Hierarchical likelihood inference on clustered competing risks data

The frailty model, an extension of the proportional hazards model, is often used to model clustered survival data. However, some extension of the ordinary frailty model is required when there exist competing risks within a cluster. Under competing risks, the underlying processes affecting the events...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistics in medicine 2016-01, Vol.35 (2), p.251-267
Hauptverfasser: Christian, Nicholas J., Ha, Il Do, Jeong, Jong-Hyeon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 267
container_issue 2
container_start_page 251
container_title Statistics in medicine
container_volume 35
creator Christian, Nicholas J.
Ha, Il Do
Jeong, Jong-Hyeon
description The frailty model, an extension of the proportional hazards model, is often used to model clustered survival data. However, some extension of the ordinary frailty model is required when there exist competing risks within a cluster. Under competing risks, the underlying processes affecting the events of interest and competing events could be different but correlated. In this paper, the hierarchical likelihood method is proposed to infer the cause‐specific hazard frailty model for clustered competing risks data. The hierarchical likelihood incorporates fixed effects as well as random effects into an extended likelihood function, so that the method does not require intensive numerical methods to find the marginal distribution. Simulation studies are performed to assess the behavior of the estimators for the regression coefficients and the correlation structure among the bivariate frailty distribution for competing events. The proposed method is illustrated with a breast cancer dataset. Copyright © 2015 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/sim.6628
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5771445</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1760857722</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6128-23f32a3b308f70624b7446642cac8aa7c746323163739a480100725d5437a873</originalsourceid><addsrcrecordid>eNp1kV1LHDEUQIO01K0W_AUy0Je-jM33zb4IslgV_EBc8DFkMxk3bmayJjNt_feNuF200KcQcjjcm4PQAcFHBGP6PfvuSEqqdtCE4CnUmAr1AU0wBaglELGLPuf8iDEhgsIntEslBTUlaoJm594lk-zSWxOq4Fcu-GWMTeX71iXXW1fFvrJhzEO5NpWN3doNvn-oks-rXDVmMPvoY2tCdl825x6a_zidz87ry5uzi9nJZW0loaqmrGXUsAXDqgUsKV8A51Jyao1VxoAFLhllRDJgU8MVLqsBFY3gDIwCtoeOX7XrcdG5xrp-SCbodfKdSc86Gq_fv_R-qR_iTy0ACOeiCL5tBCk-jS4PuvPZuhBM7-KYNQGJVYEpLejXf9DHOKa-bFcogTl7L7Qp5pxcux2GYP0SRpcw-iVMQQ_fDr8F_5YoQP0K_PLBPf9XpO8urjbCDe9Lmd9b3qSVlsBA6PvrM31bPv76jgs9Z38ApAOkwg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1750431445</pqid></control><display><type>article</type><title>Hierarchical likelihood inference on clustered competing risks data</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Christian, Nicholas J. ; Ha, Il Do ; Jeong, Jong-Hyeon</creator><creatorcontrib>Christian, Nicholas J. ; Ha, Il Do ; Jeong, Jong-Hyeon</creatorcontrib><description>The frailty model, an extension of the proportional hazards model, is often used to model clustered survival data. However, some extension of the ordinary frailty model is required when there exist competing risks within a cluster. Under competing risks, the underlying processes affecting the events of interest and competing events could be different but correlated. In this paper, the hierarchical likelihood method is proposed to infer the cause‐specific hazard frailty model for clustered competing risks data. The hierarchical likelihood incorporates fixed effects as well as random effects into an extended likelihood function, so that the method does not require intensive numerical methods to find the marginal distribution. Simulation studies are performed to assess the behavior of the estimators for the regression coefficients and the correlation structure among the bivariate frailty distribution for competing events. The proposed method is illustrated with a breast cancer dataset. Copyright © 2015 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0277-6715</identifier><identifier>EISSN: 1097-0258</identifier><identifier>DOI: 10.1002/sim.6628</identifier><identifier>PMID: 26278918</identifier><identifier>CODEN: SMEDDA</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Algorithms ; Biostatistics - methods ; Breast Neoplasms - drug therapy ; cause-specific hazard ; Clinical Trials, Phase III as Topic - statistics &amp; numerical data ; clustered data ; competing risks ; Computer Simulation ; Correlation analysis ; Databases, Factual ; Female ; Frailty ; frailty models ; hierarchical likelihood ; Humans ; Likelihood Functions ; Markov Chains ; Models, Statistical ; Monte Carlo Method ; Proportional Hazards Models ; Randomized Controlled Trials as Topic - statistics &amp; numerical data ; Regression Analysis ; Risk ; Simulation ; Statistical inference ; Survival analysis</subject><ispartof>Statistics in medicine, 2016-01, Vol.35 (2), p.251-267</ispartof><rights>Copyright © 2015 John Wiley &amp; Sons, Ltd.</rights><rights>Copyright Wiley Subscription Services, Inc. Jan 30, 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6128-23f32a3b308f70624b7446642cac8aa7c746323163739a480100725d5437a873</citedby><cites>FETCH-LOGICAL-c6128-23f32a3b308f70624b7446642cac8aa7c746323163739a480100725d5437a873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsim.6628$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsim.6628$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26278918$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Christian, Nicholas J.</creatorcontrib><creatorcontrib>Ha, Il Do</creatorcontrib><creatorcontrib>Jeong, Jong-Hyeon</creatorcontrib><title>Hierarchical likelihood inference on clustered competing risks data</title><title>Statistics in medicine</title><addtitle>Statist. Med</addtitle><description>The frailty model, an extension of the proportional hazards model, is often used to model clustered survival data. However, some extension of the ordinary frailty model is required when there exist competing risks within a cluster. Under competing risks, the underlying processes affecting the events of interest and competing events could be different but correlated. In this paper, the hierarchical likelihood method is proposed to infer the cause‐specific hazard frailty model for clustered competing risks data. The hierarchical likelihood incorporates fixed effects as well as random effects into an extended likelihood function, so that the method does not require intensive numerical methods to find the marginal distribution. Simulation studies are performed to assess the behavior of the estimators for the regression coefficients and the correlation structure among the bivariate frailty distribution for competing events. The proposed method is illustrated with a breast cancer dataset. Copyright © 2015 John Wiley &amp; Sons, Ltd.</description><subject>Algorithms</subject><subject>Biostatistics - methods</subject><subject>Breast Neoplasms - drug therapy</subject><subject>cause-specific hazard</subject><subject>Clinical Trials, Phase III as Topic - statistics &amp; numerical data</subject><subject>clustered data</subject><subject>competing risks</subject><subject>Computer Simulation</subject><subject>Correlation analysis</subject><subject>Databases, Factual</subject><subject>Female</subject><subject>Frailty</subject><subject>frailty models</subject><subject>hierarchical likelihood</subject><subject>Humans</subject><subject>Likelihood Functions</subject><subject>Markov Chains</subject><subject>Models, Statistical</subject><subject>Monte Carlo Method</subject><subject>Proportional Hazards Models</subject><subject>Randomized Controlled Trials as Topic - statistics &amp; numerical data</subject><subject>Regression Analysis</subject><subject>Risk</subject><subject>Simulation</subject><subject>Statistical inference</subject><subject>Survival analysis</subject><issn>0277-6715</issn><issn>1097-0258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kV1LHDEUQIO01K0W_AUy0Je-jM33zb4IslgV_EBc8DFkMxk3bmayJjNt_feNuF200KcQcjjcm4PQAcFHBGP6PfvuSEqqdtCE4CnUmAr1AU0wBaglELGLPuf8iDEhgsIntEslBTUlaoJm594lk-zSWxOq4Fcu-GWMTeX71iXXW1fFvrJhzEO5NpWN3doNvn-oks-rXDVmMPvoY2tCdl825x6a_zidz87ry5uzi9nJZW0loaqmrGXUsAXDqgUsKV8A51Jyao1VxoAFLhllRDJgU8MVLqsBFY3gDIwCtoeOX7XrcdG5xrp-SCbodfKdSc86Gq_fv_R-qR_iTy0ACOeiCL5tBCk-jS4PuvPZuhBM7-KYNQGJVYEpLejXf9DHOKa-bFcogTl7L7Qp5pxcux2GYP0SRpcw-iVMQQ_fDr8F_5YoQP0K_PLBPf9XpO8urjbCDe9Lmd9b3qSVlsBA6PvrM31bPv76jgs9Z38ApAOkwg</recordid><startdate>20160130</startdate><enddate>20160130</enddate><creator>Christian, Nicholas J.</creator><creator>Ha, Il Do</creator><creator>Jeong, Jong-Hyeon</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160130</creationdate><title>Hierarchical likelihood inference on clustered competing risks data</title><author>Christian, Nicholas J. ; Ha, Il Do ; Jeong, Jong-Hyeon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6128-23f32a3b308f70624b7446642cac8aa7c746323163739a480100725d5437a873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Biostatistics - methods</topic><topic>Breast Neoplasms - drug therapy</topic><topic>cause-specific hazard</topic><topic>Clinical Trials, Phase III as Topic - statistics &amp; numerical data</topic><topic>clustered data</topic><topic>competing risks</topic><topic>Computer Simulation</topic><topic>Correlation analysis</topic><topic>Databases, Factual</topic><topic>Female</topic><topic>Frailty</topic><topic>frailty models</topic><topic>hierarchical likelihood</topic><topic>Humans</topic><topic>Likelihood Functions</topic><topic>Markov Chains</topic><topic>Models, Statistical</topic><topic>Monte Carlo Method</topic><topic>Proportional Hazards Models</topic><topic>Randomized Controlled Trials as Topic - statistics &amp; numerical data</topic><topic>Regression Analysis</topic><topic>Risk</topic><topic>Simulation</topic><topic>Statistical inference</topic><topic>Survival analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Christian, Nicholas J.</creatorcontrib><creatorcontrib>Ha, Il Do</creatorcontrib><creatorcontrib>Jeong, Jong-Hyeon</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Statistics in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Christian, Nicholas J.</au><au>Ha, Il Do</au><au>Jeong, Jong-Hyeon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hierarchical likelihood inference on clustered competing risks data</atitle><jtitle>Statistics in medicine</jtitle><addtitle>Statist. Med</addtitle><date>2016-01-30</date><risdate>2016</risdate><volume>35</volume><issue>2</issue><spage>251</spage><epage>267</epage><pages>251-267</pages><issn>0277-6715</issn><eissn>1097-0258</eissn><coden>SMEDDA</coden><abstract>The frailty model, an extension of the proportional hazards model, is often used to model clustered survival data. However, some extension of the ordinary frailty model is required when there exist competing risks within a cluster. Under competing risks, the underlying processes affecting the events of interest and competing events could be different but correlated. In this paper, the hierarchical likelihood method is proposed to infer the cause‐specific hazard frailty model for clustered competing risks data. The hierarchical likelihood incorporates fixed effects as well as random effects into an extended likelihood function, so that the method does not require intensive numerical methods to find the marginal distribution. Simulation studies are performed to assess the behavior of the estimators for the regression coefficients and the correlation structure among the bivariate frailty distribution for competing events. The proposed method is illustrated with a breast cancer dataset. Copyright © 2015 John Wiley &amp; Sons, Ltd.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>26278918</pmid><doi>10.1002/sim.6628</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0277-6715
ispartof Statistics in medicine, 2016-01, Vol.35 (2), p.251-267
issn 0277-6715
1097-0258
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5771445
source MEDLINE; Wiley Online Library All Journals
subjects Algorithms
Biostatistics - methods
Breast Neoplasms - drug therapy
cause-specific hazard
Clinical Trials, Phase III as Topic - statistics & numerical data
clustered data
competing risks
Computer Simulation
Correlation analysis
Databases, Factual
Female
Frailty
frailty models
hierarchical likelihood
Humans
Likelihood Functions
Markov Chains
Models, Statistical
Monte Carlo Method
Proportional Hazards Models
Randomized Controlled Trials as Topic - statistics & numerical data
Regression Analysis
Risk
Simulation
Statistical inference
Survival analysis
title Hierarchical likelihood inference on clustered competing risks data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T17%3A08%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hierarchical%20likelihood%20inference%20on%20clustered%20competing%20risks%20data&rft.jtitle=Statistics%20in%20medicine&rft.au=Christian,%20Nicholas%20J.&rft.date=2016-01-30&rft.volume=35&rft.issue=2&rft.spage=251&rft.epage=267&rft.pages=251-267&rft.issn=0277-6715&rft.eissn=1097-0258&rft.coden=SMEDDA&rft_id=info:doi/10.1002/sim.6628&rft_dat=%3Cproquest_pubme%3E1760857722%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1750431445&rft_id=info:pmid/26278918&rfr_iscdi=true