Metformin ameliorates arsenic trioxide hepatotoxicity via inhibiting mitochondrial complex I

Arsenic trioxide (ATO) is a well-accepted chemotherapy agent in managing promyelocytic leukemia. ATO often causes severe health hazards such as hepatotoxicity, dermatosis, neurotoxicity, nephrotoxicity and cardiotoxicity. The production of reactive oxygen species, (ROS) play a significant role in AT...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell death & disease 2017-11, Vol.8 (11), p.e3159-e3159
Hauptverfasser: Ling, Sunbin, Shan, Qiaonan, Liu, Peng, Feng, Tingting, Zhang, Xuanyu, Xiang, Penghui, Chen, Kangchen, Xie, Haiyang, Song, Penghong, Zhou, Lin, Liu, Jimin, Zheng, Shusen, Xu, Xiao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e3159
container_issue 11
container_start_page e3159
container_title Cell death & disease
container_volume 8
creator Ling, Sunbin
Shan, Qiaonan
Liu, Peng
Feng, Tingting
Zhang, Xuanyu
Xiang, Penghui
Chen, Kangchen
Xie, Haiyang
Song, Penghong
Zhou, Lin
Liu, Jimin
Zheng, Shusen
Xu, Xiao
description Arsenic trioxide (ATO) is a well-accepted chemotherapy agent in managing promyelocytic leukemia. ATO often causes severe health hazards such as hepatotoxicity, dermatosis, neurotoxicity, nephrotoxicity and cardiotoxicity. The production of reactive oxygen species, (ROS) play a significant role in ATO-induced hepatotoxicity. The oral hypoglycemic drug, metformin, is considered to be a potential novel agent for chemoprevention in the treatment of cancer. Moreover, metformin has also been shown to have hepatoprotective effects. In the present study, we demonstrated that metformin protected normal hepatocytes from ATO-induced apoptotic cell death in vitro and in vivo . Gene expression screening revealed that glucose metabolism might be related to the metformin-induced protective effect on ATO-treated AML12 cells. The metformin-promoted or induced glycolysis was not responsible for the protection of AML12 cells from ATO-induced apoptotic cell death. Instead, metformin increased the intracellular NADH/NAD+ ratio by inhibiting mitochondrial respiratory chain complex I, further decreasing the intracellular ROS induced by ATO. Treatment with low glucose or rotenone, a mitochondrial respiratory chain complex I inhibitor, also protected AML12 cells from ATO-induced apoptotic cell death. We show for the first time that metformin protects the hepatocyte from ATO by regulating the mitochondrial function. With its properties of chemoprevention, chemosensitization and the amelioration of liver damage, metformin has great prospects for clinical application other than type 2 diabetes mellitus (T2DM).
doi_str_mv 10.1038/cddis.2017.482
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5775401</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1958571911</sourcerecordid><originalsourceid>FETCH-LOGICAL-c524t-722d2f320cdda7dcd69f0d46f4b15a87feebd2104c54fa1e914e9206e53cf8113</originalsourceid><addsrcrecordid>eNptUcFqGzEQFaWlDqmvORZBz7YlreTdvRRKaJNAQi7tLSBkaWSP2ZVcSQ7233dtJ8GB6jIa5s17M_MIueJsylnVzKxzmKeC8XoqG_GBXAgm-UQ2Tfvx7D8i45zXbHhVxYSafyYj0bJWyaq-IE8PUHxMPQZqeugwJlMgU5MyBLS0JIw7dEBXsDElliGxWPb0GQ3FsMIFFgxL2mOJdhWDS2g6amO_6WBH776QT950GcYv8ZL8-fXz9_Xt5P7x5u76x_3EKiHLpBbCCV8JNuxjamfdvPXMybmXC65MU3uAhROcSaukNxxaLqEVbA6qsr7hvLok30-8m-2iB2chlGQ6vUnYm7TX0aB-Xwm40sv4rFVdK8kOBN9eCFL8u4Vc9DpuUxhm1rxVjap5e5SZnlA2xZwT-DcFzvTBEH00RB8M0YMhQ8PX87ne4K_nHwCzEyAPpbCEdKb7f8p_cI6aZA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1958571911</pqid></control><display><type>article</type><title>Metformin ameliorates arsenic trioxide hepatotoxicity via inhibiting mitochondrial complex I</title><source>Open Access: PubMed Central</source><source>Springer Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Nature Free</source><source>Free E-Journal (出版社公開部分のみ)</source><creator>Ling, Sunbin ; Shan, Qiaonan ; Liu, Peng ; Feng, Tingting ; Zhang, Xuanyu ; Xiang, Penghui ; Chen, Kangchen ; Xie, Haiyang ; Song, Penghong ; Zhou, Lin ; Liu, Jimin ; Zheng, Shusen ; Xu, Xiao</creator><creatorcontrib>Ling, Sunbin ; Shan, Qiaonan ; Liu, Peng ; Feng, Tingting ; Zhang, Xuanyu ; Xiang, Penghui ; Chen, Kangchen ; Xie, Haiyang ; Song, Penghong ; Zhou, Lin ; Liu, Jimin ; Zheng, Shusen ; Xu, Xiao</creatorcontrib><description>Arsenic trioxide (ATO) is a well-accepted chemotherapy agent in managing promyelocytic leukemia. ATO often causes severe health hazards such as hepatotoxicity, dermatosis, neurotoxicity, nephrotoxicity and cardiotoxicity. The production of reactive oxygen species, (ROS) play a significant role in ATO-induced hepatotoxicity. The oral hypoglycemic drug, metformin, is considered to be a potential novel agent for chemoprevention in the treatment of cancer. Moreover, metformin has also been shown to have hepatoprotective effects. In the present study, we demonstrated that metformin protected normal hepatocytes from ATO-induced apoptotic cell death in vitro and in vivo . Gene expression screening revealed that glucose metabolism might be related to the metformin-induced protective effect on ATO-treated AML12 cells. The metformin-promoted or induced glycolysis was not responsible for the protection of AML12 cells from ATO-induced apoptotic cell death. Instead, metformin increased the intracellular NADH/NAD+ ratio by inhibiting mitochondrial respiratory chain complex I, further decreasing the intracellular ROS induced by ATO. Treatment with low glucose or rotenone, a mitochondrial respiratory chain complex I inhibitor, also protected AML12 cells from ATO-induced apoptotic cell death. We show for the first time that metformin protects the hepatocyte from ATO by regulating the mitochondrial function. With its properties of chemoprevention, chemosensitization and the amelioration of liver damage, metformin has great prospects for clinical application other than type 2 diabetes mellitus (T2DM).</description><identifier>ISSN: 2041-4889</identifier><identifier>EISSN: 2041-4889</identifier><identifier>DOI: 10.1038/cddis.2017.482</identifier><identifier>PMID: 29095437</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/1 ; 13/31 ; 38 ; 38/39 ; 38/47 ; 631/80/82/23 ; 64 ; 64/60 ; 692/4022/1585 ; 692/700/565/1436 ; 692/700/565/2194 ; 96 ; Antibodies ; Antidiabetics ; Apoptosis ; Arsenic ; Arsenic trioxide ; Biochemistry ; Biomedical and Life Sciences ; Cancer ; Cardiotoxicity ; Cell Biology ; Cell Culture ; Cell death ; Chemosensitization ; Chemotherapy ; Diabetes mellitus ; Electron transport ; Electron transport chain ; Gene expression ; Glucose metabolism ; Glycolysis ; Hepatocytes ; Hepatotoxicity ; Immunology ; Intracellular ; Life Sciences ; Liver ; Metformin ; Mitochondria ; Mitochondrial DNA ; NAD ; NADH ; NADH-ubiquinone oxidoreductase ; Neurotoxicity ; Original ; original-article ; Promyeloid leukemia ; Reactive oxygen species ; Toxicity</subject><ispartof>Cell death &amp; disease, 2017-11, Vol.8 (11), p.e3159-e3159</ispartof><rights>The Author(s) 2017</rights><rights>Copyright Nature Publishing Group Nov 2017</rights><rights>Copyright © 2017 The Author(s) 2017 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c524t-722d2f320cdda7dcd69f0d46f4b15a87feebd2104c54fa1e914e9206e53cf8113</citedby><cites>FETCH-LOGICAL-c524t-722d2f320cdda7dcd69f0d46f4b15a87feebd2104c54fa1e914e9206e53cf8113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5775401/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5775401/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,41120,42189,51576,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29095437$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ling, Sunbin</creatorcontrib><creatorcontrib>Shan, Qiaonan</creatorcontrib><creatorcontrib>Liu, Peng</creatorcontrib><creatorcontrib>Feng, Tingting</creatorcontrib><creatorcontrib>Zhang, Xuanyu</creatorcontrib><creatorcontrib>Xiang, Penghui</creatorcontrib><creatorcontrib>Chen, Kangchen</creatorcontrib><creatorcontrib>Xie, Haiyang</creatorcontrib><creatorcontrib>Song, Penghong</creatorcontrib><creatorcontrib>Zhou, Lin</creatorcontrib><creatorcontrib>Liu, Jimin</creatorcontrib><creatorcontrib>Zheng, Shusen</creatorcontrib><creatorcontrib>Xu, Xiao</creatorcontrib><title>Metformin ameliorates arsenic trioxide hepatotoxicity via inhibiting mitochondrial complex I</title><title>Cell death &amp; disease</title><addtitle>Cell Death Dis</addtitle><addtitle>Cell Death Dis</addtitle><description>Arsenic trioxide (ATO) is a well-accepted chemotherapy agent in managing promyelocytic leukemia. ATO often causes severe health hazards such as hepatotoxicity, dermatosis, neurotoxicity, nephrotoxicity and cardiotoxicity. The production of reactive oxygen species, (ROS) play a significant role in ATO-induced hepatotoxicity. The oral hypoglycemic drug, metformin, is considered to be a potential novel agent for chemoprevention in the treatment of cancer. Moreover, metformin has also been shown to have hepatoprotective effects. In the present study, we demonstrated that metformin protected normal hepatocytes from ATO-induced apoptotic cell death in vitro and in vivo . Gene expression screening revealed that glucose metabolism might be related to the metformin-induced protective effect on ATO-treated AML12 cells. The metformin-promoted or induced glycolysis was not responsible for the protection of AML12 cells from ATO-induced apoptotic cell death. Instead, metformin increased the intracellular NADH/NAD+ ratio by inhibiting mitochondrial respiratory chain complex I, further decreasing the intracellular ROS induced by ATO. Treatment with low glucose or rotenone, a mitochondrial respiratory chain complex I inhibitor, also protected AML12 cells from ATO-induced apoptotic cell death. We show for the first time that metformin protects the hepatocyte from ATO by regulating the mitochondrial function. With its properties of chemoprevention, chemosensitization and the amelioration of liver damage, metformin has great prospects for clinical application other than type 2 diabetes mellitus (T2DM).</description><subject>13/1</subject><subject>13/31</subject><subject>38</subject><subject>38/39</subject><subject>38/47</subject><subject>631/80/82/23</subject><subject>64</subject><subject>64/60</subject><subject>692/4022/1585</subject><subject>692/700/565/1436</subject><subject>692/700/565/2194</subject><subject>96</subject><subject>Antibodies</subject><subject>Antidiabetics</subject><subject>Apoptosis</subject><subject>Arsenic</subject><subject>Arsenic trioxide</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Cancer</subject><subject>Cardiotoxicity</subject><subject>Cell Biology</subject><subject>Cell Culture</subject><subject>Cell death</subject><subject>Chemosensitization</subject><subject>Chemotherapy</subject><subject>Diabetes mellitus</subject><subject>Electron transport</subject><subject>Electron transport chain</subject><subject>Gene expression</subject><subject>Glucose metabolism</subject><subject>Glycolysis</subject><subject>Hepatocytes</subject><subject>Hepatotoxicity</subject><subject>Immunology</subject><subject>Intracellular</subject><subject>Life Sciences</subject><subject>Liver</subject><subject>Metformin</subject><subject>Mitochondria</subject><subject>Mitochondrial DNA</subject><subject>NAD</subject><subject>NADH</subject><subject>NADH-ubiquinone oxidoreductase</subject><subject>Neurotoxicity</subject><subject>Original</subject><subject>original-article</subject><subject>Promyeloid leukemia</subject><subject>Reactive oxygen species</subject><subject>Toxicity</subject><issn>2041-4889</issn><issn>2041-4889</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNptUcFqGzEQFaWlDqmvORZBz7YlreTdvRRKaJNAQi7tLSBkaWSP2ZVcSQ7233dtJ8GB6jIa5s17M_MIueJsylnVzKxzmKeC8XoqG_GBXAgm-UQ2Tfvx7D8i45zXbHhVxYSafyYj0bJWyaq-IE8PUHxMPQZqeugwJlMgU5MyBLS0JIw7dEBXsDElliGxWPb0GQ3FsMIFFgxL2mOJdhWDS2g6amO_6WBH776QT950GcYv8ZL8-fXz9_Xt5P7x5u76x_3EKiHLpBbCCV8JNuxjamfdvPXMybmXC65MU3uAhROcSaukNxxaLqEVbA6qsr7hvLok30-8m-2iB2chlGQ6vUnYm7TX0aB-Xwm40sv4rFVdK8kOBN9eCFL8u4Vc9DpuUxhm1rxVjap5e5SZnlA2xZwT-DcFzvTBEH00RB8M0YMhQ8PX87ne4K_nHwCzEyAPpbCEdKb7f8p_cI6aZA</recordid><startdate>20171102</startdate><enddate>20171102</enddate><creator>Ling, Sunbin</creator><creator>Shan, Qiaonan</creator><creator>Liu, Peng</creator><creator>Feng, Tingting</creator><creator>Zhang, Xuanyu</creator><creator>Xiang, Penghui</creator><creator>Chen, Kangchen</creator><creator>Xie, Haiyang</creator><creator>Song, Penghong</creator><creator>Zhou, Lin</creator><creator>Liu, Jimin</creator><creator>Zheng, Shusen</creator><creator>Xu, Xiao</creator><general>Nature Publishing Group UK</general><general>Springer Nature B.V</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>5PM</scope></search><sort><creationdate>20171102</creationdate><title>Metformin ameliorates arsenic trioxide hepatotoxicity via inhibiting mitochondrial complex I</title><author>Ling, Sunbin ; Shan, Qiaonan ; Liu, Peng ; Feng, Tingting ; Zhang, Xuanyu ; Xiang, Penghui ; Chen, Kangchen ; Xie, Haiyang ; Song, Penghong ; Zhou, Lin ; Liu, Jimin ; Zheng, Shusen ; Xu, Xiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c524t-722d2f320cdda7dcd69f0d46f4b15a87feebd2104c54fa1e914e9206e53cf8113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>13/1</topic><topic>13/31</topic><topic>38</topic><topic>38/39</topic><topic>38/47</topic><topic>631/80/82/23</topic><topic>64</topic><topic>64/60</topic><topic>692/4022/1585</topic><topic>692/700/565/1436</topic><topic>692/700/565/2194</topic><topic>96</topic><topic>Antibodies</topic><topic>Antidiabetics</topic><topic>Apoptosis</topic><topic>Arsenic</topic><topic>Arsenic trioxide</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Cancer</topic><topic>Cardiotoxicity</topic><topic>Cell Biology</topic><topic>Cell Culture</topic><topic>Cell death</topic><topic>Chemosensitization</topic><topic>Chemotherapy</topic><topic>Diabetes mellitus</topic><topic>Electron transport</topic><topic>Electron transport chain</topic><topic>Gene expression</topic><topic>Glucose metabolism</topic><topic>Glycolysis</topic><topic>Hepatocytes</topic><topic>Hepatotoxicity</topic><topic>Immunology</topic><topic>Intracellular</topic><topic>Life Sciences</topic><topic>Liver</topic><topic>Metformin</topic><topic>Mitochondria</topic><topic>Mitochondrial DNA</topic><topic>NAD</topic><topic>NADH</topic><topic>NADH-ubiquinone oxidoreductase</topic><topic>Neurotoxicity</topic><topic>Original</topic><topic>original-article</topic><topic>Promyeloid leukemia</topic><topic>Reactive oxygen species</topic><topic>Toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ling, Sunbin</creatorcontrib><creatorcontrib>Shan, Qiaonan</creatorcontrib><creatorcontrib>Liu, Peng</creatorcontrib><creatorcontrib>Feng, Tingting</creatorcontrib><creatorcontrib>Zhang, Xuanyu</creatorcontrib><creatorcontrib>Xiang, Penghui</creatorcontrib><creatorcontrib>Chen, Kangchen</creatorcontrib><creatorcontrib>Xie, Haiyang</creatorcontrib><creatorcontrib>Song, Penghong</creatorcontrib><creatorcontrib>Zhou, Lin</creatorcontrib><creatorcontrib>Liu, Jimin</creatorcontrib><creatorcontrib>Zheng, Shusen</creatorcontrib><creatorcontrib>Xu, Xiao</creatorcontrib><collection>Springer Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Biological Science Journals</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell death &amp; disease</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ling, Sunbin</au><au>Shan, Qiaonan</au><au>Liu, Peng</au><au>Feng, Tingting</au><au>Zhang, Xuanyu</au><au>Xiang, Penghui</au><au>Chen, Kangchen</au><au>Xie, Haiyang</au><au>Song, Penghong</au><au>Zhou, Lin</au><au>Liu, Jimin</au><au>Zheng, Shusen</au><au>Xu, Xiao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metformin ameliorates arsenic trioxide hepatotoxicity via inhibiting mitochondrial complex I</atitle><jtitle>Cell death &amp; disease</jtitle><stitle>Cell Death Dis</stitle><addtitle>Cell Death Dis</addtitle><date>2017-11-02</date><risdate>2017</risdate><volume>8</volume><issue>11</issue><spage>e3159</spage><epage>e3159</epage><pages>e3159-e3159</pages><issn>2041-4889</issn><eissn>2041-4889</eissn><abstract>Arsenic trioxide (ATO) is a well-accepted chemotherapy agent in managing promyelocytic leukemia. ATO often causes severe health hazards such as hepatotoxicity, dermatosis, neurotoxicity, nephrotoxicity and cardiotoxicity. The production of reactive oxygen species, (ROS) play a significant role in ATO-induced hepatotoxicity. The oral hypoglycemic drug, metformin, is considered to be a potential novel agent for chemoprevention in the treatment of cancer. Moreover, metformin has also been shown to have hepatoprotective effects. In the present study, we demonstrated that metformin protected normal hepatocytes from ATO-induced apoptotic cell death in vitro and in vivo . Gene expression screening revealed that glucose metabolism might be related to the metformin-induced protective effect on ATO-treated AML12 cells. The metformin-promoted or induced glycolysis was not responsible for the protection of AML12 cells from ATO-induced apoptotic cell death. Instead, metformin increased the intracellular NADH/NAD+ ratio by inhibiting mitochondrial respiratory chain complex I, further decreasing the intracellular ROS induced by ATO. Treatment with low glucose or rotenone, a mitochondrial respiratory chain complex I inhibitor, also protected AML12 cells from ATO-induced apoptotic cell death. We show for the first time that metformin protects the hepatocyte from ATO by regulating the mitochondrial function. With its properties of chemoprevention, chemosensitization and the amelioration of liver damage, metformin has great prospects for clinical application other than type 2 diabetes mellitus (T2DM).</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>29095437</pmid><doi>10.1038/cddis.2017.482</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-4889
ispartof Cell death & disease, 2017-11, Vol.8 (11), p.e3159-e3159
issn 2041-4889
2041-4889
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5775401
source Open Access: PubMed Central; Springer Open Access; DOAJ Directory of Open Access Journals; Nature Free; Free E-Journal (出版社公開部分のみ)
subjects 13/1
13/31
38
38/39
38/47
631/80/82/23
64
64/60
692/4022/1585
692/700/565/1436
692/700/565/2194
96
Antibodies
Antidiabetics
Apoptosis
Arsenic
Arsenic trioxide
Biochemistry
Biomedical and Life Sciences
Cancer
Cardiotoxicity
Cell Biology
Cell Culture
Cell death
Chemosensitization
Chemotherapy
Diabetes mellitus
Electron transport
Electron transport chain
Gene expression
Glucose metabolism
Glycolysis
Hepatocytes
Hepatotoxicity
Immunology
Intracellular
Life Sciences
Liver
Metformin
Mitochondria
Mitochondrial DNA
NAD
NADH
NADH-ubiquinone oxidoreductase
Neurotoxicity
Original
original-article
Promyeloid leukemia
Reactive oxygen species
Toxicity
title Metformin ameliorates arsenic trioxide hepatotoxicity via inhibiting mitochondrial complex I
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T10%3A06%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metformin%20ameliorates%20arsenic%20trioxide%20hepatotoxicity%20via%20inhibiting%20mitochondrial%20complex%20I&rft.jtitle=Cell%20death%20&%20disease&rft.au=Ling,%20Sunbin&rft.date=2017-11-02&rft.volume=8&rft.issue=11&rft.spage=e3159&rft.epage=e3159&rft.pages=e3159-e3159&rft.issn=2041-4889&rft.eissn=2041-4889&rft_id=info:doi/10.1038/cddis.2017.482&rft_dat=%3Cproquest_pubme%3E1958571911%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1958571911&rft_id=info:pmid/29095437&rfr_iscdi=true