Structural basis for the regulation of β-glucuronidase expression by human gut Enterobacteriaceae

The gut microbiota harbor diverse β-glucuronidase (GUS) enzymes that liberate glucuronic acid (GlcA) sugars from small-molecule conjugates and complex carbohydrates. However, only the Enterobacteriaceae family of human gut-associated Proteobacteria maintain a GUS operon under the transcriptional con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2018-01, Vol.115 (2), p.E152-E161
Hauptverfasser: Little, Michael S., Pellock, Samuel J., Walton, William G., Tripathy, Ashutosh, Redinbo, Matthew R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page E161
container_issue 2
container_start_page E152
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 115
creator Little, Michael S.
Pellock, Samuel J.
Walton, William G.
Tripathy, Ashutosh
Redinbo, Matthew R.
description The gut microbiota harbor diverse β-glucuronidase (GUS) enzymes that liberate glucuronic acid (GlcA) sugars from small-molecule conjugates and complex carbohydrates. However, only the Enterobacteriaceae family of human gut-associated Proteobacteria maintain a GUS operon under the transcriptional control of a glucuronide repressor, GusR. Despite its potential importance in Escherichia, Salmonella, Klebsiella, Shigella, and Yersinia opportunistic pathogens, the structure of GusR has not been examined. Here, we explore the molecular basis for GusR-mediated regulation of GUS expression in response to small-molecule glucuronides. Presented are 2.1-Å-resolution crystal structures of GusRs from Escherichia coli and Salmonella enterica in complexes with a glucuronide ligand. The GusR-specific DNA operator site in the regulatory region of the E. coli GUS operon is identified, and structure-guided GusR mutants pinpoint the residues essential for DNA binding and glucuronide recognition. Interestingly, the endobiotic estradiol-17-glucuronide and the xenobiotic indomethacin-acyl-glucuronide are found to exhibit markedly differential binding to these GusR orthologs. Using structure-guided mutations, we are able to transfer E. coli GusR’s preferential DNA and glucuronide binding affinity to S. enterica GusR. Structures of putative GusR orthologs from GUS-encoding Firmicutes species also reveal functionally unique features of the Enterobacteriaceae GusRs. Finally, dominant-negative GusR variants are validated in cell-based studies. These data provide a molecular framework toward understanding the control of glucuronide utilization by opportunistic pathogens in the human gut.
doi_str_mv 10.1073/pnas.1716241115
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5777068</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26506312</jstor_id><sourcerecordid>26506312</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-34ded7d7ba2aeaf8a167ee2011552ee70a80f380ee64f3de891eda7b8edd22333</originalsourceid><addsrcrecordid>eNpdkTtvFDEUhS0EIkugpgJZ0NBM4tfY4yYSisJDikQB1JbHc2fXq1l78QORv8UP4Tfh1YYEqG5xPp97jw9Czyk5o0Tx832w-YwqKpmglPYP0IoSTTspNHmIVoQw1Q2CiRP0JOctIUT3A3mMTphmUnPNV2j8XFJ1pSa74NFmn_EcEy4bwAnWdbHFx4DjjH_97NZLdTXF4CebAcOPfYKcD_J4gzd1ZwNe14KvQoEUR-va8NaBhafo0WyXDM9u5yn6-u7qy-WH7vrT-4-Xb687JxQpHRcTTGpSo2UW7DxYKhUAIy1WzwAUsQOZ-UAApJj5BIOmMFk1DjBNjHHOT9HF0Xdfxx1MDkJpqcw--Z1NNyZab_5Vgt-YdfxueqUUkUMzeHU0iLl4k50v4DYuhgCuGCok62XfoDe3W1L8ViEXs_PZwbLYALFmQ7XSWkoyiIa-_g_dxppC-4NGNYhpqWmjzo-USzHnBPPdxZSYQ8nmULK5L7m9ePl30Dv-T6sNeHEEtrnEdK_LnkhOGf8NpN2v9Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1999629691</pqid></control><display><type>article</type><title>Structural basis for the regulation of β-glucuronidase expression by human gut Enterobacteriaceae</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Little, Michael S. ; Pellock, Samuel J. ; Walton, William G. ; Tripathy, Ashutosh ; Redinbo, Matthew R.</creator><creatorcontrib>Little, Michael S. ; Pellock, Samuel J. ; Walton, William G. ; Tripathy, Ashutosh ; Redinbo, Matthew R. ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>The gut microbiota harbor diverse β-glucuronidase (GUS) enzymes that liberate glucuronic acid (GlcA) sugars from small-molecule conjugates and complex carbohydrates. However, only the Enterobacteriaceae family of human gut-associated Proteobacteria maintain a GUS operon under the transcriptional control of a glucuronide repressor, GusR. Despite its potential importance in Escherichia, Salmonella, Klebsiella, Shigella, and Yersinia opportunistic pathogens, the structure of GusR has not been examined. Here, we explore the molecular basis for GusR-mediated regulation of GUS expression in response to small-molecule glucuronides. Presented are 2.1-Å-resolution crystal structures of GusRs from Escherichia coli and Salmonella enterica in complexes with a glucuronide ligand. The GusR-specific DNA operator site in the regulatory region of the E. coli GUS operon is identified, and structure-guided GusR mutants pinpoint the residues essential for DNA binding and glucuronide recognition. Interestingly, the endobiotic estradiol-17-glucuronide and the xenobiotic indomethacin-acyl-glucuronide are found to exhibit markedly differential binding to these GusR orthologs. Using structure-guided mutations, we are able to transfer E. coli GusR’s preferential DNA and glucuronide binding affinity to S. enterica GusR. Structures of putative GusR orthologs from GUS-encoding Firmicutes species also reveal functionally unique features of the Enterobacteriaceae GusRs. Finally, dominant-negative GusR variants are validated in cell-based studies. These data provide a molecular framework toward understanding the control of glucuronide utilization by opportunistic pathogens in the human gut.</description><identifier>ISSN: 0027-8424</identifier><identifier>ISSN: 1091-6490</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1716241115</identifier><identifier>PMID: 29269393</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>17β-Estradiol ; Amino Acid Sequence ; b-Glucuronidase ; Bacteria ; Bacterial Proteins - chemistry ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; BASIC BIOLOGICAL SCIENCES ; Binding ; Binding Sites ; Biochemistry ; Biological Sciences ; Carbohydrates ; Control ; Coordination compounds ; Crystal structure ; Crystallography, X-Ray ; Deoxyribonucleic acid ; DNA ; DNA - chemistry ; DNA - genetics ; DNA - metabolism ; E coli ; Enterobacteriaceae ; Enterobacteriaceae - enzymology ; Enterobacteriaceae - genetics ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Gastrointestinal Microbiome - genetics ; Gene Expression Regulation, Bacterial ; Genes, Regulator - genetics ; Glucuronic Acid - chemistry ; Glucuronic Acid - metabolism ; Glucuronidase - chemistry ; Glucuronidase - genetics ; Glucuronidase - metabolism ; gut microbiota ; Humans ; Indomethacin ; Intestinal microflora ; Klebsiella ; Microbiota ; Molecular biology ; Mutants ; Mutation ; Operon - genetics ; Opportunist infection ; Pathogens ; PNAS Plus ; Salmonella ; Sequence Homology, Amino Acid ; Sex hormones ; Small intestine ; structural biology ; Sugar ; Transcription ; transcriptional regulation</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2018-01, Vol.115 (2), p.E152-E161</ispartof><rights>Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Jan 9, 2018</rights><rights>2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-34ded7d7ba2aeaf8a167ee2011552ee70a80f380ee64f3de891eda7b8edd22333</citedby><cites>FETCH-LOGICAL-c470t-34ded7d7ba2aeaf8a167ee2011552ee70a80f380ee64f3de891eda7b8edd22333</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26506312$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26506312$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29269393$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1462565$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Little, Michael S.</creatorcontrib><creatorcontrib>Pellock, Samuel J.</creatorcontrib><creatorcontrib>Walton, William G.</creatorcontrib><creatorcontrib>Tripathy, Ashutosh</creatorcontrib><creatorcontrib>Redinbo, Matthew R.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Structural basis for the regulation of β-glucuronidase expression by human gut Enterobacteriaceae</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The gut microbiota harbor diverse β-glucuronidase (GUS) enzymes that liberate glucuronic acid (GlcA) sugars from small-molecule conjugates and complex carbohydrates. However, only the Enterobacteriaceae family of human gut-associated Proteobacteria maintain a GUS operon under the transcriptional control of a glucuronide repressor, GusR. Despite its potential importance in Escherichia, Salmonella, Klebsiella, Shigella, and Yersinia opportunistic pathogens, the structure of GusR has not been examined. Here, we explore the molecular basis for GusR-mediated regulation of GUS expression in response to small-molecule glucuronides. Presented are 2.1-Å-resolution crystal structures of GusRs from Escherichia coli and Salmonella enterica in complexes with a glucuronide ligand. The GusR-specific DNA operator site in the regulatory region of the E. coli GUS operon is identified, and structure-guided GusR mutants pinpoint the residues essential for DNA binding and glucuronide recognition. Interestingly, the endobiotic estradiol-17-glucuronide and the xenobiotic indomethacin-acyl-glucuronide are found to exhibit markedly differential binding to these GusR orthologs. Using structure-guided mutations, we are able to transfer E. coli GusR’s preferential DNA and glucuronide binding affinity to S. enterica GusR. Structures of putative GusR orthologs from GUS-encoding Firmicutes species also reveal functionally unique features of the Enterobacteriaceae GusRs. Finally, dominant-negative GusR variants are validated in cell-based studies. These data provide a molecular framework toward understanding the control of glucuronide utilization by opportunistic pathogens in the human gut.</description><subject>17β-Estradiol</subject><subject>Amino Acid Sequence</subject><subject>b-Glucuronidase</subject><subject>Bacteria</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Binding</subject><subject>Binding Sites</subject><subject>Biochemistry</subject><subject>Biological Sciences</subject><subject>Carbohydrates</subject><subject>Control</subject><subject>Coordination compounds</subject><subject>Crystal structure</subject><subject>Crystallography, X-Ray</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA - chemistry</subject><subject>DNA - genetics</subject><subject>DNA - metabolism</subject><subject>E coli</subject><subject>Enterobacteriaceae</subject><subject>Enterobacteriaceae - enzymology</subject><subject>Enterobacteriaceae - genetics</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Gastrointestinal Microbiome - genetics</subject><subject>Gene Expression Regulation, Bacterial</subject><subject>Genes, Regulator - genetics</subject><subject>Glucuronic Acid - chemistry</subject><subject>Glucuronic Acid - metabolism</subject><subject>Glucuronidase - chemistry</subject><subject>Glucuronidase - genetics</subject><subject>Glucuronidase - metabolism</subject><subject>gut microbiota</subject><subject>Humans</subject><subject>Indomethacin</subject><subject>Intestinal microflora</subject><subject>Klebsiella</subject><subject>Microbiota</subject><subject>Molecular biology</subject><subject>Mutants</subject><subject>Mutation</subject><subject>Operon - genetics</subject><subject>Opportunist infection</subject><subject>Pathogens</subject><subject>PNAS Plus</subject><subject>Salmonella</subject><subject>Sequence Homology, Amino Acid</subject><subject>Sex hormones</subject><subject>Small intestine</subject><subject>structural biology</subject><subject>Sugar</subject><subject>Transcription</subject><subject>transcriptional regulation</subject><issn>0027-8424</issn><issn>1091-6490</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkTtvFDEUhS0EIkugpgJZ0NBM4tfY4yYSisJDikQB1JbHc2fXq1l78QORv8UP4Tfh1YYEqG5xPp97jw9Czyk5o0Tx832w-YwqKpmglPYP0IoSTTspNHmIVoQw1Q2CiRP0JOctIUT3A3mMTphmUnPNV2j8XFJ1pSa74NFmn_EcEy4bwAnWdbHFx4DjjH_97NZLdTXF4CebAcOPfYKcD_J4gzd1ZwNe14KvQoEUR-va8NaBhafo0WyXDM9u5yn6-u7qy-WH7vrT-4-Xb687JxQpHRcTTGpSo2UW7DxYKhUAIy1WzwAUsQOZ-UAApJj5BIOmMFk1DjBNjHHOT9HF0Xdfxx1MDkJpqcw--Z1NNyZab_5Vgt-YdfxueqUUkUMzeHU0iLl4k50v4DYuhgCuGCok62XfoDe3W1L8ViEXs_PZwbLYALFmQ7XSWkoyiIa-_g_dxppC-4NGNYhpqWmjzo-USzHnBPPdxZSYQ8nmULK5L7m9ePl30Dv-T6sNeHEEtrnEdK_LnkhOGf8NpN2v9Q</recordid><startdate>20180109</startdate><enddate>20180109</enddate><creator>Little, Michael S.</creator><creator>Pellock, Samuel J.</creator><creator>Walton, William G.</creator><creator>Tripathy, Ashutosh</creator><creator>Redinbo, Matthew R.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20180109</creationdate><title>Structural basis for the regulation of β-glucuronidase expression by human gut Enterobacteriaceae</title><author>Little, Michael S. ; Pellock, Samuel J. ; Walton, William G. ; Tripathy, Ashutosh ; Redinbo, Matthew R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-34ded7d7ba2aeaf8a167ee2011552ee70a80f380ee64f3de891eda7b8edd22333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>17β-Estradiol</topic><topic>Amino Acid Sequence</topic><topic>b-Glucuronidase</topic><topic>Bacteria</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Binding</topic><topic>Binding Sites</topic><topic>Biochemistry</topic><topic>Biological Sciences</topic><topic>Carbohydrates</topic><topic>Control</topic><topic>Coordination compounds</topic><topic>Crystal structure</topic><topic>Crystallography, X-Ray</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA - chemistry</topic><topic>DNA - genetics</topic><topic>DNA - metabolism</topic><topic>E coli</topic><topic>Enterobacteriaceae</topic><topic>Enterobacteriaceae - enzymology</topic><topic>Enterobacteriaceae - genetics</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Gastrointestinal Microbiome - genetics</topic><topic>Gene Expression Regulation, Bacterial</topic><topic>Genes, Regulator - genetics</topic><topic>Glucuronic Acid - chemistry</topic><topic>Glucuronic Acid - metabolism</topic><topic>Glucuronidase - chemistry</topic><topic>Glucuronidase - genetics</topic><topic>Glucuronidase - metabolism</topic><topic>gut microbiota</topic><topic>Humans</topic><topic>Indomethacin</topic><topic>Intestinal microflora</topic><topic>Klebsiella</topic><topic>Microbiota</topic><topic>Molecular biology</topic><topic>Mutants</topic><topic>Mutation</topic><topic>Operon - genetics</topic><topic>Opportunist infection</topic><topic>Pathogens</topic><topic>PNAS Plus</topic><topic>Salmonella</topic><topic>Sequence Homology, Amino Acid</topic><topic>Sex hormones</topic><topic>Small intestine</topic><topic>structural biology</topic><topic>Sugar</topic><topic>Transcription</topic><topic>transcriptional regulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Little, Michael S.</creatorcontrib><creatorcontrib>Pellock, Samuel J.</creatorcontrib><creatorcontrib>Walton, William G.</creatorcontrib><creatorcontrib>Tripathy, Ashutosh</creatorcontrib><creatorcontrib>Redinbo, Matthew R.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Little, Michael S.</au><au>Pellock, Samuel J.</au><au>Walton, William G.</au><au>Tripathy, Ashutosh</au><au>Redinbo, Matthew R.</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural basis for the regulation of β-glucuronidase expression by human gut Enterobacteriaceae</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2018-01-09</date><risdate>2018</risdate><volume>115</volume><issue>2</issue><spage>E152</spage><epage>E161</epage><pages>E152-E161</pages><issn>0027-8424</issn><issn>1091-6490</issn><eissn>1091-6490</eissn><abstract>The gut microbiota harbor diverse β-glucuronidase (GUS) enzymes that liberate glucuronic acid (GlcA) sugars from small-molecule conjugates and complex carbohydrates. However, only the Enterobacteriaceae family of human gut-associated Proteobacteria maintain a GUS operon under the transcriptional control of a glucuronide repressor, GusR. Despite its potential importance in Escherichia, Salmonella, Klebsiella, Shigella, and Yersinia opportunistic pathogens, the structure of GusR has not been examined. Here, we explore the molecular basis for GusR-mediated regulation of GUS expression in response to small-molecule glucuronides. Presented are 2.1-Å-resolution crystal structures of GusRs from Escherichia coli and Salmonella enterica in complexes with a glucuronide ligand. The GusR-specific DNA operator site in the regulatory region of the E. coli GUS operon is identified, and structure-guided GusR mutants pinpoint the residues essential for DNA binding and glucuronide recognition. Interestingly, the endobiotic estradiol-17-glucuronide and the xenobiotic indomethacin-acyl-glucuronide are found to exhibit markedly differential binding to these GusR orthologs. Using structure-guided mutations, we are able to transfer E. coli GusR’s preferential DNA and glucuronide binding affinity to S. enterica GusR. Structures of putative GusR orthologs from GUS-encoding Firmicutes species also reveal functionally unique features of the Enterobacteriaceae GusRs. Finally, dominant-negative GusR variants are validated in cell-based studies. These data provide a molecular framework toward understanding the control of glucuronide utilization by opportunistic pathogens in the human gut.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>29269393</pmid><doi>10.1073/pnas.1716241115</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2018-01, Vol.115 (2), p.E152-E161
issn 0027-8424
1091-6490
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5777068
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects 17β-Estradiol
Amino Acid Sequence
b-Glucuronidase
Bacteria
Bacterial Proteins - chemistry
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
BASIC BIOLOGICAL SCIENCES
Binding
Binding Sites
Biochemistry
Biological Sciences
Carbohydrates
Control
Coordination compounds
Crystal structure
Crystallography, X-Ray
Deoxyribonucleic acid
DNA
DNA - chemistry
DNA - genetics
DNA - metabolism
E coli
Enterobacteriaceae
Enterobacteriaceae - enzymology
Enterobacteriaceae - genetics
Escherichia coli - genetics
Escherichia coli - metabolism
Gastrointestinal Microbiome - genetics
Gene Expression Regulation, Bacterial
Genes, Regulator - genetics
Glucuronic Acid - chemistry
Glucuronic Acid - metabolism
Glucuronidase - chemistry
Glucuronidase - genetics
Glucuronidase - metabolism
gut microbiota
Humans
Indomethacin
Intestinal microflora
Klebsiella
Microbiota
Molecular biology
Mutants
Mutation
Operon - genetics
Opportunist infection
Pathogens
PNAS Plus
Salmonella
Sequence Homology, Amino Acid
Sex hormones
Small intestine
structural biology
Sugar
Transcription
transcriptional regulation
title Structural basis for the regulation of β-glucuronidase expression by human gut Enterobacteriaceae
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T00%3A45%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20basis%20for%20the%20regulation%20of%20%CE%B2-glucuronidase%20expression%20by%20human%20gut%20Enterobacteriaceae&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Little,%20Michael%20S.&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2018-01-09&rft.volume=115&rft.issue=2&rft.spage=E152&rft.epage=E161&rft.pages=E152-E161&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1716241115&rft_dat=%3Cjstor_pubme%3E26506312%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1999629691&rft_id=info:pmid/29269393&rft_jstor_id=26506312&rfr_iscdi=true