β‐Catenin regulation of farnesoid X receptor signaling and bile acid metabolism during murine cholestasis

Cholestatic liver diseases result from impaired bile flow and are characterized by inflammation, atypical ductular proliferation, and fibrosis. The Wnt/β‐catenin pathway plays a role in bile duct development, yet its role in cholestatic injury remains indeterminate. Liver‐specific β‐catenin knockout...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Hepatology (Baltimore, Md.) Md.), 2018-03, Vol.67 (3), p.955-971
Hauptverfasser: Thompson, Michael D., Moghe, Akshata, Cornuet, Pamela, Marino, Rebecca, Tian, Jianmin, Wang, Pengcheng, Ma, Xiaochao, Abrams, Marc, Locker, Joseph, Monga, Satdarshan P., Nejak‐Bowen, Kari
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 971
container_issue 3
container_start_page 955
container_title Hepatology (Baltimore, Md.)
container_volume 67
creator Thompson, Michael D.
Moghe, Akshata
Cornuet, Pamela
Marino, Rebecca
Tian, Jianmin
Wang, Pengcheng
Ma, Xiaochao
Abrams, Marc
Locker, Joseph
Monga, Satdarshan P.
Nejak‐Bowen, Kari
description Cholestatic liver diseases result from impaired bile flow and are characterized by inflammation, atypical ductular proliferation, and fibrosis. The Wnt/β‐catenin pathway plays a role in bile duct development, yet its role in cholestatic injury remains indeterminate. Liver‐specific β‐catenin knockout mice and wild‐type littermates were subjected to cholestatic injury through bile duct ligation or short‐term exposure to 3,5‐diethoxycarbonyl‐1,4‐dihydrocollidine diet. Intriguingly, knockout mice exhibit a dramatic protection from liver injury, fibrosis, and atypical ductular proliferation, which coincides with significantly decreased total hepatic bile acids (BAs). This led to the discovery of a role for β‐catenin in regulating BA synthesis and transport through regulation of farnesoid X receptor (FXR) activation. We show that β‐catenin functions as both an inhibitor of nuclear translocation and a nuclear corepressor through formation of a physical complex with FXR. Loss of β‐catenin expedited FXR nuclear localization and FXR/retinoic X receptor alpha association, culminating in small heterodimer protein promoter occupancy and activation in response to BA or FXR agonist. Conversely, accumulation of β‐catenin sequesters FXR, thus inhibiting its activation. Finally, exogenous suppression of β‐catenin expression during cholestatic injury reduces β‐catenin/FXR complex activation of FXR to decrease total BA and alleviate hepatic injury. Conclusion: We have identified an FXR/β‐catenin interaction whose modulation through β‐catenin suppression promotes FXR activation and decreases hepatic BAs, which may provide unique therapeutic opportunities in cholestatic liver diseases. (Hepatology 2018;67:955–971)
doi_str_mv 10.1002/hep.29371
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5771988</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2007993111</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3581-14eb3e60375f22d7ab000af4193ab3910e08620ad4936bc57df262266d61c4cd3</originalsourceid><addsrcrecordid>eNp1kc1qFTEYhkNR7LG66A1IwI0ups3PzGSyKZRDtULBLiq4C5nkm3NSMslpMtPSnZfgtXghXoRXYo6nFhVcfYv34eHlexE6pOSIEsKO17A5YpILuocWtGGi4rwhT9CCMEEqSbncR89zviaEyJp1z9A-6wStmeAL5L9_-_Hl61JPEFzACVaz15OLAccBDzoFyNFZ_LkkBjZTTDi7VdDehRXWweLeecDaFGSESffRuzxiO6dtPm4PYLOOHvKks8sv0NNB-wwvH-4B-vTu7Gp5Xl18fP9heXpRGd50tKI19BxawkUzMGaF7ktzPdRUct1zSQmQrmVE21rytjeNsANrGWtb21JTG8sP0MnOu5n7EayBMCXt1Sa5Uad7FbVTfyfBrdUq3qpGCCq7rgjePAhSvJlLezW6bMB7HSDOWVHJCCOlICvo63_Q6zin8qKsCiGk5JTSQr3dUSbFnBMMj2UoUdsNVdlQ_dqwsK_-bP9I_h6tAMc74K58__7_JnV-drlT_gTkqajU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2007993111</pqid></control><display><type>article</type><title>β‐Catenin regulation of farnesoid X receptor signaling and bile acid metabolism during murine cholestasis</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Online Library All Journals</source><creator>Thompson, Michael D. ; Moghe, Akshata ; Cornuet, Pamela ; Marino, Rebecca ; Tian, Jianmin ; Wang, Pengcheng ; Ma, Xiaochao ; Abrams, Marc ; Locker, Joseph ; Monga, Satdarshan P. ; Nejak‐Bowen, Kari</creator><creatorcontrib>Thompson, Michael D. ; Moghe, Akshata ; Cornuet, Pamela ; Marino, Rebecca ; Tian, Jianmin ; Wang, Pengcheng ; Ma, Xiaochao ; Abrams, Marc ; Locker, Joseph ; Monga, Satdarshan P. ; Nejak‐Bowen, Kari</creatorcontrib><description>Cholestatic liver diseases result from impaired bile flow and are characterized by inflammation, atypical ductular proliferation, and fibrosis. The Wnt/β‐catenin pathway plays a role in bile duct development, yet its role in cholestatic injury remains indeterminate. Liver‐specific β‐catenin knockout mice and wild‐type littermates were subjected to cholestatic injury through bile duct ligation or short‐term exposure to 3,5‐diethoxycarbonyl‐1,4‐dihydrocollidine diet. Intriguingly, knockout mice exhibit a dramatic protection from liver injury, fibrosis, and atypical ductular proliferation, which coincides with significantly decreased total hepatic bile acids (BAs). This led to the discovery of a role for β‐catenin in regulating BA synthesis and transport through regulation of farnesoid X receptor (FXR) activation. We show that β‐catenin functions as both an inhibitor of nuclear translocation and a nuclear corepressor through formation of a physical complex with FXR. Loss of β‐catenin expedited FXR nuclear localization and FXR/retinoic X receptor alpha association, culminating in small heterodimer protein promoter occupancy and activation in response to BA or FXR agonist. Conversely, accumulation of β‐catenin sequesters FXR, thus inhibiting its activation. Finally, exogenous suppression of β‐catenin expression during cholestatic injury reduces β‐catenin/FXR complex activation of FXR to decrease total BA and alleviate hepatic injury. Conclusion: We have identified an FXR/β‐catenin interaction whose modulation through β‐catenin suppression promotes FXR activation and decreases hepatic BAs, which may provide unique therapeutic opportunities in cholestatic liver diseases. (Hepatology 2018;67:955–971)</description><identifier>ISSN: 0270-9139</identifier><identifier>EISSN: 1527-3350</identifier><identifier>DOI: 10.1002/hep.29371</identifier><identifier>PMID: 28714273</identifier><language>eng</language><publisher>United States: Wolters Kluwer Health, Inc</publisher><subject>Animals ; beta Catenin - metabolism ; Bile ; Bile acids ; Bile Acids and Salts - metabolism ; Bile ducts ; Catenin ; Cholestasis ; Cholestasis - metabolism ; Fibrosis ; Hepatology ; Liver - metabolism ; Liver - pathology ; Liver diseases ; Localization ; Mice ; Mice, Knockout ; Nuclear transport ; Receptors, Cytoplasmic and Nuclear - metabolism ; Rodents ; Signal Transduction ; Wnt protein</subject><ispartof>Hepatology (Baltimore, Md.), 2018-03, Vol.67 (3), p.955-971</ispartof><rights>2017 by the American Association for the Study of Liver Diseases.</rights><rights>2018 by the American Association for the Study of Liver Diseases.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3581-14eb3e60375f22d7ab000af4193ab3910e08620ad4936bc57df262266d61c4cd3</citedby><cites>FETCH-LOGICAL-c3581-14eb3e60375f22d7ab000af4193ab3910e08620ad4936bc57df262266d61c4cd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fhep.29371$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fhep.29371$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28714273$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Thompson, Michael D.</creatorcontrib><creatorcontrib>Moghe, Akshata</creatorcontrib><creatorcontrib>Cornuet, Pamela</creatorcontrib><creatorcontrib>Marino, Rebecca</creatorcontrib><creatorcontrib>Tian, Jianmin</creatorcontrib><creatorcontrib>Wang, Pengcheng</creatorcontrib><creatorcontrib>Ma, Xiaochao</creatorcontrib><creatorcontrib>Abrams, Marc</creatorcontrib><creatorcontrib>Locker, Joseph</creatorcontrib><creatorcontrib>Monga, Satdarshan P.</creatorcontrib><creatorcontrib>Nejak‐Bowen, Kari</creatorcontrib><title>β‐Catenin regulation of farnesoid X receptor signaling and bile acid metabolism during murine cholestasis</title><title>Hepatology (Baltimore, Md.)</title><addtitle>Hepatology</addtitle><description>Cholestatic liver diseases result from impaired bile flow and are characterized by inflammation, atypical ductular proliferation, and fibrosis. The Wnt/β‐catenin pathway plays a role in bile duct development, yet its role in cholestatic injury remains indeterminate. Liver‐specific β‐catenin knockout mice and wild‐type littermates were subjected to cholestatic injury through bile duct ligation or short‐term exposure to 3,5‐diethoxycarbonyl‐1,4‐dihydrocollidine diet. Intriguingly, knockout mice exhibit a dramatic protection from liver injury, fibrosis, and atypical ductular proliferation, which coincides with significantly decreased total hepatic bile acids (BAs). This led to the discovery of a role for β‐catenin in regulating BA synthesis and transport through regulation of farnesoid X receptor (FXR) activation. We show that β‐catenin functions as both an inhibitor of nuclear translocation and a nuclear corepressor through formation of a physical complex with FXR. Loss of β‐catenin expedited FXR nuclear localization and FXR/retinoic X receptor alpha association, culminating in small heterodimer protein promoter occupancy and activation in response to BA or FXR agonist. Conversely, accumulation of β‐catenin sequesters FXR, thus inhibiting its activation. Finally, exogenous suppression of β‐catenin expression during cholestatic injury reduces β‐catenin/FXR complex activation of FXR to decrease total BA and alleviate hepatic injury. Conclusion: We have identified an FXR/β‐catenin interaction whose modulation through β‐catenin suppression promotes FXR activation and decreases hepatic BAs, which may provide unique therapeutic opportunities in cholestatic liver diseases. (Hepatology 2018;67:955–971)</description><subject>Animals</subject><subject>beta Catenin - metabolism</subject><subject>Bile</subject><subject>Bile acids</subject><subject>Bile Acids and Salts - metabolism</subject><subject>Bile ducts</subject><subject>Catenin</subject><subject>Cholestasis</subject><subject>Cholestasis - metabolism</subject><subject>Fibrosis</subject><subject>Hepatology</subject><subject>Liver - metabolism</subject><subject>Liver - pathology</subject><subject>Liver diseases</subject><subject>Localization</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Nuclear transport</subject><subject>Receptors, Cytoplasmic and Nuclear - metabolism</subject><subject>Rodents</subject><subject>Signal Transduction</subject><subject>Wnt protein</subject><issn>0270-9139</issn><issn>1527-3350</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc1qFTEYhkNR7LG66A1IwI0ups3PzGSyKZRDtULBLiq4C5nkm3NSMslpMtPSnZfgtXghXoRXYo6nFhVcfYv34eHlexE6pOSIEsKO17A5YpILuocWtGGi4rwhT9CCMEEqSbncR89zviaEyJp1z9A-6wStmeAL5L9_-_Hl61JPEFzACVaz15OLAccBDzoFyNFZ_LkkBjZTTDi7VdDehRXWweLeecDaFGSESffRuzxiO6dtPm4PYLOOHvKks8sv0NNB-wwvH-4B-vTu7Gp5Xl18fP9heXpRGd50tKI19BxawkUzMGaF7ktzPdRUct1zSQmQrmVE21rytjeNsANrGWtb21JTG8sP0MnOu5n7EayBMCXt1Sa5Uad7FbVTfyfBrdUq3qpGCCq7rgjePAhSvJlLezW6bMB7HSDOWVHJCCOlICvo63_Q6zin8qKsCiGk5JTSQr3dUSbFnBMMj2UoUdsNVdlQ_dqwsK_-bP9I_h6tAMc74K58__7_JnV-drlT_gTkqajU</recordid><startdate>201803</startdate><enddate>201803</enddate><creator>Thompson, Michael D.</creator><creator>Moghe, Akshata</creator><creator>Cornuet, Pamela</creator><creator>Marino, Rebecca</creator><creator>Tian, Jianmin</creator><creator>Wang, Pengcheng</creator><creator>Ma, Xiaochao</creator><creator>Abrams, Marc</creator><creator>Locker, Joseph</creator><creator>Monga, Satdarshan P.</creator><creator>Nejak‐Bowen, Kari</creator><general>Wolters Kluwer Health, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T5</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>H94</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201803</creationdate><title>β‐Catenin regulation of farnesoid X receptor signaling and bile acid metabolism during murine cholestasis</title><author>Thompson, Michael D. ; Moghe, Akshata ; Cornuet, Pamela ; Marino, Rebecca ; Tian, Jianmin ; Wang, Pengcheng ; Ma, Xiaochao ; Abrams, Marc ; Locker, Joseph ; Monga, Satdarshan P. ; Nejak‐Bowen, Kari</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3581-14eb3e60375f22d7ab000af4193ab3910e08620ad4936bc57df262266d61c4cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>beta Catenin - metabolism</topic><topic>Bile</topic><topic>Bile acids</topic><topic>Bile Acids and Salts - metabolism</topic><topic>Bile ducts</topic><topic>Catenin</topic><topic>Cholestasis</topic><topic>Cholestasis - metabolism</topic><topic>Fibrosis</topic><topic>Hepatology</topic><topic>Liver - metabolism</topic><topic>Liver - pathology</topic><topic>Liver diseases</topic><topic>Localization</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Nuclear transport</topic><topic>Receptors, Cytoplasmic and Nuclear - metabolism</topic><topic>Rodents</topic><topic>Signal Transduction</topic><topic>Wnt protein</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thompson, Michael D.</creatorcontrib><creatorcontrib>Moghe, Akshata</creatorcontrib><creatorcontrib>Cornuet, Pamela</creatorcontrib><creatorcontrib>Marino, Rebecca</creatorcontrib><creatorcontrib>Tian, Jianmin</creatorcontrib><creatorcontrib>Wang, Pengcheng</creatorcontrib><creatorcontrib>Ma, Xiaochao</creatorcontrib><creatorcontrib>Abrams, Marc</creatorcontrib><creatorcontrib>Locker, Joseph</creatorcontrib><creatorcontrib>Monga, Satdarshan P.</creatorcontrib><creatorcontrib>Nejak‐Bowen, Kari</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Hepatology (Baltimore, Md.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thompson, Michael D.</au><au>Moghe, Akshata</au><au>Cornuet, Pamela</au><au>Marino, Rebecca</au><au>Tian, Jianmin</au><au>Wang, Pengcheng</au><au>Ma, Xiaochao</au><au>Abrams, Marc</au><au>Locker, Joseph</au><au>Monga, Satdarshan P.</au><au>Nejak‐Bowen, Kari</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>β‐Catenin regulation of farnesoid X receptor signaling and bile acid metabolism during murine cholestasis</atitle><jtitle>Hepatology (Baltimore, Md.)</jtitle><addtitle>Hepatology</addtitle><date>2018-03</date><risdate>2018</risdate><volume>67</volume><issue>3</issue><spage>955</spage><epage>971</epage><pages>955-971</pages><issn>0270-9139</issn><eissn>1527-3350</eissn><abstract>Cholestatic liver diseases result from impaired bile flow and are characterized by inflammation, atypical ductular proliferation, and fibrosis. The Wnt/β‐catenin pathway plays a role in bile duct development, yet its role in cholestatic injury remains indeterminate. Liver‐specific β‐catenin knockout mice and wild‐type littermates were subjected to cholestatic injury through bile duct ligation or short‐term exposure to 3,5‐diethoxycarbonyl‐1,4‐dihydrocollidine diet. Intriguingly, knockout mice exhibit a dramatic protection from liver injury, fibrosis, and atypical ductular proliferation, which coincides with significantly decreased total hepatic bile acids (BAs). This led to the discovery of a role for β‐catenin in regulating BA synthesis and transport through regulation of farnesoid X receptor (FXR) activation. We show that β‐catenin functions as both an inhibitor of nuclear translocation and a nuclear corepressor through formation of a physical complex with FXR. Loss of β‐catenin expedited FXR nuclear localization and FXR/retinoic X receptor alpha association, culminating in small heterodimer protein promoter occupancy and activation in response to BA or FXR agonist. Conversely, accumulation of β‐catenin sequesters FXR, thus inhibiting its activation. Finally, exogenous suppression of β‐catenin expression during cholestatic injury reduces β‐catenin/FXR complex activation of FXR to decrease total BA and alleviate hepatic injury. Conclusion: We have identified an FXR/β‐catenin interaction whose modulation through β‐catenin suppression promotes FXR activation and decreases hepatic BAs, which may provide unique therapeutic opportunities in cholestatic liver diseases. (Hepatology 2018;67:955–971)</abstract><cop>United States</cop><pub>Wolters Kluwer Health, Inc</pub><pmid>28714273</pmid><doi>10.1002/hep.29371</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0270-9139
ispartof Hepatology (Baltimore, Md.), 2018-03, Vol.67 (3), p.955-971
issn 0270-9139
1527-3350
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5771988
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Online Library All Journals
subjects Animals
beta Catenin - metabolism
Bile
Bile acids
Bile Acids and Salts - metabolism
Bile ducts
Catenin
Cholestasis
Cholestasis - metabolism
Fibrosis
Hepatology
Liver - metabolism
Liver - pathology
Liver diseases
Localization
Mice
Mice, Knockout
Nuclear transport
Receptors, Cytoplasmic and Nuclear - metabolism
Rodents
Signal Transduction
Wnt protein
title β‐Catenin regulation of farnesoid X receptor signaling and bile acid metabolism during murine cholestasis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T07%3A38%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=%CE%B2%E2%80%90Catenin%20regulation%20of%20farnesoid%20X%20receptor%20signaling%20and%20bile%20acid%20metabolism%20during%20murine%20cholestasis&rft.jtitle=Hepatology%20(Baltimore,%20Md.)&rft.au=Thompson,%20Michael%20D.&rft.date=2018-03&rft.volume=67&rft.issue=3&rft.spage=955&rft.epage=971&rft.pages=955-971&rft.issn=0270-9139&rft.eissn=1527-3350&rft_id=info:doi/10.1002/hep.29371&rft_dat=%3Cproquest_pubme%3E2007993111%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2007993111&rft_id=info:pmid/28714273&rfr_iscdi=true