Multiple origins of interdependent endosymbiotic complexes in a genus of cicadas

Bacterial endosymbionts that provide nutrients to hosts often have genomes that are extremely stable in structure and gene content. In contrast, the genome of the endosymbiont Hodgkinia cicadicola has fractured into multiple distinct lineages in some species of the cicada genus Tettigades. To better...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2018-01, Vol.115 (2), p.E226-E235
Hauptverfasser: Łukasik, Piotr, Nazario, Katherine, Van Leuven, James T., Campbell, Matthew A., Meyer, Mariah, Michalik, Anna, Pessacq, Pablo, Simon, Chris, Veloso, Claudio, McCutcheon, John P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page E235
container_issue 2
container_start_page E226
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 115
creator Łukasik, Piotr
Nazario, Katherine
Van Leuven, James T.
Campbell, Matthew A.
Meyer, Mariah
Michalik, Anna
Pessacq, Pablo
Simon, Chris
Veloso, Claudio
McCutcheon, John P.
description Bacterial endosymbionts that provide nutrients to hosts often have genomes that are extremely stable in structure and gene content. In contrast, the genome of the endosymbiont Hodgkinia cicadicola has fractured into multiple distinct lineages in some species of the cicada genus Tettigades. To better understand the frequency, timing, and outcomes of Hodgkinia lineage splitting throughout this cicada genus, we sampled cicadas over three field seasons in Chile and performed genomics and microscopy on representative samples. We found that a single ancestral Hodgkinia lineage has split at least six independent times in Tettigades over the last 4 million years, resulting in complexes of between two and six distinct Hodgkinia lineages per host. Individual genomes in these symbiotic complexes differ dramatically in relative abundance, genome size, organization, and gene content. Each Hodgkinia lineage retains a small set of core genes involved in genetic information processing, but the high level of gene loss experienced by all genomes suggests that extensive sharing of gene products among symbiont cells must occur. In total, Hodgkinia complexes that consist of multiple lineages encode nearly complete sets of genes present on the ancestral single lineage and presumably perform the same functions as symbionts that have not undergone splitting. However, differences in the timing of the splits, along with dissimilar gene loss patterns on the resulting genomes, have led to very different outcomes of lineage splitting in extant cicadas.
doi_str_mv 10.1073/pnas.1712321115
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5777040</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26506328</jstor_id><sourcerecordid>26506328</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-919982f33f78a8b3294373c8c778f0645f94cb7b5c3d20c29bb9d4bda5cf5b893</originalsourceid><addsrcrecordid>eNpd0U1v1DAQBmALgehSOHMCReLCJe34K_ZckFDFl1QEBzhbtuMsXiVxsBNE_z0uW1rgNId5ZjSjl5CnFM4oKH6-zLacUUUZZ5RSeY_sKCBtO4Fwn-wAmGq1YOKEPCrlAAAoNTwkJwyZQgFqRz5_3MY1LmNoUo77OJcmDU2c15D7sIS5D_Pa1JLK1eRiWqNvfJoq_xlKZY1t9mHefg_56G1vy2PyYLBjCU9u6in5-vbNl4v37eWndx8uXl-2XgKuLVJEzQbOB6Wtdpyh4Ip77ZXSA3RCDii8U0563jPwDJ3DXrjeSj9Ip5GfklfHvcvmptD7emi2o1lynGy-MslG829njt_MPv0wUikFAuqClzcLcvq-hbKaKRYfxtHOIW3FUNQUpFTYVfriP3pIW57re1UhdkwqYFWdH5XPqZQchttjKJjrtMx1WuYurTrx_O8fbv2feCp4dgSHsqZ81-8kdJxp_gvPz5tn</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1999625702</pqid></control><display><type>article</type><title>Multiple origins of interdependent endosymbiotic complexes in a genus of cicadas</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Łukasik, Piotr ; Nazario, Katherine ; Van Leuven, James T. ; Campbell, Matthew A. ; Meyer, Mariah ; Michalik, Anna ; Pessacq, Pablo ; Simon, Chris ; Veloso, Claudio ; McCutcheon, John P.</creator><creatorcontrib>Łukasik, Piotr ; Nazario, Katherine ; Van Leuven, James T. ; Campbell, Matthew A. ; Meyer, Mariah ; Michalik, Anna ; Pessacq, Pablo ; Simon, Chris ; Veloso, Claudio ; McCutcheon, John P.</creatorcontrib><description>Bacterial endosymbionts that provide nutrients to hosts often have genomes that are extremely stable in structure and gene content. In contrast, the genome of the endosymbiont Hodgkinia cicadicola has fractured into multiple distinct lineages in some species of the cicada genus Tettigades. To better understand the frequency, timing, and outcomes of Hodgkinia lineage splitting throughout this cicada genus, we sampled cicadas over three field seasons in Chile and performed genomics and microscopy on representative samples. We found that a single ancestral Hodgkinia lineage has split at least six independent times in Tettigades over the last 4 million years, resulting in complexes of between two and six distinct Hodgkinia lineages per host. Individual genomes in these symbiotic complexes differ dramatically in relative abundance, genome size, organization, and gene content. Each Hodgkinia lineage retains a small set of core genes involved in genetic information processing, but the high level of gene loss experienced by all genomes suggests that extensive sharing of gene products among symbiont cells must occur. In total, Hodgkinia complexes that consist of multiple lineages encode nearly complete sets of genes present on the ancestral single lineage and presumably perform the same functions as symbionts that have not undergone splitting. However, differences in the timing of the splits, along with dissimilar gene loss patterns on the resulting genomes, have led to very different outcomes of lineage splitting in extant cicadas.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1712321115</identifier><identifier>PMID: 29279407</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Bacteria ; Bacteria - classification ; Bacteria - genetics ; Bacterial Physiological Phenomena - genetics ; Biological Evolution ; Biological Sciences ; Chile ; Cicadidae ; Data processing ; Endosymbionts ; Fractures ; Genes ; Genetic Variation ; Genome, Bacterial ; Genomes ; Genomics ; Hemiptera - microbiology ; Hodgkinia cicadicola ; Information processing ; Microscopy ; Mitochondria ; Nutrients ; Phylogeny ; PNAS Plus ; Relative abundance ; Splitting ; Symbionts ; Symbiosis - physiology ; Tettigades</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2018-01, Vol.115 (2), p.E226-E235</ispartof><rights>Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Jan 9, 2018</rights><rights>2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-919982f33f78a8b3294373c8c778f0645f94cb7b5c3d20c29bb9d4bda5cf5b893</citedby><cites>FETCH-LOGICAL-c509t-919982f33f78a8b3294373c8c778f0645f94cb7b5c3d20c29bb9d4bda5cf5b893</cites><orcidid>0000-0002-4164-6487</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26506328$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26506328$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,724,777,781,800,882,27905,27906,53772,53774,57998,58231</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29279407$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Łukasik, Piotr</creatorcontrib><creatorcontrib>Nazario, Katherine</creatorcontrib><creatorcontrib>Van Leuven, James T.</creatorcontrib><creatorcontrib>Campbell, Matthew A.</creatorcontrib><creatorcontrib>Meyer, Mariah</creatorcontrib><creatorcontrib>Michalik, Anna</creatorcontrib><creatorcontrib>Pessacq, Pablo</creatorcontrib><creatorcontrib>Simon, Chris</creatorcontrib><creatorcontrib>Veloso, Claudio</creatorcontrib><creatorcontrib>McCutcheon, John P.</creatorcontrib><title>Multiple origins of interdependent endosymbiotic complexes in a genus of cicadas</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Bacterial endosymbionts that provide nutrients to hosts often have genomes that are extremely stable in structure and gene content. In contrast, the genome of the endosymbiont Hodgkinia cicadicola has fractured into multiple distinct lineages in some species of the cicada genus Tettigades. To better understand the frequency, timing, and outcomes of Hodgkinia lineage splitting throughout this cicada genus, we sampled cicadas over three field seasons in Chile and performed genomics and microscopy on representative samples. We found that a single ancestral Hodgkinia lineage has split at least six independent times in Tettigades over the last 4 million years, resulting in complexes of between two and six distinct Hodgkinia lineages per host. Individual genomes in these symbiotic complexes differ dramatically in relative abundance, genome size, organization, and gene content. Each Hodgkinia lineage retains a small set of core genes involved in genetic information processing, but the high level of gene loss experienced by all genomes suggests that extensive sharing of gene products among symbiont cells must occur. In total, Hodgkinia complexes that consist of multiple lineages encode nearly complete sets of genes present on the ancestral single lineage and presumably perform the same functions as symbionts that have not undergone splitting. However, differences in the timing of the splits, along with dissimilar gene loss patterns on the resulting genomes, have led to very different outcomes of lineage splitting in extant cicadas.</description><subject>Animals</subject><subject>Bacteria</subject><subject>Bacteria - classification</subject><subject>Bacteria - genetics</subject><subject>Bacterial Physiological Phenomena - genetics</subject><subject>Biological Evolution</subject><subject>Biological Sciences</subject><subject>Chile</subject><subject>Cicadidae</subject><subject>Data processing</subject><subject>Endosymbionts</subject><subject>Fractures</subject><subject>Genes</subject><subject>Genetic Variation</subject><subject>Genome, Bacterial</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Hemiptera - microbiology</subject><subject>Hodgkinia cicadicola</subject><subject>Information processing</subject><subject>Microscopy</subject><subject>Mitochondria</subject><subject>Nutrients</subject><subject>Phylogeny</subject><subject>PNAS Plus</subject><subject>Relative abundance</subject><subject>Splitting</subject><subject>Symbionts</subject><subject>Symbiosis - physiology</subject><subject>Tettigades</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpd0U1v1DAQBmALgehSOHMCReLCJe34K_ZckFDFl1QEBzhbtuMsXiVxsBNE_z0uW1rgNId5ZjSjl5CnFM4oKH6-zLacUUUZZ5RSeY_sKCBtO4Fwn-wAmGq1YOKEPCrlAAAoNTwkJwyZQgFqRz5_3MY1LmNoUo77OJcmDU2c15D7sIS5D_Pa1JLK1eRiWqNvfJoq_xlKZY1t9mHefg_56G1vy2PyYLBjCU9u6in5-vbNl4v37eWndx8uXl-2XgKuLVJEzQbOB6Wtdpyh4Ip77ZXSA3RCDii8U0563jPwDJ3DXrjeSj9Ip5GfklfHvcvmptD7emi2o1lynGy-MslG829njt_MPv0wUikFAuqClzcLcvq-hbKaKRYfxtHOIW3FUNQUpFTYVfriP3pIW57re1UhdkwqYFWdH5XPqZQchttjKJjrtMx1WuYurTrx_O8fbv2feCp4dgSHsqZ81-8kdJxp_gvPz5tn</recordid><startdate>20180109</startdate><enddate>20180109</enddate><creator>Łukasik, Piotr</creator><creator>Nazario, Katherine</creator><creator>Van Leuven, James T.</creator><creator>Campbell, Matthew A.</creator><creator>Meyer, Mariah</creator><creator>Michalik, Anna</creator><creator>Pessacq, Pablo</creator><creator>Simon, Chris</creator><creator>Veloso, Claudio</creator><creator>McCutcheon, John P.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4164-6487</orcidid></search><sort><creationdate>20180109</creationdate><title>Multiple origins of interdependent endosymbiotic complexes in a genus of cicadas</title><author>Łukasik, Piotr ; Nazario, Katherine ; Van Leuven, James T. ; Campbell, Matthew A. ; Meyer, Mariah ; Michalik, Anna ; Pessacq, Pablo ; Simon, Chris ; Veloso, Claudio ; McCutcheon, John P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-919982f33f78a8b3294373c8c778f0645f94cb7b5c3d20c29bb9d4bda5cf5b893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>Bacteria</topic><topic>Bacteria - classification</topic><topic>Bacteria - genetics</topic><topic>Bacterial Physiological Phenomena - genetics</topic><topic>Biological Evolution</topic><topic>Biological Sciences</topic><topic>Chile</topic><topic>Cicadidae</topic><topic>Data processing</topic><topic>Endosymbionts</topic><topic>Fractures</topic><topic>Genes</topic><topic>Genetic Variation</topic><topic>Genome, Bacterial</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Hemiptera - microbiology</topic><topic>Hodgkinia cicadicola</topic><topic>Information processing</topic><topic>Microscopy</topic><topic>Mitochondria</topic><topic>Nutrients</topic><topic>Phylogeny</topic><topic>PNAS Plus</topic><topic>Relative abundance</topic><topic>Splitting</topic><topic>Symbionts</topic><topic>Symbiosis - physiology</topic><topic>Tettigades</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Łukasik, Piotr</creatorcontrib><creatorcontrib>Nazario, Katherine</creatorcontrib><creatorcontrib>Van Leuven, James T.</creatorcontrib><creatorcontrib>Campbell, Matthew A.</creatorcontrib><creatorcontrib>Meyer, Mariah</creatorcontrib><creatorcontrib>Michalik, Anna</creatorcontrib><creatorcontrib>Pessacq, Pablo</creatorcontrib><creatorcontrib>Simon, Chris</creatorcontrib><creatorcontrib>Veloso, Claudio</creatorcontrib><creatorcontrib>McCutcheon, John P.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Łukasik, Piotr</au><au>Nazario, Katherine</au><au>Van Leuven, James T.</au><au>Campbell, Matthew A.</au><au>Meyer, Mariah</au><au>Michalik, Anna</au><au>Pessacq, Pablo</au><au>Simon, Chris</au><au>Veloso, Claudio</au><au>McCutcheon, John P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiple origins of interdependent endosymbiotic complexes in a genus of cicadas</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2018-01-09</date><risdate>2018</risdate><volume>115</volume><issue>2</issue><spage>E226</spage><epage>E235</epage><pages>E226-E235</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Bacterial endosymbionts that provide nutrients to hosts often have genomes that are extremely stable in structure and gene content. In contrast, the genome of the endosymbiont Hodgkinia cicadicola has fractured into multiple distinct lineages in some species of the cicada genus Tettigades. To better understand the frequency, timing, and outcomes of Hodgkinia lineage splitting throughout this cicada genus, we sampled cicadas over three field seasons in Chile and performed genomics and microscopy on representative samples. We found that a single ancestral Hodgkinia lineage has split at least six independent times in Tettigades over the last 4 million years, resulting in complexes of between two and six distinct Hodgkinia lineages per host. Individual genomes in these symbiotic complexes differ dramatically in relative abundance, genome size, organization, and gene content. Each Hodgkinia lineage retains a small set of core genes involved in genetic information processing, but the high level of gene loss experienced by all genomes suggests that extensive sharing of gene products among symbiont cells must occur. In total, Hodgkinia complexes that consist of multiple lineages encode nearly complete sets of genes present on the ancestral single lineage and presumably perform the same functions as symbionts that have not undergone splitting. However, differences in the timing of the splits, along with dissimilar gene loss patterns on the resulting genomes, have led to very different outcomes of lineage splitting in extant cicadas.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>29279407</pmid><doi>10.1073/pnas.1712321115</doi><orcidid>https://orcid.org/0000-0002-4164-6487</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2018-01, Vol.115 (2), p.E226-E235
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5777040
source MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Animals
Bacteria
Bacteria - classification
Bacteria - genetics
Bacterial Physiological Phenomena - genetics
Biological Evolution
Biological Sciences
Chile
Cicadidae
Data processing
Endosymbionts
Fractures
Genes
Genetic Variation
Genome, Bacterial
Genomes
Genomics
Hemiptera - microbiology
Hodgkinia cicadicola
Information processing
Microscopy
Mitochondria
Nutrients
Phylogeny
PNAS Plus
Relative abundance
Splitting
Symbionts
Symbiosis - physiology
Tettigades
title Multiple origins of interdependent endosymbiotic complexes in a genus of cicadas
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T22%3A18%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiple%20origins%20of%20interdependent%20endosymbiotic%20complexes%20in%20a%20genus%20of%20cicadas&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=%C5%81ukasik,%20Piotr&rft.date=2018-01-09&rft.volume=115&rft.issue=2&rft.spage=E226&rft.epage=E235&rft.pages=E226-E235&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1712321115&rft_dat=%3Cjstor_pubme%3E26506328%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1999625702&rft_id=info:pmid/29279407&rft_jstor_id=26506328&rfr_iscdi=true