Input-Specific NMDAR-Dependent Potentiation of Dendritic GABAergic Inhibition
Preservation of a balance between synaptic excitation and inhibition is critical for normal brain function. A number of homeostatic cellular mechanisms have been suggested to play a role in maintaining this balance, including long-term plasticity of GABAergic inhibitory synapses. Many previous studi...
Gespeichert in:
Veröffentlicht in: | Neuron (Cambridge, Mass.) Mass.), 2018-01, Vol.97 (2), p.368-377.e3 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 377.e3 |
---|---|
container_issue | 2 |
container_start_page | 368 |
container_title | Neuron (Cambridge, Mass.) |
container_volume | 97 |
creator | Chiu, Chiayu Q. Martenson, James S. Yamazaki, Maya Natsume, Rie Sakimura, Kenji Tomita, Susumu Tavalin, Steven J. Higley, Michael J. |
description | Preservation of a balance between synaptic excitation and inhibition is critical for normal brain function. A number of homeostatic cellular mechanisms have been suggested to play a role in maintaining this balance, including long-term plasticity of GABAergic inhibitory synapses. Many previous studies have demonstrated a coupling of postsynaptic spiking with modification of perisomatic inhibition. Here, we demonstrate that activation of NMDA-type glutamate receptors leads to input-specific long-term potentiation of dendritic inhibition mediated by somatostatin-expressing interneurons. This form of plasticity is expressed postsynaptically and requires both CaMKIIα and the β2 subunit of the GABA-A receptor. Importantly, this process may function to preserve dendritic inhibition, as genetic deletion of NMDAR signaling results in a selective weakening of dendritic inhibition. Overall, our results reveal a new mechanism for linking excitatory and inhibitory input in neuronal dendrites and provide novel insight into the homeostatic regulation of synaptic transmission in cortical circuits.
•Activation of NMDARs potentiates GABAergic inhibition from SOM-INs•Dendritic, but not perisomatic, GABAergic synapses are sensitive to CaMKIIα activity•GABAergic potentiation requires expression of the GABAAR β2 subunit•Loss of NMDARs alters the balance of inhibition along the somatodendritic axis
Using electrophysiology and optogenetics, Chiu et al. show that activation of NMDA-type glutamate receptors selectively potentiates inhibition from somatostatin-expressing interneurons onto cortical pyramidal cells. This work suggests a mechanism for regulating the balance of excitation and inhibition in neuronal dendrites. |
doi_str_mv | 10.1016/j.neuron.2017.12.032 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5777295</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0896627317311807</els_id><sourcerecordid>1989595589</sourcerecordid><originalsourceid>FETCH-LOGICAL-c491t-60577ec68834d70bf78dc63329982b4657c03366290fdefc6cf12a2f39dbad4c3</originalsourceid><addsrcrecordid>eNp9kctuEzEUhi0EoqHwBghFYsNmBt893iCFBkqkFhCXtTVjH7eOEntqz1Ti7XGUUi4LVsfy-c7lPz9CzwluCSby9baNMOcUW4qJagltMaMP0IJgrRpOtH6IFrjTspFUsRP0pJQtxoQLTR6jE6oZl0rwBbrcxHGemq8j2OCDXX68XK--NGsYITqI0_JzmmoI_RRSXCa_XNf_HKZKnq_eriBf1dcmXochHIin6JHvdwWe3cVT9P39u29nH5qLT-ebs9VFY7kmUyOxUAqs7DrGncKDV52zkjGqdUcHLoWymDEpqcbegbfSekJ76pl2Q--4ZafozbHvOA97cLaumPudGXPY9_mHSX0wf2diuDZX6dbUuYpqURu8umuQ080MZTL7UCzsdn2ENBdDdKeFFqLTFX35D7pNc45VnqH1ooJixnml-JGyOZWSwd8vQ7A5-GW25uiXOfhlCDXVr1r24k8h90W_DPqtFOo5bwNkU2yAaMGFDHYyLoX_T_gJKrmodA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2001520344</pqid></control><display><type>article</type><title>Input-Specific NMDAR-Dependent Potentiation of Dendritic GABAergic Inhibition</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><source>Cell Press Free Archives</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Chiu, Chiayu Q. ; Martenson, James S. ; Yamazaki, Maya ; Natsume, Rie ; Sakimura, Kenji ; Tomita, Susumu ; Tavalin, Steven J. ; Higley, Michael J.</creator><creatorcontrib>Chiu, Chiayu Q. ; Martenson, James S. ; Yamazaki, Maya ; Natsume, Rie ; Sakimura, Kenji ; Tomita, Susumu ; Tavalin, Steven J. ; Higley, Michael J.</creatorcontrib><description>Preservation of a balance between synaptic excitation and inhibition is critical for normal brain function. A number of homeostatic cellular mechanisms have been suggested to play a role in maintaining this balance, including long-term plasticity of GABAergic inhibitory synapses. Many previous studies have demonstrated a coupling of postsynaptic spiking with modification of perisomatic inhibition. Here, we demonstrate that activation of NMDA-type glutamate receptors leads to input-specific long-term potentiation of dendritic inhibition mediated by somatostatin-expressing interneurons. This form of plasticity is expressed postsynaptically and requires both CaMKIIα and the β2 subunit of the GABA-A receptor. Importantly, this process may function to preserve dendritic inhibition, as genetic deletion of NMDAR signaling results in a selective weakening of dendritic inhibition. Overall, our results reveal a new mechanism for linking excitatory and inhibitory input in neuronal dendrites and provide novel insight into the homeostatic regulation of synaptic transmission in cortical circuits.
•Activation of NMDARs potentiates GABAergic inhibition from SOM-INs•Dendritic, but not perisomatic, GABAergic synapses are sensitive to CaMKIIα activity•GABAergic potentiation requires expression of the GABAAR β2 subunit•Loss of NMDARs alters the balance of inhibition along the somatodendritic axis
Using electrophysiology and optogenetics, Chiu et al. show that activation of NMDA-type glutamate receptors selectively potentiates inhibition from somatostatin-expressing interneurons onto cortical pyramidal cells. This work suggests a mechanism for regulating the balance of excitation and inhibition in neuronal dendrites.</description><identifier>ISSN: 0896-6273</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/j.neuron.2017.12.032</identifier><identifier>PMID: 29346754</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Calcium Signaling - physiology ; Calcium-Calmodulin-Dependent Protein Kinase Type 2 - physiology ; CaMKIIα ; Clonal deletion ; Cortex ; Dendrites ; Dendrites - physiology ; Dendritic plasticity ; Experiments ; Female ; Firing pattern ; GABA ; gamma-Aminobutyric Acid - physiology ; Glutamic acid receptors (ionotropic) ; homeostatic ; interneuron ; Interneurons ; Kinases ; Long-term potentiation ; Long-Term Potentiation - physiology ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; N-Methyl-D-aspartic acid receptors ; Nerve Tissue Proteins - physiology ; Neural Inhibition - physiology ; Neurons ; optogenetic ; parvalbumin ; plasticity ; Preservation ; Pyramidal Cells - physiology ; Receptors, GABA-A - physiology ; Receptors, N-Methyl-D-Aspartate - physiology ; Rodents ; Somatostatin ; Synapses ; Synaptic transmission ; γ-Aminobutyric acid A receptors</subject><ispartof>Neuron (Cambridge, Mass.), 2018-01, Vol.97 (2), p.368-377.e3</ispartof><rights>2017 Elsevier Inc.</rights><rights>Copyright © 2017 Elsevier Inc. All rights reserved.</rights><rights>2017. Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c491t-60577ec68834d70bf78dc63329982b4657c03366290fdefc6cf12a2f39dbad4c3</citedby><cites>FETCH-LOGICAL-c491t-60577ec68834d70bf78dc63329982b4657c03366290fdefc6cf12a2f39dbad4c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0896627317311807$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29346754$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chiu, Chiayu Q.</creatorcontrib><creatorcontrib>Martenson, James S.</creatorcontrib><creatorcontrib>Yamazaki, Maya</creatorcontrib><creatorcontrib>Natsume, Rie</creatorcontrib><creatorcontrib>Sakimura, Kenji</creatorcontrib><creatorcontrib>Tomita, Susumu</creatorcontrib><creatorcontrib>Tavalin, Steven J.</creatorcontrib><creatorcontrib>Higley, Michael J.</creatorcontrib><title>Input-Specific NMDAR-Dependent Potentiation of Dendritic GABAergic Inhibition</title><title>Neuron (Cambridge, Mass.)</title><addtitle>Neuron</addtitle><description>Preservation of a balance between synaptic excitation and inhibition is critical for normal brain function. A number of homeostatic cellular mechanisms have been suggested to play a role in maintaining this balance, including long-term plasticity of GABAergic inhibitory synapses. Many previous studies have demonstrated a coupling of postsynaptic spiking with modification of perisomatic inhibition. Here, we demonstrate that activation of NMDA-type glutamate receptors leads to input-specific long-term potentiation of dendritic inhibition mediated by somatostatin-expressing interneurons. This form of plasticity is expressed postsynaptically and requires both CaMKIIα and the β2 subunit of the GABA-A receptor. Importantly, this process may function to preserve dendritic inhibition, as genetic deletion of NMDAR signaling results in a selective weakening of dendritic inhibition. Overall, our results reveal a new mechanism for linking excitatory and inhibitory input in neuronal dendrites and provide novel insight into the homeostatic regulation of synaptic transmission in cortical circuits.
•Activation of NMDARs potentiates GABAergic inhibition from SOM-INs•Dendritic, but not perisomatic, GABAergic synapses are sensitive to CaMKIIα activity•GABAergic potentiation requires expression of the GABAAR β2 subunit•Loss of NMDARs alters the balance of inhibition along the somatodendritic axis
Using electrophysiology and optogenetics, Chiu et al. show that activation of NMDA-type glutamate receptors selectively potentiates inhibition from somatostatin-expressing interneurons onto cortical pyramidal cells. This work suggests a mechanism for regulating the balance of excitation and inhibition in neuronal dendrites.</description><subject>Animals</subject><subject>Calcium Signaling - physiology</subject><subject>Calcium-Calmodulin-Dependent Protein Kinase Type 2 - physiology</subject><subject>CaMKIIα</subject><subject>Clonal deletion</subject><subject>Cortex</subject><subject>Dendrites</subject><subject>Dendrites - physiology</subject><subject>Dendritic plasticity</subject><subject>Experiments</subject><subject>Female</subject><subject>Firing pattern</subject><subject>GABA</subject><subject>gamma-Aminobutyric Acid - physiology</subject><subject>Glutamic acid receptors (ionotropic)</subject><subject>homeostatic</subject><subject>interneuron</subject><subject>Interneurons</subject><subject>Kinases</subject><subject>Long-term potentiation</subject><subject>Long-Term Potentiation - physiology</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Transgenic</subject><subject>N-Methyl-D-aspartic acid receptors</subject><subject>Nerve Tissue Proteins - physiology</subject><subject>Neural Inhibition - physiology</subject><subject>Neurons</subject><subject>optogenetic</subject><subject>parvalbumin</subject><subject>plasticity</subject><subject>Preservation</subject><subject>Pyramidal Cells - physiology</subject><subject>Receptors, GABA-A - physiology</subject><subject>Receptors, N-Methyl-D-Aspartate - physiology</subject><subject>Rodents</subject><subject>Somatostatin</subject><subject>Synapses</subject><subject>Synaptic transmission</subject><subject>γ-Aminobutyric acid A receptors</subject><issn>0896-6273</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kctuEzEUhi0EoqHwBghFYsNmBt893iCFBkqkFhCXtTVjH7eOEntqz1Ti7XGUUi4LVsfy-c7lPz9CzwluCSby9baNMOcUW4qJagltMaMP0IJgrRpOtH6IFrjTspFUsRP0pJQtxoQLTR6jE6oZl0rwBbrcxHGemq8j2OCDXX68XK--NGsYITqI0_JzmmoI_RRSXCa_XNf_HKZKnq_eriBf1dcmXochHIin6JHvdwWe3cVT9P39u29nH5qLT-ebs9VFY7kmUyOxUAqs7DrGncKDV52zkjGqdUcHLoWymDEpqcbegbfSekJ76pl2Q--4ZafozbHvOA97cLaumPudGXPY9_mHSX0wf2diuDZX6dbUuYpqURu8umuQ080MZTL7UCzsdn2ENBdDdKeFFqLTFX35D7pNc45VnqH1ooJixnml-JGyOZWSwd8vQ7A5-GW25uiXOfhlCDXVr1r24k8h90W_DPqtFOo5bwNkU2yAaMGFDHYyLoX_T_gJKrmodA</recordid><startdate>20180117</startdate><enddate>20180117</enddate><creator>Chiu, Chiayu Q.</creator><creator>Martenson, James S.</creator><creator>Yamazaki, Maya</creator><creator>Natsume, Rie</creator><creator>Sakimura, Kenji</creator><creator>Tomita, Susumu</creator><creator>Tavalin, Steven J.</creator><creator>Higley, Michael J.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20180117</creationdate><title>Input-Specific NMDAR-Dependent Potentiation of Dendritic GABAergic Inhibition</title><author>Chiu, Chiayu Q. ; Martenson, James S. ; Yamazaki, Maya ; Natsume, Rie ; Sakimura, Kenji ; Tomita, Susumu ; Tavalin, Steven J. ; Higley, Michael J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c491t-60577ec68834d70bf78dc63329982b4657c03366290fdefc6cf12a2f39dbad4c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>Calcium Signaling - physiology</topic><topic>Calcium-Calmodulin-Dependent Protein Kinase Type 2 - physiology</topic><topic>CaMKIIα</topic><topic>Clonal deletion</topic><topic>Cortex</topic><topic>Dendrites</topic><topic>Dendrites - physiology</topic><topic>Dendritic plasticity</topic><topic>Experiments</topic><topic>Female</topic><topic>Firing pattern</topic><topic>GABA</topic><topic>gamma-Aminobutyric Acid - physiology</topic><topic>Glutamic acid receptors (ionotropic)</topic><topic>homeostatic</topic><topic>interneuron</topic><topic>Interneurons</topic><topic>Kinases</topic><topic>Long-term potentiation</topic><topic>Long-Term Potentiation - physiology</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Transgenic</topic><topic>N-Methyl-D-aspartic acid receptors</topic><topic>Nerve Tissue Proteins - physiology</topic><topic>Neural Inhibition - physiology</topic><topic>Neurons</topic><topic>optogenetic</topic><topic>parvalbumin</topic><topic>plasticity</topic><topic>Preservation</topic><topic>Pyramidal Cells - physiology</topic><topic>Receptors, GABA-A - physiology</topic><topic>Receptors, N-Methyl-D-Aspartate - physiology</topic><topic>Rodents</topic><topic>Somatostatin</topic><topic>Synapses</topic><topic>Synaptic transmission</topic><topic>γ-Aminobutyric acid A receptors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chiu, Chiayu Q.</creatorcontrib><creatorcontrib>Martenson, James S.</creatorcontrib><creatorcontrib>Yamazaki, Maya</creatorcontrib><creatorcontrib>Natsume, Rie</creatorcontrib><creatorcontrib>Sakimura, Kenji</creatorcontrib><creatorcontrib>Tomita, Susumu</creatorcontrib><creatorcontrib>Tavalin, Steven J.</creatorcontrib><creatorcontrib>Higley, Michael J.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chiu, Chiayu Q.</au><au>Martenson, James S.</au><au>Yamazaki, Maya</au><au>Natsume, Rie</au><au>Sakimura, Kenji</au><au>Tomita, Susumu</au><au>Tavalin, Steven J.</au><au>Higley, Michael J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Input-Specific NMDAR-Dependent Potentiation of Dendritic GABAergic Inhibition</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><addtitle>Neuron</addtitle><date>2018-01-17</date><risdate>2018</risdate><volume>97</volume><issue>2</issue><spage>368</spage><epage>377.e3</epage><pages>368-377.e3</pages><issn>0896-6273</issn><eissn>1097-4199</eissn><abstract>Preservation of a balance between synaptic excitation and inhibition is critical for normal brain function. A number of homeostatic cellular mechanisms have been suggested to play a role in maintaining this balance, including long-term plasticity of GABAergic inhibitory synapses. Many previous studies have demonstrated a coupling of postsynaptic spiking with modification of perisomatic inhibition. Here, we demonstrate that activation of NMDA-type glutamate receptors leads to input-specific long-term potentiation of dendritic inhibition mediated by somatostatin-expressing interneurons. This form of plasticity is expressed postsynaptically and requires both CaMKIIα and the β2 subunit of the GABA-A receptor. Importantly, this process may function to preserve dendritic inhibition, as genetic deletion of NMDAR signaling results in a selective weakening of dendritic inhibition. Overall, our results reveal a new mechanism for linking excitatory and inhibitory input in neuronal dendrites and provide novel insight into the homeostatic regulation of synaptic transmission in cortical circuits.
•Activation of NMDARs potentiates GABAergic inhibition from SOM-INs•Dendritic, but not perisomatic, GABAergic synapses are sensitive to CaMKIIα activity•GABAergic potentiation requires expression of the GABAAR β2 subunit•Loss of NMDARs alters the balance of inhibition along the somatodendritic axis
Using electrophysiology and optogenetics, Chiu et al. show that activation of NMDA-type glutamate receptors selectively potentiates inhibition from somatostatin-expressing interneurons onto cortical pyramidal cells. This work suggests a mechanism for regulating the balance of excitation and inhibition in neuronal dendrites.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>29346754</pmid><doi>10.1016/j.neuron.2017.12.032</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0896-6273 |
ispartof | Neuron (Cambridge, Mass.), 2018-01, Vol.97 (2), p.368-377.e3 |
issn | 0896-6273 1097-4199 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5777295 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete; Cell Press Free Archives; EZB-FREE-00999 freely available EZB journals |
subjects | Animals Calcium Signaling - physiology Calcium-Calmodulin-Dependent Protein Kinase Type 2 - physiology CaMKIIα Clonal deletion Cortex Dendrites Dendrites - physiology Dendritic plasticity Experiments Female Firing pattern GABA gamma-Aminobutyric Acid - physiology Glutamic acid receptors (ionotropic) homeostatic interneuron Interneurons Kinases Long-term potentiation Long-Term Potentiation - physiology Male Mice Mice, Inbred C57BL Mice, Transgenic N-Methyl-D-aspartic acid receptors Nerve Tissue Proteins - physiology Neural Inhibition - physiology Neurons optogenetic parvalbumin plasticity Preservation Pyramidal Cells - physiology Receptors, GABA-A - physiology Receptors, N-Methyl-D-Aspartate - physiology Rodents Somatostatin Synapses Synaptic transmission γ-Aminobutyric acid A receptors |
title | Input-Specific NMDAR-Dependent Potentiation of Dendritic GABAergic Inhibition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A33%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Input-Specific%20NMDAR-Dependent%20Potentiation%20of%20Dendritic%20GABAergic%20Inhibition&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=Chiu,%20Chiayu%20Q.&rft.date=2018-01-17&rft.volume=97&rft.issue=2&rft.spage=368&rft.epage=377.e3&rft.pages=368-377.e3&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/j.neuron.2017.12.032&rft_dat=%3Cproquest_pubme%3E1989595589%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2001520344&rft_id=info:pmid/29346754&rft_els_id=S0896627317311807&rfr_iscdi=true |