topic>Synaptic transmission</topic><topic>γ-Aminobutyric acid A receptors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chiu, Chiayu Q.</creatorcontrib><creatorcontrib>Martenson, James S.</creatorcontrib><creatorcontrib>Yamazaki, Maya</creatorcontrib><creatorcontrib>Natsume, Rie</creatorcontrib><creatorcontrib>Sakimura, Kenji</creatorcontrib><creatorcontrib>Tomita, Susumu</creatorcontrib><creatorcontrib>Tavalin, Steven J.</creatorcontrib><creatorcontrib>Higley, Michael J.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chiu, Chiayu Q.</au><au>Martenson, James S.</au><au>Yamazaki, Maya</au><au>Natsume, Rie</au><au>Sakimura, Kenji</au><au>Tomita, Susumu</au><au>Tavalin, Steven J.</au><au>Higley, Michael J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Input-Specific NMDAR-Dependent Potentiation of Dendritic GABAergic Inhibition</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><addtitle>Neuron</addtitle><date>2018-01-17</date><risdate>2018</risdate><volume>97</volume><issue>2</issue><spage>368</spage><epage>377.e3</epage><pages>368-377.e3</pages><issn>0896-6273</issn><eissn>1097-4199</eissn><abstract>Preservation of a balance between synaptic excitation and inhibition is critical for normal brain function. A number of homeostatic cellular mechanisms have been suggested to play a role in maintaining this balance, including long-term plasticity of GABAergic inhibitory synapses. Many previous studies have demonstrated a coupling of postsynaptic spiking with modification of perisomatic inhibition. Here, we demonstrate that activation of NMDA-type glutamate receptors leads to input-specific long-term potentiation of dendritic inhibition mediated by somatostatin-expressing interneurons. This form of plasticity is expressed postsynaptically and requires both CaMKIIα and the β2 subunit of the GABA-A receptor. Importantly, this process may function to preserve dendritic inhibition, as genetic deletion of NMDAR signaling results in a selective weakening of dendritic inhibition. Overall, our results reveal a new mechanism for linking excitatory and inhibitory input in neuronal dendrites and provide novel insight into the homeostatic regulation of synaptic transmission in cortical circuits. •Activation of NMDARs potentiates GABAergic inhibition from SOM-INs•Dendritic, but not perisomatic, GABAergic synapses are sensitive to CaMKIIα activity•GABAergic potentiation requires expression of the GABAAR β2 subunit•Loss of NMDARs alters the balance of inhibition along the somatodendritic axis Using electrophysiology and optogenetics, Chiu et al. show that activation of NMDA-type glutamate receptors selectively potentiates inhibition from somatostatin-expressing interneurons onto cortical pyramidal cells. This work suggests a mechanism for regulating the balance of excitation and inhibition in neuronal dendrites.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>29346754</pmid><doi>10.1016/j.neuron.2017.12.032</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0896-6273
ispartof Neuron (Cambridge, Mass.), 2018-01, Vol.97 (2), p.368-377.e3
issn 0896-6273
1097-4199
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5777295
source MEDLINE; Elsevier ScienceDirect Journals Complete; Cell Press Free Archives; EZB-FREE-00999 freely available EZB journals
subjects Animals
Calcium Signaling - physiology
Calcium-Calmodulin-Dependent Protein Kinase Type 2 - physiology
CaMKIIα
Clonal deletion
Cortex
Dendrites
Dendrites - physiology
Dendritic plasticity
Experiments
Female
Firing pattern
GABA
gamma-Aminobutyric Acid - physiology
Glutamic acid receptors (ionotropic)
homeostatic
interneuron
Interneurons
Kinases
Long-term potentiation
Long-Term Potentiation - physiology
Male
Mice
Mice, Inbred C57BL
Mice, Transgenic
N-Methyl-D-aspartic acid receptors
Nerve Tissue Proteins - physiology
Neural Inhibition - physiology
Neurons
optogenetic
parvalbumin
plasticity
Preservation
Pyramidal Cells - physiology
Receptors, GABA-A - physiology
Receptors, N-Methyl-D-Aspartate - physiology
Rodents
Somatostatin
Synapses
Synaptic transmission
γ-Aminobutyric acid A receptors
title Input-Specific NMDAR-Dependent Potentiation of Dendritic GABAergic Inhibition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A33%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Input-Specific%20NMDAR-Dependent%20Potentiation%20of%20Dendritic%20GABAergic%20Inhibition&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=Chiu,%20Chiayu%20Q.&rft.date=2018-01-17&rft.volume=97&rft.issue=2&rft.spage=368&rft.epage=377.e3&rft.pages=368-377.e3&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/j.neuron.2017.12.032&rft_dat=%3Cproquest_pubme%3E1989595589%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2001520344&rft_id=info:pmid/29346754&rft_els_id=S0896627317311807&rfr_iscdi=true