Structural basis for the regulation of β-glucuronidase expression by human gut Enterobacteriaceae
The gut microbiota harbor diverse β-glucuronidase (GUS) enzymes that liberate glucuronic acid (GlcA) sugars from small-molecule conjugates and complex carbohydrates. However, only the Enterobacteriaceae family of human gut-associated Proteobacteria maintain a GUS operon under the transcriptional con...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2018-01, Vol.115 (2), p.E152-E161 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | E161 |
---|---|
container_issue | 2 |
container_start_page | E152 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 115 |
creator | Little, Michael S. Pellock, Samuel J. Walton, William G. Tripathy, Ashutosh Redinbo, Matthew R. |
description | The gut microbiota harbor diverse β-glucuronidase (GUS) enzymes that liberate glucuronic acid (GlcA) sugars from small-molecule conjugates and complex carbohydrates. However, only the Enterobacteriaceae family of human gut-associated Proteobacteria maintain a GUS operon under the transcriptional control of a glucuronide repressor, GusR. Despite its potential importance in Escherichia, Salmonella, Klebsiella, Shigella, and Yersinia opportunistic pathogens, the structure of GusR has not been examined. Here, we explore the molecular basis for GusR-mediated regulation of GUS expression in response to small-molecule glucuronides. Presented are 2.1-Å-resolution crystal structures of GusRs from Escherichia coli and Salmonella enterica in complexes with a glucuronide ligand. The GusR-specific DNA operator site in the regulatory region of the E. coli GUS operon is identified, and structure-guided GusR mutants pinpoint the residues essential for DNA binding and glucuronide recognition. Interestingly, the endobiotic estradiol-17-glucuronide and the xenobiotic indomethacin-acyl-glucuronide are found to exhibit markedly differential binding to these GusR orthologs. Using structure-guided mutations, we are able to transfer E. coli GusR’s preferential DNA and glucuronide binding affinity to S. enterica GusR. Structures of putative GusR orthologs from GUS-encoding Firmicutes species also reveal functionally unique features of the Enterobacteriaceae GusRs. Finally, dominant-negative GusR variants are validated in cell-based studies. These data provide a molecular framework toward understanding the control of glucuronide utilization by opportunistic pathogens in the human gut. |
doi_str_mv | 10.1073/pnas.1716241115 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5777068</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26506312</jstor_id><sourcerecordid>26506312</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-34ded7d7ba2aeaf8a167ee2011552ee70a80f380ee64f3de891eda7b8edd22333</originalsourceid><addsrcrecordid>eNpdkTtvFDEUhS0EIkugpgJZ0NBM4tfY4yYSisJDikQB1JbHc2fXq1l78QORv8UP4Tfh1YYEqG5xPp97jw9Czyk5o0Tx832w-YwqKpmglPYP0IoSTTspNHmIVoQw1Q2CiRP0JOctIUT3A3mMTphmUnPNV2j8XFJ1pSa74NFmn_EcEy4bwAnWdbHFx4DjjH_97NZLdTXF4CebAcOPfYKcD_J4gzd1ZwNe14KvQoEUR-va8NaBhafo0WyXDM9u5yn6-u7qy-WH7vrT-4-Xb687JxQpHRcTTGpSo2UW7DxYKhUAIy1WzwAUsQOZ-UAApJj5BIOmMFk1DjBNjHHOT9HF0Xdfxx1MDkJpqcw--Z1NNyZab_5Vgt-YdfxueqUUkUMzeHU0iLl4k50v4DYuhgCuGCok62XfoDe3W1L8ViEXs_PZwbLYALFmQ7XSWkoyiIa-_g_dxppC-4NGNYhpqWmjzo-USzHnBPPdxZSYQ8nmULK5L7m9ePl30Dv-T6sNeHEEtrnEdK_LnkhOGf8NpN2v9Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1999629691</pqid></control><display><type>article</type><title>Structural basis for the regulation of β-glucuronidase expression by human gut Enterobacteriaceae</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Little, Michael S. ; Pellock, Samuel J. ; Walton, William G. ; Tripathy, Ashutosh ; Redinbo, Matthew R.</creator><creatorcontrib>Little, Michael S. ; Pellock, Samuel J. ; Walton, William G. ; Tripathy, Ashutosh ; Redinbo, Matthew R. ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>The gut microbiota harbor diverse β-glucuronidase (GUS) enzymes that liberate glucuronic acid (GlcA) sugars from small-molecule conjugates and complex carbohydrates. However, only the Enterobacteriaceae family of human gut-associated Proteobacteria maintain a GUS operon under the transcriptional control of a glucuronide repressor, GusR. Despite its potential importance in Escherichia, Salmonella, Klebsiella, Shigella, and Yersinia opportunistic pathogens, the structure of GusR has not been examined. Here, we explore the molecular basis for GusR-mediated regulation of GUS expression in response to small-molecule glucuronides. Presented are 2.1-Å-resolution crystal structures of GusRs from Escherichia coli and Salmonella enterica in complexes with a glucuronide ligand. The GusR-specific DNA operator site in the regulatory region of the E. coli GUS operon is identified, and structure-guided GusR mutants pinpoint the residues essential for DNA binding and glucuronide recognition. Interestingly, the endobiotic estradiol-17-glucuronide and the xenobiotic indomethacin-acyl-glucuronide are found to exhibit markedly differential binding to these GusR orthologs. Using structure-guided mutations, we are able to transfer E. coli GusR’s preferential DNA and glucuronide binding affinity to S. enterica GusR. Structures of putative GusR orthologs from GUS-encoding Firmicutes species also reveal functionally unique features of the Enterobacteriaceae GusRs. Finally, dominant-negative GusR variants are validated in cell-based studies. These data provide a molecular framework toward understanding the control of glucuronide utilization by opportunistic pathogens in the human gut.</description><identifier>ISSN: 0027-8424</identifier><identifier>ISSN: 1091-6490</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1716241115</identifier><identifier>PMID: 29269393</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>17β-Estradiol ; Amino Acid Sequence ; b-Glucuronidase ; Bacteria ; Bacterial Proteins - chemistry ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; BASIC BIOLOGICAL SCIENCES ; Binding ; Binding Sites ; Biochemistry ; Biological Sciences ; Carbohydrates ; Control ; Coordination compounds ; Crystal structure ; Crystallography, X-Ray ; Deoxyribonucleic acid ; DNA ; DNA - chemistry ; DNA - genetics ; DNA - metabolism ; E coli ; Enterobacteriaceae ; Enterobacteriaceae - enzymology ; Enterobacteriaceae - genetics ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Gastrointestinal Microbiome - genetics ; Gene Expression Regulation, Bacterial ; Genes, Regulator - genetics ; Glucuronic Acid - chemistry ; Glucuronic Acid - metabolism ; Glucuronidase - chemistry ; Glucuronidase - genetics ; Glucuronidase - metabolism ; gut microbiota ; Humans ; Indomethacin ; Intestinal microflora ; Klebsiella ; Microbiota ; Molecular biology ; Mutants ; Mutation ; Operon - genetics ; Opportunist infection ; Pathogens ; PNAS Plus ; Salmonella ; Sequence Homology, Amino Acid ; Sex hormones ; Small intestine ; structural biology ; Sugar ; Transcription ; transcriptional regulation</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2018-01, Vol.115 (2), p.E152-E161</ispartof><rights>Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Jan 9, 2018</rights><rights>2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-34ded7d7ba2aeaf8a167ee2011552ee70a80f380ee64f3de891eda7b8edd22333</citedby><cites>FETCH-LOGICAL-c470t-34ded7d7ba2aeaf8a167ee2011552ee70a80f380ee64f3de891eda7b8edd22333</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26506312$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26506312$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29269393$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1462565$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Little, Michael S.</creatorcontrib><creatorcontrib>Pellock, Samuel J.</creatorcontrib><creatorcontrib>Walton, William G.</creatorcontrib><creatorcontrib>Tripathy, Ashutosh</creatorcontrib><creatorcontrib>Redinbo, Matthew R.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Structural basis for the regulation of β-glucuronidase expression by human gut Enterobacteriaceae</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The gut microbiota harbor diverse β-glucuronidase (GUS) enzymes that liberate glucuronic acid (GlcA) sugars from small-molecule conjugates and complex carbohydrates. However, only the Enterobacteriaceae family of human gut-associated Proteobacteria maintain a GUS operon under the transcriptional control of a glucuronide repressor, GusR. Despite its potential importance in Escherichia, Salmonella, Klebsiella, Shigella, and Yersinia opportunistic pathogens, the structure of GusR has not been examined. Here, we explore the molecular basis for GusR-mediated regulation of GUS expression in response to small-molecule glucuronides. Presented are 2.1-Å-resolution crystal structures of GusRs from Escherichia coli and Salmonella enterica in complexes with a glucuronide ligand. The GusR-specific DNA operator site in the regulatory region of the E. coli GUS operon is identified, and structure-guided GusR mutants pinpoint the residues essential for DNA binding and glucuronide recognition. Interestingly, the endobiotic estradiol-17-glucuronide and the xenobiotic indomethacin-acyl-glucuronide are found to exhibit markedly differential binding to these GusR orthologs. Using structure-guided mutations, we are able to transfer E. coli GusR’s preferential DNA and glucuronide binding affinity to S. enterica GusR. Structures of putative GusR orthologs from GUS-encoding Firmicutes species also reveal functionally unique features of the Enterobacteriaceae GusRs. Finally, dominant-negative GusR variants are validated in cell-based studies. These data provide a molecular framework toward understanding the control of glucuronide utilization by opportunistic pathogens in the human gut.</description><subject>17β-Estradiol</subject><subject>Amino Acid Sequence</subject><subject>b-Glucuronidase</subject><subject>Bacteria</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Binding</subject><subject>Binding Sites</subject><subject>Biochemistry</subject><subject>Biological Sciences</subject><subject>Carbohydrates</subject><subject>Control</subject><subject>Coordination compounds</subject><subject>Crystal structure</subject><subject>Crystallography, X-Ray</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA - chemistry</subject><subject>DNA - genetics</subject><subject>DNA - metabolism</subject><subject>E coli</subject><subject>Enterobacteriaceae</subject><subject>Enterobacteriaceae - enzymology</subject><subject>Enterobacteriaceae - genetics</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Gastrointestinal Microbiome - genetics</subject><subject>Gene Expression Regulation, Bacterial</subject><subject>Genes, Regulator - genetics</subject><subject>Glucuronic Acid - chemistry</subject><subject>Glucuronic Acid - metabolism</subject><subject>Glucuronidase - chemistry</subject><subject>Glucuronidase - genetics</subject><subject>Glucuronidase - metabolism</subject><subject>gut microbiota</subject><subject>Humans</subject><subject>Indomethacin</subject><subject>Intestinal microflora</subject><subject>Klebsiella</subject><subject>Microbiota</subject><subject>Molecular biology</subject><subject>Mutants</subject><subject>Mutation</subject><subject>Operon - genetics</subject><subject>Opportunist infection</subject><subject>Pathogens</subject><subject>PNAS Plus</subject><subject>Salmonella</subject><subject>Sequence Homology, Amino Acid</subject><subject>Sex hormones</subject><subject>Small intestine</subject><subject>structural biology</subject><subject>Sugar</subject><subject>Transcription</subject><subject>transcriptional regulation</subject><issn>0027-8424</issn><issn>1091-6490</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkTtvFDEUhS0EIkugpgJZ0NBM4tfY4yYSisJDikQB1JbHc2fXq1l78QORv8UP4Tfh1YYEqG5xPp97jw9Czyk5o0Tx832w-YwqKpmglPYP0IoSTTspNHmIVoQw1Q2CiRP0JOctIUT3A3mMTphmUnPNV2j8XFJ1pSa74NFmn_EcEy4bwAnWdbHFx4DjjH_97NZLdTXF4CebAcOPfYKcD_J4gzd1ZwNe14KvQoEUR-va8NaBhafo0WyXDM9u5yn6-u7qy-WH7vrT-4-Xb687JxQpHRcTTGpSo2UW7DxYKhUAIy1WzwAUsQOZ-UAApJj5BIOmMFk1DjBNjHHOT9HF0Xdfxx1MDkJpqcw--Z1NNyZab_5Vgt-YdfxueqUUkUMzeHU0iLl4k50v4DYuhgCuGCok62XfoDe3W1L8ViEXs_PZwbLYALFmQ7XSWkoyiIa-_g_dxppC-4NGNYhpqWmjzo-USzHnBPPdxZSYQ8nmULK5L7m9ePl30Dv-T6sNeHEEtrnEdK_LnkhOGf8NpN2v9Q</recordid><startdate>20180109</startdate><enddate>20180109</enddate><creator>Little, Michael S.</creator><creator>Pellock, Samuel J.</creator><creator>Walton, William G.</creator><creator>Tripathy, Ashutosh</creator><creator>Redinbo, Matthew R.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20180109</creationdate><title>Structural basis for the regulation of β-glucuronidase expression by human gut Enterobacteriaceae</title><author>Little, Michael S. ; Pellock, Samuel J. ; Walton, William G. ; Tripathy, Ashutosh ; Redinbo, Matthew R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-34ded7d7ba2aeaf8a167ee2011552ee70a80f380ee64f3de891eda7b8edd22333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>17β-Estradiol</topic><topic>Amino Acid Sequence</topic><topic>b-Glucuronidase</topic><topic>Bacteria</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Binding</topic><topic>Binding Sites</topic><topic>Biochemistry</topic><topic>Biological Sciences</topic><topic>Carbohydrates</topic><topic>Control</topic><topic>Coordination compounds</topic><topic>Crystal structure</topic><topic>Crystallography, X-Ray</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA - chemistry</topic><topic>DNA - genetics</topic><topic>DNA - metabolism</topic><topic>E coli</topic><topic>Enterobacteriaceae</topic><topic>Enterobacteriaceae - enzymology</topic><topic>Enterobacteriaceae - genetics</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Gastrointestinal Microbiome - genetics</topic><topic>Gene Expression Regulation, Bacterial</topic><topic>Genes, Regulator - genetics</topic><topic>Glucuronic Acid - chemistry</topic><topic>Glucuronic Acid - metabolism</topic><topic>Glucuronidase - chemistry</topic><topic>Glucuronidase - genetics</topic><topic>Glucuronidase - metabolism</topic><topic>gut microbiota</topic><topic>Humans</topic><topic>Indomethacin</topic><topic>Intestinal microflora</topic><topic>Klebsiella</topic><topic>Microbiota</topic><topic>Molecular biology</topic><topic>Mutants</topic><topic>Mutation</topic><topic>Operon - genetics</topic><topic>Opportunist infection</topic><topic>Pathogens</topic><topic>PNAS Plus</topic><topic>Salmonella</topic><topic>Sequence Homology, Amino Acid</topic><topic>Sex hormones</topic><topic>Small intestine</topic><topic>structural biology</topic><topic>Sugar</topic><topic>Transcription</topic><topic>transcriptional regulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Little, Michael S.</creatorcontrib><creatorcontrib>Pellock, Samuel J.</creatorcontrib><creatorcontrib>Walton, William G.</creatorcontrib><creatorcontrib>Tripathy, Ashutosh</creatorcontrib><creatorcontrib>Redinbo, Matthew R.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Little, Michael S.</au><au>Pellock, Samuel J.</au><au>Walton, William G.</au><au>Tripathy, Ashutosh</au><au>Redinbo, Matthew R.</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural basis for the regulation of β-glucuronidase expression by human gut Enterobacteriaceae</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2018-01-09</date><risdate>2018</risdate><volume>115</volume><issue>2</issue><spage>E152</spage><epage>E161</epage><pages>E152-E161</pages><issn>0027-8424</issn><issn>1091-6490</issn><eissn>1091-6490</eissn><abstract>The gut microbiota harbor diverse β-glucuronidase (GUS) enzymes that liberate glucuronic acid (GlcA) sugars from small-molecule conjugates and complex carbohydrates. However, only the Enterobacteriaceae family of human gut-associated Proteobacteria maintain a GUS operon under the transcriptional control of a glucuronide repressor, GusR. Despite its potential importance in Escherichia, Salmonella, Klebsiella, Shigella, and Yersinia opportunistic pathogens, the structure of GusR has not been examined. Here, we explore the molecular basis for GusR-mediated regulation of GUS expression in response to small-molecule glucuronides. Presented are 2.1-Å-resolution crystal structures of GusRs from Escherichia coli and Salmonella enterica in complexes with a glucuronide ligand. The GusR-specific DNA operator site in the regulatory region of the E. coli GUS operon is identified, and structure-guided GusR mutants pinpoint the residues essential for DNA binding and glucuronide recognition. Interestingly, the endobiotic estradiol-17-glucuronide and the xenobiotic indomethacin-acyl-glucuronide are found to exhibit markedly differential binding to these GusR orthologs. Using structure-guided mutations, we are able to transfer E. coli GusR’s preferential DNA and glucuronide binding affinity to S. enterica GusR. Structures of putative GusR orthologs from GUS-encoding Firmicutes species also reveal functionally unique features of the Enterobacteriaceae GusRs. Finally, dominant-negative GusR variants are validated in cell-based studies. These data provide a molecular framework toward understanding the control of glucuronide utilization by opportunistic pathogens in the human gut.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>29269393</pmid><doi>10.1073/pnas.1716241115</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2018-01, Vol.115 (2), p.E152-E161 |
issn | 0027-8424 1091-6490 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5777068 |
source | Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | 17β-Estradiol Amino Acid Sequence b-Glucuronidase Bacteria Bacterial Proteins - chemistry Bacterial Proteins - genetics Bacterial Proteins - metabolism BASIC BIOLOGICAL SCIENCES Binding Binding Sites Biochemistry Biological Sciences Carbohydrates Control Coordination compounds Crystal structure Crystallography, X-Ray Deoxyribonucleic acid DNA DNA - chemistry DNA - genetics DNA - metabolism E coli Enterobacteriaceae Enterobacteriaceae - enzymology Enterobacteriaceae - genetics Escherichia coli - genetics Escherichia coli - metabolism Gastrointestinal Microbiome - genetics Gene Expression Regulation, Bacterial Genes, Regulator - genetics Glucuronic Acid - chemistry Glucuronic Acid - metabolism Glucuronidase - chemistry Glucuronidase - genetics Glucuronidase - metabolism gut microbiota Humans Indomethacin Intestinal microflora Klebsiella Microbiota Molecular biology Mutants Mutation Operon - genetics Opportunist infection Pathogens PNAS Plus Salmonella Sequence Homology, Amino Acid Sex hormones Small intestine structural biology Sugar Transcription transcriptional regulation |
title | Structural basis for the regulation of β-glucuronidase expression by human gut Enterobacteriaceae |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T00%3A45%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20basis%20for%20the%20regulation%20of%20%CE%B2-glucuronidase%20expression%20by%20human%20gut%20Enterobacteriaceae&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Little,%20Michael%20S.&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2018-01-09&rft.volume=115&rft.issue=2&rft.spage=E152&rft.epage=E161&rft.pages=E152-E161&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1716241115&rft_dat=%3Cjstor_pubme%3E26506312%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1999629691&rft_id=info:pmid/29269393&rft_jstor_id=26506312&rfr_iscdi=true |