Structural destabilization of tropomyosin induced by the cardiomyopathy‐linked mutation R21H

The missense mutation R21H in striated muscle tropomyosin is associated with hypertrophic cardiomyopathy, a genetic cardiac disease and a leading cause of sudden cardiac death in young people. Tropomyosin adopts conformation of a coiled coil which is critical for regulation of muscle contraction. In...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Protein science 2018-02, Vol.27 (2), p.498-508
Hauptverfasser: Ly, Thu, Krieger, Inna, Tolkatchev, Dmitri, Krone, Cheyenna, Moural, Timothy, Samatey, Fadel A., Kang, ChulHee, Kostyukova, Alla S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 508
container_issue 2
container_start_page 498
container_title Protein science
container_volume 27
creator Ly, Thu
Krieger, Inna
Tolkatchev, Dmitri
Krone, Cheyenna
Moural, Timothy
Samatey, Fadel A.
Kang, ChulHee
Kostyukova, Alla S.
description The missense mutation R21H in striated muscle tropomyosin is associated with hypertrophic cardiomyopathy, a genetic cardiac disease and a leading cause of sudden cardiac death in young people. Tropomyosin adopts conformation of a coiled coil which is critical for regulation of muscle contraction. In this study, we investigated the effects of the R21H mutation on the coiled‐coil structure of tropomyosin and its interactions with its binding partners, tropomodulin and leiomodin. Using circular dichroism and isothermal titration calorimetry, we found that the mutation profoundly destabilized the structural integrity of αTM1a1‐28Zip, a chimeric peptide containing the first 28 residues of tropomyosin. The mutated αTM1a1‐28Zip was still able to interact with tropomodulin and leiomodin. However, the mutation resulted in a ∼30‐fold decrease of αTM1a1‐28Zip's binding affinity to leiomodin. We used a crystal structure of αTM1a1‐28Zip that we solved at 1.5 Å resolution to study the mutation's effect in silico by means of molecular dynamics simulation. The simulation data indicated that while the mutation disrupted αTM1a1‐28Zip's coiled‐coil structure, most notably from residue Ala18 to residue His31, it may not affect the N‐terminal end of tropomyosin. The drastic decrease of αTM1a1‐28Zip's affinity to leiomodin caused by the mutation may lead to changes in the dynamics at the pointed end of thin filaments. Therefore, the R21H mutation is likely interfering with the regulation of the normal thin filament length essential for proper muscle contraction. PDB Code(s): 5KHT
doi_str_mv 10.1002/pro.3341
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5775174</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1989122724</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4381-bc317e71d40f6bfd077b641a8147fc7408c4b8fc49d9d84d980d404f797ba1553</originalsourceid><addsrcrecordid>eNp1kc9q3DAQh0VJabZpoU8QDLnk4lRjy5Z0CYQlfwqBlLSFnipkSe4qsS1HkhPcUx-hz9gnqbabhiTQkxDzzcfM_BB6B_gAMC7ej94dlCWBF2gBpOY54_XXLbTAvIaclTXbRq9DuMIYEyjKV2i74IArVtMF-vYp-knFycsu0yZE2djO_pDRuiFzbRa9G10_u2CHzA56UkZnzZzFlcmU9Nqua6OMq_n3z1-dHa5TuZ_ipv2ygLM36GUru2De3r876MvJ8eflWX5-cfpheXSeK1IyyBtVAjUUNMFt3bQaU9rUBCQDQltFCWaKNKxVhGuuGdGc4YSSlnLaSKiqcgcdbrzj1PRGKzPEtJEYve2ln4WTVjytDHYlvrtbUVFaASVJsH8v8O5mSocQvQ3KdJ0cjJuCgHRKXNYVLxK69wy9cpMf0nqJYhyKghaPhMq7ELxpH4YBLNahpb8T69ASuvt4-AfwX0oJyDfAne3M_F-R-Hh58Vf4B7FOo38</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1989122724</pqid></control><display><type>article</type><title>Structural destabilization of tropomyosin induced by the cardiomyopathy‐linked mutation R21H</title><source>Wiley Free Content</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Ly, Thu ; Krieger, Inna ; Tolkatchev, Dmitri ; Krone, Cheyenna ; Moural, Timothy ; Samatey, Fadel A. ; Kang, ChulHee ; Kostyukova, Alla S.</creator><creatorcontrib>Ly, Thu ; Krieger, Inna ; Tolkatchev, Dmitri ; Krone, Cheyenna ; Moural, Timothy ; Samatey, Fadel A. ; Kang, ChulHee ; Kostyukova, Alla S.</creatorcontrib><description>The missense mutation R21H in striated muscle tropomyosin is associated with hypertrophic cardiomyopathy, a genetic cardiac disease and a leading cause of sudden cardiac death in young people. Tropomyosin adopts conformation of a coiled coil which is critical for regulation of muscle contraction. In this study, we investigated the effects of the R21H mutation on the coiled‐coil structure of tropomyosin and its interactions with its binding partners, tropomodulin and leiomodin. Using circular dichroism and isothermal titration calorimetry, we found that the mutation profoundly destabilized the structural integrity of αTM1a1‐28Zip, a chimeric peptide containing the first 28 residues of tropomyosin. The mutated αTM1a1‐28Zip was still able to interact with tropomodulin and leiomodin. However, the mutation resulted in a ∼30‐fold decrease of αTM1a1‐28Zip's binding affinity to leiomodin. We used a crystal structure of αTM1a1‐28Zip that we solved at 1.5 Å resolution to study the mutation's effect in silico by means of molecular dynamics simulation. The simulation data indicated that while the mutation disrupted αTM1a1‐28Zip's coiled‐coil structure, most notably from residue Ala18 to residue His31, it may not affect the N‐terminal end of tropomyosin. The drastic decrease of αTM1a1‐28Zip's affinity to leiomodin caused by the mutation may lead to changes in the dynamics at the pointed end of thin filaments. Therefore, the R21H mutation is likely interfering with the regulation of the normal thin filament length essential for proper muscle contraction. PDB Code(s): 5KHT</description><identifier>ISSN: 0961-8368</identifier><identifier>EISSN: 1469-896X</identifier><identifier>DOI: 10.1002/pro.3341</identifier><identifier>PMID: 29105867</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Affinity ; Binding ; Binding Sites ; Calorimetry ; Cardiomyopathy ; Cardiomyopathy, Hypertrophic - genetics ; Circular Dichroism ; Coils ; Conformation ; Coronary artery disease ; Crystal structure ; Crystallography, X-Ray ; Destabilization ; Dichroism ; Filaments ; Heart diseases ; Humans ; hypertrophic cardiomyopathy ; isothermal titration calorimetry ; leiomodin ; Microfilament Proteins - metabolism ; Missense mutation ; Models, Molecular ; Molecular dynamics ; Molecular Dynamics Simulation ; Muscle contraction ; Muscle Proteins - metabolism ; Muscles ; Mutation ; Mutation, Missense ; Protein Binding ; Protein Stability ; Protein Structure, Secondary ; Simulation ; Skeletal muscle ; Structural integrity ; Titration ; Titration calorimetry ; tropomodulin ; Tropomodulin - metabolism ; Tropomyosin ; Tropomyosin - chemistry ; Tropomyosin - genetics ; Tropomyosin - metabolism ; Young adults</subject><ispartof>Protein science, 2018-02, Vol.27 (2), p.498-508</ispartof><rights>2017 The Protein Society</rights><rights>2017 The Protein Society.</rights><rights>2018 The Protein Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4381-bc317e71d40f6bfd077b641a8147fc7408c4b8fc49d9d84d980d404f797ba1553</citedby><cites>FETCH-LOGICAL-c4381-bc317e71d40f6bfd077b641a8147fc7408c4b8fc49d9d84d980d404f797ba1553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5775174/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5775174/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,1427,27901,27902,45550,45551,46384,46808,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29105867$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ly, Thu</creatorcontrib><creatorcontrib>Krieger, Inna</creatorcontrib><creatorcontrib>Tolkatchev, Dmitri</creatorcontrib><creatorcontrib>Krone, Cheyenna</creatorcontrib><creatorcontrib>Moural, Timothy</creatorcontrib><creatorcontrib>Samatey, Fadel A.</creatorcontrib><creatorcontrib>Kang, ChulHee</creatorcontrib><creatorcontrib>Kostyukova, Alla S.</creatorcontrib><title>Structural destabilization of tropomyosin induced by the cardiomyopathy‐linked mutation R21H</title><title>Protein science</title><addtitle>Protein Sci</addtitle><description>The missense mutation R21H in striated muscle tropomyosin is associated with hypertrophic cardiomyopathy, a genetic cardiac disease and a leading cause of sudden cardiac death in young people. Tropomyosin adopts conformation of a coiled coil which is critical for regulation of muscle contraction. In this study, we investigated the effects of the R21H mutation on the coiled‐coil structure of tropomyosin and its interactions with its binding partners, tropomodulin and leiomodin. Using circular dichroism and isothermal titration calorimetry, we found that the mutation profoundly destabilized the structural integrity of αTM1a1‐28Zip, a chimeric peptide containing the first 28 residues of tropomyosin. The mutated αTM1a1‐28Zip was still able to interact with tropomodulin and leiomodin. However, the mutation resulted in a ∼30‐fold decrease of αTM1a1‐28Zip's binding affinity to leiomodin. We used a crystal structure of αTM1a1‐28Zip that we solved at 1.5 Å resolution to study the mutation's effect in silico by means of molecular dynamics simulation. The simulation data indicated that while the mutation disrupted αTM1a1‐28Zip's coiled‐coil structure, most notably from residue Ala18 to residue His31, it may not affect the N‐terminal end of tropomyosin. The drastic decrease of αTM1a1‐28Zip's affinity to leiomodin caused by the mutation may lead to changes in the dynamics at the pointed end of thin filaments. Therefore, the R21H mutation is likely interfering with the regulation of the normal thin filament length essential for proper muscle contraction. PDB Code(s): 5KHT</description><subject>Affinity</subject><subject>Binding</subject><subject>Binding Sites</subject><subject>Calorimetry</subject><subject>Cardiomyopathy</subject><subject>Cardiomyopathy, Hypertrophic - genetics</subject><subject>Circular Dichroism</subject><subject>Coils</subject><subject>Conformation</subject><subject>Coronary artery disease</subject><subject>Crystal structure</subject><subject>Crystallography, X-Ray</subject><subject>Destabilization</subject><subject>Dichroism</subject><subject>Filaments</subject><subject>Heart diseases</subject><subject>Humans</subject><subject>hypertrophic cardiomyopathy</subject><subject>isothermal titration calorimetry</subject><subject>leiomodin</subject><subject>Microfilament Proteins - metabolism</subject><subject>Missense mutation</subject><subject>Models, Molecular</subject><subject>Molecular dynamics</subject><subject>Molecular Dynamics Simulation</subject><subject>Muscle contraction</subject><subject>Muscle Proteins - metabolism</subject><subject>Muscles</subject><subject>Mutation</subject><subject>Mutation, Missense</subject><subject>Protein Binding</subject><subject>Protein Stability</subject><subject>Protein Structure, Secondary</subject><subject>Simulation</subject><subject>Skeletal muscle</subject><subject>Structural integrity</subject><subject>Titration</subject><subject>Titration calorimetry</subject><subject>tropomodulin</subject><subject>Tropomodulin - metabolism</subject><subject>Tropomyosin</subject><subject>Tropomyosin - chemistry</subject><subject>Tropomyosin - genetics</subject><subject>Tropomyosin - metabolism</subject><subject>Young adults</subject><issn>0961-8368</issn><issn>1469-896X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc9q3DAQh0VJabZpoU8QDLnk4lRjy5Z0CYQlfwqBlLSFnipkSe4qsS1HkhPcUx-hz9gnqbabhiTQkxDzzcfM_BB6B_gAMC7ej94dlCWBF2gBpOY54_XXLbTAvIaclTXbRq9DuMIYEyjKV2i74IArVtMF-vYp-knFycsu0yZE2djO_pDRuiFzbRa9G10_u2CHzA56UkZnzZzFlcmU9Nqua6OMq_n3z1-dHa5TuZ_ipv2ygLM36GUru2De3r876MvJ8eflWX5-cfpheXSeK1IyyBtVAjUUNMFt3bQaU9rUBCQDQltFCWaKNKxVhGuuGdGc4YSSlnLaSKiqcgcdbrzj1PRGKzPEtJEYve2ln4WTVjytDHYlvrtbUVFaASVJsH8v8O5mSocQvQ3KdJ0cjJuCgHRKXNYVLxK69wy9cpMf0nqJYhyKghaPhMq7ELxpH4YBLNahpb8T69ASuvt4-AfwX0oJyDfAne3M_F-R-Hh58Vf4B7FOo38</recordid><startdate>201802</startdate><enddate>201802</enddate><creator>Ly, Thu</creator><creator>Krieger, Inna</creator><creator>Tolkatchev, Dmitri</creator><creator>Krone, Cheyenna</creator><creator>Moural, Timothy</creator><creator>Samatey, Fadel A.</creator><creator>Kang, ChulHee</creator><creator>Kostyukova, Alla S.</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7T5</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201802</creationdate><title>Structural destabilization of tropomyosin induced by the cardiomyopathy‐linked mutation R21H</title><author>Ly, Thu ; Krieger, Inna ; Tolkatchev, Dmitri ; Krone, Cheyenna ; Moural, Timothy ; Samatey, Fadel A. ; Kang, ChulHee ; Kostyukova, Alla S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4381-bc317e71d40f6bfd077b641a8147fc7408c4b8fc49d9d84d980d404f797ba1553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Affinity</topic><topic>Binding</topic><topic>Binding Sites</topic><topic>Calorimetry</topic><topic>Cardiomyopathy</topic><topic>Cardiomyopathy, Hypertrophic - genetics</topic><topic>Circular Dichroism</topic><topic>Coils</topic><topic>Conformation</topic><topic>Coronary artery disease</topic><topic>Crystal structure</topic><topic>Crystallography, X-Ray</topic><topic>Destabilization</topic><topic>Dichroism</topic><topic>Filaments</topic><topic>Heart diseases</topic><topic>Humans</topic><topic>hypertrophic cardiomyopathy</topic><topic>isothermal titration calorimetry</topic><topic>leiomodin</topic><topic>Microfilament Proteins - metabolism</topic><topic>Missense mutation</topic><topic>Models, Molecular</topic><topic>Molecular dynamics</topic><topic>Molecular Dynamics Simulation</topic><topic>Muscle contraction</topic><topic>Muscle Proteins - metabolism</topic><topic>Muscles</topic><topic>Mutation</topic><topic>Mutation, Missense</topic><topic>Protein Binding</topic><topic>Protein Stability</topic><topic>Protein Structure, Secondary</topic><topic>Simulation</topic><topic>Skeletal muscle</topic><topic>Structural integrity</topic><topic>Titration</topic><topic>Titration calorimetry</topic><topic>tropomodulin</topic><topic>Tropomodulin - metabolism</topic><topic>Tropomyosin</topic><topic>Tropomyosin - chemistry</topic><topic>Tropomyosin - genetics</topic><topic>Tropomyosin - metabolism</topic><topic>Young adults</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ly, Thu</creatorcontrib><creatorcontrib>Krieger, Inna</creatorcontrib><creatorcontrib>Tolkatchev, Dmitri</creatorcontrib><creatorcontrib>Krone, Cheyenna</creatorcontrib><creatorcontrib>Moural, Timothy</creatorcontrib><creatorcontrib>Samatey, Fadel A.</creatorcontrib><creatorcontrib>Kang, ChulHee</creatorcontrib><creatorcontrib>Kostyukova, Alla S.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Protein science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ly, Thu</au><au>Krieger, Inna</au><au>Tolkatchev, Dmitri</au><au>Krone, Cheyenna</au><au>Moural, Timothy</au><au>Samatey, Fadel A.</au><au>Kang, ChulHee</au><au>Kostyukova, Alla S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural destabilization of tropomyosin induced by the cardiomyopathy‐linked mutation R21H</atitle><jtitle>Protein science</jtitle><addtitle>Protein Sci</addtitle><date>2018-02</date><risdate>2018</risdate><volume>27</volume><issue>2</issue><spage>498</spage><epage>508</epage><pages>498-508</pages><issn>0961-8368</issn><eissn>1469-896X</eissn><abstract>The missense mutation R21H in striated muscle tropomyosin is associated with hypertrophic cardiomyopathy, a genetic cardiac disease and a leading cause of sudden cardiac death in young people. Tropomyosin adopts conformation of a coiled coil which is critical for regulation of muscle contraction. In this study, we investigated the effects of the R21H mutation on the coiled‐coil structure of tropomyosin and its interactions with its binding partners, tropomodulin and leiomodin. Using circular dichroism and isothermal titration calorimetry, we found that the mutation profoundly destabilized the structural integrity of αTM1a1‐28Zip, a chimeric peptide containing the first 28 residues of tropomyosin. The mutated αTM1a1‐28Zip was still able to interact with tropomodulin and leiomodin. However, the mutation resulted in a ∼30‐fold decrease of αTM1a1‐28Zip's binding affinity to leiomodin. We used a crystal structure of αTM1a1‐28Zip that we solved at 1.5 Å resolution to study the mutation's effect in silico by means of molecular dynamics simulation. The simulation data indicated that while the mutation disrupted αTM1a1‐28Zip's coiled‐coil structure, most notably from residue Ala18 to residue His31, it may not affect the N‐terminal end of tropomyosin. The drastic decrease of αTM1a1‐28Zip's affinity to leiomodin caused by the mutation may lead to changes in the dynamics at the pointed end of thin filaments. Therefore, the R21H mutation is likely interfering with the regulation of the normal thin filament length essential for proper muscle contraction. PDB Code(s): 5KHT</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>29105867</pmid><doi>10.1002/pro.3341</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0961-8368
ispartof Protein science, 2018-02, Vol.27 (2), p.498-508
issn 0961-8368
1469-896X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5775174
source Wiley Free Content; MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Affinity
Binding
Binding Sites
Calorimetry
Cardiomyopathy
Cardiomyopathy, Hypertrophic - genetics
Circular Dichroism
Coils
Conformation
Coronary artery disease
Crystal structure
Crystallography, X-Ray
Destabilization
Dichroism
Filaments
Heart diseases
Humans
hypertrophic cardiomyopathy
isothermal titration calorimetry
leiomodin
Microfilament Proteins - metabolism
Missense mutation
Models, Molecular
Molecular dynamics
Molecular Dynamics Simulation
Muscle contraction
Muscle Proteins - metabolism
Muscles
Mutation
Mutation, Missense
Protein Binding
Protein Stability
Protein Structure, Secondary
Simulation
Skeletal muscle
Structural integrity
Titration
Titration calorimetry
tropomodulin
Tropomodulin - metabolism
Tropomyosin
Tropomyosin - chemistry
Tropomyosin - genetics
Tropomyosin - metabolism
Young adults
title Structural destabilization of tropomyosin induced by the cardiomyopathy‐linked mutation R21H
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T03%3A48%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20destabilization%20of%20tropomyosin%20induced%20by%20the%20cardiomyopathy%E2%80%90linked%20mutation%20R21H&rft.jtitle=Protein%20science&rft.au=Ly,%20Thu&rft.date=2018-02&rft.volume=27&rft.issue=2&rft.spage=498&rft.epage=508&rft.pages=498-508&rft.issn=0961-8368&rft.eissn=1469-896X&rft_id=info:doi/10.1002/pro.3341&rft_dat=%3Cproquest_pubme%3E1989122724%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1989122724&rft_id=info:pmid/29105867&rfr_iscdi=true