Protonation state of glutamate 73 regulates the formation of a specific dimeric association of mVDAC1
The voltage-dependent anion channel (VDAC) is the most abundant protein in the outer mitochondrial membrane and constitutes the primary pathway for the exchange of ions and metabolites between the cytosol and the mitochondria. There is accumulating evidence supporting VDAC’s role in mitochondrial me...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2018-01, Vol.115 (2), p.E172-E179 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | E179 |
---|---|
container_issue | 2 |
container_start_page | E172 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 115 |
creator | Bergdoll, Lucie A. Lerch, Michael T. Patrick, John W. Belardo, Kendrick Altenbach, Christian Bisignano, Paola Laganowsky, Arthur Grabe, Michael Hubbell, Wayne L. Abramson, Jeff |
description | The voltage-dependent anion channel (VDAC) is the most abundant protein in the outer mitochondrial membrane and constitutes the primary pathway for the exchange of ions and metabolites between the cytosol and the mitochondria. There is accumulating evidence supporting VDAC’s role in mitochondrial metabolic regulation and apoptosis, where VDAC oligomerization has been implicated with these processes. Herein, we report a specific pH-dependent dimerization of murine VDAC1 (mVDAC1) identified by double electron–electron resonance and native mass spectrometry. Intermolecular distances on four singly spin-labeled mVDAC1 mutants were used to generate a model of the low-pH dimer, establishing the presence of residue E73 at the interface. This dimer arrangement is different from any oligomeric state previously described, and it forms as a steep function of pH with an apparent pKₐ of 7.4. Moreover, the monomer–dimer equilibrium affinity constant was determined using native MS, revealing a nearly eightfold enhancement in dimerization affinity at low pH. Mutation of E73 to either alanine or glutamine severely reduces oligomerization, demonstrating the role of protonated E73 in enhancing dimer formation. Based on these results, and the known importance of E73 in VDAC physiology, VDAC dimerization likely plays a significant role in mitochondrial metabolic regulation and apoptosis in response to cytosolic acidification during cellular stress. |
doi_str_mv | 10.1073/pnas.1715464115 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5777057</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26506316</jstor_id><sourcerecordid>26506316</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-5f555d6468b1b4b368f00cc99afab20c003ee4cb0d5d54ffef13ac7dc399665e3</originalsourceid><addsrcrecordid>eNpdkc1P3DAQxa2qVVmg556KIvXCJTCOv-JLJbT9oBISHICr5Tj24lUSL7ZTqf89Xi1dCqeZ0fzm6Y0eQp8xnGEQ5Hwz6XSGBWaUU4zZO7TAIHHNqYT3aAHQiLqlDT1AhymtAUCyFj6ig0Y2QhLJF8jexJDDpLMPU5WyzrYKrloNc9bjdhCkinY1D6VPVX6wlQtx3NGF01XaWOOdN1XvRxtL1SkF4_fEeP_9YomP0Qenh2Q_PdcjdPfzx-3ysr66_vV7eXFVGwYy18wxxnpOedvhjnaEtw7AGCm1010DBoBYS00HPesZdc46TLQRvSFScs4sOULfdrqbuRttb-yUox7UJvpRx78qaK9ebyb_oFbhj2JCCGCiCJw-C8TwONuU1eiTscOgJxvmpLBsMTAGwAr69Q26DnOcynuFKn6aFjdbwfMdZWJIKVq3N4NBbSNU2wjVS4Tl4uT_H_b8v8wK8GUHrFMO8WXPGXCCOXkC_xCizg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1999628127</pqid></control><display><type>article</type><title>Protonation state of glutamate 73 regulates the formation of a specific dimeric association of mVDAC1</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Bergdoll, Lucie A. ; Lerch, Michael T. ; Patrick, John W. ; Belardo, Kendrick ; Altenbach, Christian ; Bisignano, Paola ; Laganowsky, Arthur ; Grabe, Michael ; Hubbell, Wayne L. ; Abramson, Jeff</creator><creatorcontrib>Bergdoll, Lucie A. ; Lerch, Michael T. ; Patrick, John W. ; Belardo, Kendrick ; Altenbach, Christian ; Bisignano, Paola ; Laganowsky, Arthur ; Grabe, Michael ; Hubbell, Wayne L. ; Abramson, Jeff</creatorcontrib><description>The voltage-dependent anion channel (VDAC) is the most abundant protein in the outer mitochondrial membrane and constitutes the primary pathway for the exchange of ions and metabolites between the cytosol and the mitochondria. There is accumulating evidence supporting VDAC’s role in mitochondrial metabolic regulation and apoptosis, where VDAC oligomerization has been implicated with these processes. Herein, we report a specific pH-dependent dimerization of murine VDAC1 (mVDAC1) identified by double electron–electron resonance and native mass spectrometry. Intermolecular distances on four singly spin-labeled mVDAC1 mutants were used to generate a model of the low-pH dimer, establishing the presence of residue E73 at the interface. This dimer arrangement is different from any oligomeric state previously described, and it forms as a steep function of pH with an apparent pKₐ of 7.4. Moreover, the monomer–dimer equilibrium affinity constant was determined using native MS, revealing a nearly eightfold enhancement in dimerization affinity at low pH. Mutation of E73 to either alanine or glutamine severely reduces oligomerization, demonstrating the role of protonated E73 in enhancing dimer formation. Based on these results, and the known importance of E73 in VDAC physiology, VDAC dimerization likely plays a significant role in mitochondrial metabolic regulation and apoptosis in response to cytosolic acidification during cellular stress.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1715464115</identifier><identifier>PMID: 29279396</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Acidification ; Affinity ; Alanine ; Algorithms ; Animals ; Apoptosis ; Biological Sciences ; Cells ; Cellular stress response ; Cytosol ; Dimerization ; Glutamates - chemistry ; Glutamates - genetics ; Glutamates - metabolism ; Glutamine ; Hydrogen ions ; Hydrogen-Ion Concentration ; Kinetics ; Mass spectrometry ; Mass spectroscopy ; Metabolites ; Mice ; Mitochondria ; Models, Molecular ; Mutants ; Mutation ; Oligomerization ; pH effects ; PNAS Plus ; Protein Conformation ; Protein Multimerization ; Protonation ; Protons ; Voltage-Dependent Anion Channel 1 - chemistry ; Voltage-Dependent Anion Channel 1 - genetics ; Voltage-Dependent Anion Channel 1 - metabolism</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2018-01, Vol.115 (2), p.E172-E179</ispartof><rights>Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Jan 9, 2018</rights><rights>2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-5f555d6468b1b4b368f00cc99afab20c003ee4cb0d5d54ffef13ac7dc399665e3</citedby><cites>FETCH-LOGICAL-c509t-5f555d6468b1b4b368f00cc99afab20c003ee4cb0d5d54ffef13ac7dc399665e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26506316$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26506316$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27923,27924,53790,53792,58016,58249</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29279396$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bergdoll, Lucie A.</creatorcontrib><creatorcontrib>Lerch, Michael T.</creatorcontrib><creatorcontrib>Patrick, John W.</creatorcontrib><creatorcontrib>Belardo, Kendrick</creatorcontrib><creatorcontrib>Altenbach, Christian</creatorcontrib><creatorcontrib>Bisignano, Paola</creatorcontrib><creatorcontrib>Laganowsky, Arthur</creatorcontrib><creatorcontrib>Grabe, Michael</creatorcontrib><creatorcontrib>Hubbell, Wayne L.</creatorcontrib><creatorcontrib>Abramson, Jeff</creatorcontrib><title>Protonation state of glutamate 73 regulates the formation of a specific dimeric association of mVDAC1</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The voltage-dependent anion channel (VDAC) is the most abundant protein in the outer mitochondrial membrane and constitutes the primary pathway for the exchange of ions and metabolites between the cytosol and the mitochondria. There is accumulating evidence supporting VDAC’s role in mitochondrial metabolic regulation and apoptosis, where VDAC oligomerization has been implicated with these processes. Herein, we report a specific pH-dependent dimerization of murine VDAC1 (mVDAC1) identified by double electron–electron resonance and native mass spectrometry. Intermolecular distances on four singly spin-labeled mVDAC1 mutants were used to generate a model of the low-pH dimer, establishing the presence of residue E73 at the interface. This dimer arrangement is different from any oligomeric state previously described, and it forms as a steep function of pH with an apparent pKₐ of 7.4. Moreover, the monomer–dimer equilibrium affinity constant was determined using native MS, revealing a nearly eightfold enhancement in dimerization affinity at low pH. Mutation of E73 to either alanine or glutamine severely reduces oligomerization, demonstrating the role of protonated E73 in enhancing dimer formation. Based on these results, and the known importance of E73 in VDAC physiology, VDAC dimerization likely plays a significant role in mitochondrial metabolic regulation and apoptosis in response to cytosolic acidification during cellular stress.</description><subject>Acidification</subject><subject>Affinity</subject><subject>Alanine</subject><subject>Algorithms</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Biological Sciences</subject><subject>Cells</subject><subject>Cellular stress response</subject><subject>Cytosol</subject><subject>Dimerization</subject><subject>Glutamates - chemistry</subject><subject>Glutamates - genetics</subject><subject>Glutamates - metabolism</subject><subject>Glutamine</subject><subject>Hydrogen ions</subject><subject>Hydrogen-Ion Concentration</subject><subject>Kinetics</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Metabolites</subject><subject>Mice</subject><subject>Mitochondria</subject><subject>Models, Molecular</subject><subject>Mutants</subject><subject>Mutation</subject><subject>Oligomerization</subject><subject>pH effects</subject><subject>PNAS Plus</subject><subject>Protein Conformation</subject><subject>Protein Multimerization</subject><subject>Protonation</subject><subject>Protons</subject><subject>Voltage-Dependent Anion Channel 1 - chemistry</subject><subject>Voltage-Dependent Anion Channel 1 - genetics</subject><subject>Voltage-Dependent Anion Channel 1 - metabolism</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1P3DAQxa2qVVmg556KIvXCJTCOv-JLJbT9oBISHICr5Tj24lUSL7ZTqf89Xi1dCqeZ0fzm6Y0eQp8xnGEQ5Hwz6XSGBWaUU4zZO7TAIHHNqYT3aAHQiLqlDT1AhymtAUCyFj6ig0Y2QhLJF8jexJDDpLMPU5WyzrYKrloNc9bjdhCkinY1D6VPVX6wlQtx3NGF01XaWOOdN1XvRxtL1SkF4_fEeP_9YomP0Qenh2Q_PdcjdPfzx-3ysr66_vV7eXFVGwYy18wxxnpOedvhjnaEtw7AGCm1010DBoBYS00HPesZdc46TLQRvSFScs4sOULfdrqbuRttb-yUox7UJvpRx78qaK9ebyb_oFbhj2JCCGCiCJw-C8TwONuU1eiTscOgJxvmpLBsMTAGwAr69Q26DnOcynuFKn6aFjdbwfMdZWJIKVq3N4NBbSNU2wjVS4Tl4uT_H_b8v8wK8GUHrFMO8WXPGXCCOXkC_xCizg</recordid><startdate>20180109</startdate><enddate>20180109</enddate><creator>Bergdoll, Lucie A.</creator><creator>Lerch, Michael T.</creator><creator>Patrick, John W.</creator><creator>Belardo, Kendrick</creator><creator>Altenbach, Christian</creator><creator>Bisignano, Paola</creator><creator>Laganowsky, Arthur</creator><creator>Grabe, Michael</creator><creator>Hubbell, Wayne L.</creator><creator>Abramson, Jeff</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20180109</creationdate><title>Protonation state of glutamate 73 regulates the formation of a specific dimeric association of mVDAC1</title><author>Bergdoll, Lucie A. ; Lerch, Michael T. ; Patrick, John W. ; Belardo, Kendrick ; Altenbach, Christian ; Bisignano, Paola ; Laganowsky, Arthur ; Grabe, Michael ; Hubbell, Wayne L. ; Abramson, Jeff</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-5f555d6468b1b4b368f00cc99afab20c003ee4cb0d5d54ffef13ac7dc399665e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Acidification</topic><topic>Affinity</topic><topic>Alanine</topic><topic>Algorithms</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Biological Sciences</topic><topic>Cells</topic><topic>Cellular stress response</topic><topic>Cytosol</topic><topic>Dimerization</topic><topic>Glutamates - chemistry</topic><topic>Glutamates - genetics</topic><topic>Glutamates - metabolism</topic><topic>Glutamine</topic><topic>Hydrogen ions</topic><topic>Hydrogen-Ion Concentration</topic><topic>Kinetics</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Metabolites</topic><topic>Mice</topic><topic>Mitochondria</topic><topic>Models, Molecular</topic><topic>Mutants</topic><topic>Mutation</topic><topic>Oligomerization</topic><topic>pH effects</topic><topic>PNAS Plus</topic><topic>Protein Conformation</topic><topic>Protein Multimerization</topic><topic>Protonation</topic><topic>Protons</topic><topic>Voltage-Dependent Anion Channel 1 - chemistry</topic><topic>Voltage-Dependent Anion Channel 1 - genetics</topic><topic>Voltage-Dependent Anion Channel 1 - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bergdoll, Lucie A.</creatorcontrib><creatorcontrib>Lerch, Michael T.</creatorcontrib><creatorcontrib>Patrick, John W.</creatorcontrib><creatorcontrib>Belardo, Kendrick</creatorcontrib><creatorcontrib>Altenbach, Christian</creatorcontrib><creatorcontrib>Bisignano, Paola</creatorcontrib><creatorcontrib>Laganowsky, Arthur</creatorcontrib><creatorcontrib>Grabe, Michael</creatorcontrib><creatorcontrib>Hubbell, Wayne L.</creatorcontrib><creatorcontrib>Abramson, Jeff</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bergdoll, Lucie A.</au><au>Lerch, Michael T.</au><au>Patrick, John W.</au><au>Belardo, Kendrick</au><au>Altenbach, Christian</au><au>Bisignano, Paola</au><au>Laganowsky, Arthur</au><au>Grabe, Michael</au><au>Hubbell, Wayne L.</au><au>Abramson, Jeff</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Protonation state of glutamate 73 regulates the formation of a specific dimeric association of mVDAC1</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2018-01-09</date><risdate>2018</risdate><volume>115</volume><issue>2</issue><spage>E172</spage><epage>E179</epage><pages>E172-E179</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The voltage-dependent anion channel (VDAC) is the most abundant protein in the outer mitochondrial membrane and constitutes the primary pathway for the exchange of ions and metabolites between the cytosol and the mitochondria. There is accumulating evidence supporting VDAC’s role in mitochondrial metabolic regulation and apoptosis, where VDAC oligomerization has been implicated with these processes. Herein, we report a specific pH-dependent dimerization of murine VDAC1 (mVDAC1) identified by double electron–electron resonance and native mass spectrometry. Intermolecular distances on four singly spin-labeled mVDAC1 mutants were used to generate a model of the low-pH dimer, establishing the presence of residue E73 at the interface. This dimer arrangement is different from any oligomeric state previously described, and it forms as a steep function of pH with an apparent pKₐ of 7.4. Moreover, the monomer–dimer equilibrium affinity constant was determined using native MS, revealing a nearly eightfold enhancement in dimerization affinity at low pH. Mutation of E73 to either alanine or glutamine severely reduces oligomerization, demonstrating the role of protonated E73 in enhancing dimer formation. Based on these results, and the known importance of E73 in VDAC physiology, VDAC dimerization likely plays a significant role in mitochondrial metabolic regulation and apoptosis in response to cytosolic acidification during cellular stress.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>29279396</pmid><doi>10.1073/pnas.1715464115</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2018-01, Vol.115 (2), p.E172-E179 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5777057 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Acidification Affinity Alanine Algorithms Animals Apoptosis Biological Sciences Cells Cellular stress response Cytosol Dimerization Glutamates - chemistry Glutamates - genetics Glutamates - metabolism Glutamine Hydrogen ions Hydrogen-Ion Concentration Kinetics Mass spectrometry Mass spectroscopy Metabolites Mice Mitochondria Models, Molecular Mutants Mutation Oligomerization pH effects PNAS Plus Protein Conformation Protein Multimerization Protonation Protons Voltage-Dependent Anion Channel 1 - chemistry Voltage-Dependent Anion Channel 1 - genetics Voltage-Dependent Anion Channel 1 - metabolism |
title | Protonation state of glutamate 73 regulates the formation of a specific dimeric association of mVDAC1 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T19%3A31%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Protonation%20state%20of%20glutamate%2073%20regulates%20the%20formation%20of%20a%20specific%20dimeric%20association%20of%20mVDAC1&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Bergdoll,%20Lucie%20A.&rft.date=2018-01-09&rft.volume=115&rft.issue=2&rft.spage=E172&rft.epage=E179&rft.pages=E172-E179&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1715464115&rft_dat=%3Cjstor_pubme%3E26506316%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1999628127&rft_id=info:pmid/29279396&rft_jstor_id=26506316&rfr_iscdi=true |