Comparative proteomic profiling reveals a role for Cisd2 in skeletal muscle aging

Summary Skeletal muscle has emerged as one of the most important tissues involved in regulating systemic metabolism. The gastrocnemius is a powerful skeletal muscle composed of predominantly glycolytic fast‐twitch fibers that are preferentially lost among old age. This decrease in gastrocnemius musc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Aging cell 2018-02, Vol.17 (1), p.n/a
Hauptverfasser: Huang, Yi‐Long, Shen, Zhao‐Qing, Wu, Chia‐Yu, Teng, Yuan‐Chi, Liao, Chen‐Chung, Kao, Cheng‐Heng, Chen, Liang‐Kung, Lin, Chao‐Hsiung, Tsai, Ting‐Fen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 1
container_start_page
container_title Aging cell
container_volume 17
creator Huang, Yi‐Long
Shen, Zhao‐Qing
Wu, Chia‐Yu
Teng, Yuan‐Chi
Liao, Chen‐Chung
Kao, Cheng‐Heng
Chen, Liang‐Kung
Lin, Chao‐Hsiung
Tsai, Ting‐Fen
description Summary Skeletal muscle has emerged as one of the most important tissues involved in regulating systemic metabolism. The gastrocnemius is a powerful skeletal muscle composed of predominantly glycolytic fast‐twitch fibers that are preferentially lost among old age. This decrease in gastrocnemius muscle mass is remarkable during aging; however, the underlying molecular mechanism is not fully understood. Strikingly, there is a ~70% decrease in Cisd2 protein, a key regulator of lifespan in mice and the disease gene for Wolfram syndrome 2 in humans, within the gastrocnemius after middle age among mice. A proteomics approach was used to investigate the gastrocnemius of naturally aged mice, and this was compared to the autonomous effect of Cisd2 on gastrocnemius aging using muscle‐specific Cisd2 knockout (mKO) mice as a premature aging model. Intriguingly, dysregulation of calcium signaling and activation of UPR/ER stress stand out as the top two pathways. Additionally, the activity of Serca1 was significantly impaired and this impairment is mainly attributable to irreversibly oxidative modifications of Serca. Our results reveal that the overall characteristics of the gastrocnemius are very similar when naturally aged mice and the Cisd2 mKO mice are compared in terms of pathological alterations, ultrastructural abnormalities, and proteomics profiling. This suggests that Cisd2 mKO mouse is a unique model for understanding the aging mechanism of skeletal muscle. Furthermore, this work substantiates the hypothesis that Cisd2 is crucial to the gastrocnemius muscle and suggests that Cisd2 is a potential therapeutic target for muscle aging.
doi_str_mv 10.1111/acel.12705
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5770874</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A707853028</galeid><sourcerecordid>A707853028</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5815-243652deef3d423c9982199796680c24af3d8753918e925bce860e9a5bdbc5623</originalsourceid><addsrcrecordid>eNp9kk2LFDEQhoMo7jp68QdIgxcRZkzSna-LMDTrBwyIoOeQSVePWdOdMeke2X9vjbOOrojJIUXy1FvUmyLkKaMrhuuV8xBXjCsq7pFL1qhmaRSX988x0xfkUSnXlDJlaP2QXHDDpOZaXpKPbRr2LrspHKDa5zRBGoI_Rn2IYdxVGQ7gYqlclVOEqk-5akPpeBXGqnyFCJOL1TAXj49uhxmPyYMeE-DJ7bkgn99cfWrfLTcf3r5v15ulF5qJJW9qKXgH0Nddw2tvjObMGGWk1NTzxuG9VqI2TIPhYutBSwrGiW239ULyekFen3T383aAzsM4ZRftPofB5RubXLB3X8bwxe7SwQqlqFYNCry4Fcjp2wxlskMoaGV0I6S5WGakwpoSLVuQ53-h12nOI7aHlNZUcNbUv6mdi2DD2Ces64-idq2o0qKmXCO1-geFuwN0Po2AxsPdhJenBJ9TKRn6c4-M2uMA2OMA2J8DgPCzP105o79-HAF2Ar5jmZv_SNl1e7U5if4AlhW5Gw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1988052143</pqid></control><display><type>article</type><title>Comparative proteomic profiling reveals a role for Cisd2 in skeletal muscle aging</title><source>MEDLINE</source><source>Wiley Online Library Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Huang, Yi‐Long ; Shen, Zhao‐Qing ; Wu, Chia‐Yu ; Teng, Yuan‐Chi ; Liao, Chen‐Chung ; Kao, Cheng‐Heng ; Chen, Liang‐Kung ; Lin, Chao‐Hsiung ; Tsai, Ting‐Fen</creator><creatorcontrib>Huang, Yi‐Long ; Shen, Zhao‐Qing ; Wu, Chia‐Yu ; Teng, Yuan‐Chi ; Liao, Chen‐Chung ; Kao, Cheng‐Heng ; Chen, Liang‐Kung ; Lin, Chao‐Hsiung ; Tsai, Ting‐Fen</creatorcontrib><description>Summary Skeletal muscle has emerged as one of the most important tissues involved in regulating systemic metabolism. The gastrocnemius is a powerful skeletal muscle composed of predominantly glycolytic fast‐twitch fibers that are preferentially lost among old age. This decrease in gastrocnemius muscle mass is remarkable during aging; however, the underlying molecular mechanism is not fully understood. Strikingly, there is a ~70% decrease in Cisd2 protein, a key regulator of lifespan in mice and the disease gene for Wolfram syndrome 2 in humans, within the gastrocnemius after middle age among mice. A proteomics approach was used to investigate the gastrocnemius of naturally aged mice, and this was compared to the autonomous effect of Cisd2 on gastrocnemius aging using muscle‐specific Cisd2 knockout (mKO) mice as a premature aging model. Intriguingly, dysregulation of calcium signaling and activation of UPR/ER stress stand out as the top two pathways. Additionally, the activity of Serca1 was significantly impaired and this impairment is mainly attributable to irreversibly oxidative modifications of Serca. Our results reveal that the overall characteristics of the gastrocnemius are very similar when naturally aged mice and the Cisd2 mKO mice are compared in terms of pathological alterations, ultrastructural abnormalities, and proteomics profiling. This suggests that Cisd2 mKO mouse is a unique model for understanding the aging mechanism of skeletal muscle. Furthermore, this work substantiates the hypothesis that Cisd2 is crucial to the gastrocnemius muscle and suggests that Cisd2 is a potential therapeutic target for muscle aging.</description><identifier>ISSN: 1474-9718</identifier><identifier>EISSN: 1474-9726</identifier><identifier>DOI: 10.1111/acel.12705</identifier><identifier>PMID: 29168286</identifier><language>eng</language><publisher>England: John Wiley &amp; Sons, Inc</publisher><subject>Aging ; Aging - metabolism ; Aging, Premature - metabolism ; Animals ; Ca2+-transporting ATPase ; calcium homeostasis ; Calcium signalling ; Carrier Proteins - metabolism ; Cisd2 ; Comparative analysis ; ER stress ; Gastrocnemius muscle ; Glycolysis ; Hearing Loss, Sensorineural - metabolism ; Homeostasis - physiology ; Life span ; Longevity - genetics ; Mice ; Mice, Transgenic ; Mitochondria - metabolism ; Mitochondrial Diseases - metabolism ; Muscle, Skeletal - metabolism ; Muscles ; Musculoskeletal system ; Nerve Tissue Proteins - metabolism ; Optic Atrophy - metabolism ; Original ; Physiological aspects ; Proteomics ; Proteomics - methods ; Rodents ; Serca ; Skeletal muscle</subject><ispartof>Aging cell, 2018-02, Vol.17 (1), p.n/a</ispartof><rights>2017 The Authors. published by the Anatomical Society and John Wiley &amp; Sons Ltd.</rights><rights>2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley &amp; Sons Ltd.</rights><rights>COPYRIGHT 2017 John Wiley &amp; Sons, Inc.</rights><rights>Copyright © 2018 The Anatomical Society and John Wiley &amp; Sons Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5815-243652deef3d423c9982199796680c24af3d8753918e925bce860e9a5bdbc5623</citedby><cites>FETCH-LOGICAL-c5815-243652deef3d423c9982199796680c24af3d8753918e925bce860e9a5bdbc5623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5770874/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5770874/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,1411,11541,27901,27902,45550,45551,46027,46451,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29168286$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Yi‐Long</creatorcontrib><creatorcontrib>Shen, Zhao‐Qing</creatorcontrib><creatorcontrib>Wu, Chia‐Yu</creatorcontrib><creatorcontrib>Teng, Yuan‐Chi</creatorcontrib><creatorcontrib>Liao, Chen‐Chung</creatorcontrib><creatorcontrib>Kao, Cheng‐Heng</creatorcontrib><creatorcontrib>Chen, Liang‐Kung</creatorcontrib><creatorcontrib>Lin, Chao‐Hsiung</creatorcontrib><creatorcontrib>Tsai, Ting‐Fen</creatorcontrib><title>Comparative proteomic profiling reveals a role for Cisd2 in skeletal muscle aging</title><title>Aging cell</title><addtitle>Aging Cell</addtitle><description>Summary Skeletal muscle has emerged as one of the most important tissues involved in regulating systemic metabolism. The gastrocnemius is a powerful skeletal muscle composed of predominantly glycolytic fast‐twitch fibers that are preferentially lost among old age. This decrease in gastrocnemius muscle mass is remarkable during aging; however, the underlying molecular mechanism is not fully understood. Strikingly, there is a ~70% decrease in Cisd2 protein, a key regulator of lifespan in mice and the disease gene for Wolfram syndrome 2 in humans, within the gastrocnemius after middle age among mice. A proteomics approach was used to investigate the gastrocnemius of naturally aged mice, and this was compared to the autonomous effect of Cisd2 on gastrocnemius aging using muscle‐specific Cisd2 knockout (mKO) mice as a premature aging model. Intriguingly, dysregulation of calcium signaling and activation of UPR/ER stress stand out as the top two pathways. Additionally, the activity of Serca1 was significantly impaired and this impairment is mainly attributable to irreversibly oxidative modifications of Serca. Our results reveal that the overall characteristics of the gastrocnemius are very similar when naturally aged mice and the Cisd2 mKO mice are compared in terms of pathological alterations, ultrastructural abnormalities, and proteomics profiling. This suggests that Cisd2 mKO mouse is a unique model for understanding the aging mechanism of skeletal muscle. Furthermore, this work substantiates the hypothesis that Cisd2 is crucial to the gastrocnemius muscle and suggests that Cisd2 is a potential therapeutic target for muscle aging.</description><subject>Aging</subject><subject>Aging - metabolism</subject><subject>Aging, Premature - metabolism</subject><subject>Animals</subject><subject>Ca2+-transporting ATPase</subject><subject>calcium homeostasis</subject><subject>Calcium signalling</subject><subject>Carrier Proteins - metabolism</subject><subject>Cisd2</subject><subject>Comparative analysis</subject><subject>ER stress</subject><subject>Gastrocnemius muscle</subject><subject>Glycolysis</subject><subject>Hearing Loss, Sensorineural - metabolism</subject><subject>Homeostasis - physiology</subject><subject>Life span</subject><subject>Longevity - genetics</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondrial Diseases - metabolism</subject><subject>Muscle, Skeletal - metabolism</subject><subject>Muscles</subject><subject>Musculoskeletal system</subject><subject>Nerve Tissue Proteins - metabolism</subject><subject>Optic Atrophy - metabolism</subject><subject>Original</subject><subject>Physiological aspects</subject><subject>Proteomics</subject><subject>Proteomics - methods</subject><subject>Rodents</subject><subject>Serca</subject><subject>Skeletal muscle</subject><issn>1474-9718</issn><issn>1474-9726</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNp9kk2LFDEQhoMo7jp68QdIgxcRZkzSna-LMDTrBwyIoOeQSVePWdOdMeke2X9vjbOOrojJIUXy1FvUmyLkKaMrhuuV8xBXjCsq7pFL1qhmaRSX988x0xfkUSnXlDJlaP2QXHDDpOZaXpKPbRr2LrspHKDa5zRBGoI_Rn2IYdxVGQ7gYqlclVOEqk-5akPpeBXGqnyFCJOL1TAXj49uhxmPyYMeE-DJ7bkgn99cfWrfLTcf3r5v15ulF5qJJW9qKXgH0Nddw2tvjObMGGWk1NTzxuG9VqI2TIPhYutBSwrGiW239ULyekFen3T383aAzsM4ZRftPofB5RubXLB3X8bwxe7SwQqlqFYNCry4Fcjp2wxlskMoaGV0I6S5WGakwpoSLVuQ53-h12nOI7aHlNZUcNbUv6mdi2DD2Ces64-idq2o0qKmXCO1-geFuwN0Po2AxsPdhJenBJ9TKRn6c4-M2uMA2OMA2J8DgPCzP105o79-HAF2Ar5jmZv_SNl1e7U5if4AlhW5Gw</recordid><startdate>201802</startdate><enddate>201802</enddate><creator>Huang, Yi‐Long</creator><creator>Shen, Zhao‐Qing</creator><creator>Wu, Chia‐Yu</creator><creator>Teng, Yuan‐Chi</creator><creator>Liao, Chen‐Chung</creator><creator>Kao, Cheng‐Heng</creator><creator>Chen, Liang‐Kung</creator><creator>Lin, Chao‐Hsiung</creator><creator>Tsai, Ting‐Fen</creator><general>John Wiley &amp; Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TK</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201802</creationdate><title>Comparative proteomic profiling reveals a role for Cisd2 in skeletal muscle aging</title><author>Huang, Yi‐Long ; Shen, Zhao‐Qing ; Wu, Chia‐Yu ; Teng, Yuan‐Chi ; Liao, Chen‐Chung ; Kao, Cheng‐Heng ; Chen, Liang‐Kung ; Lin, Chao‐Hsiung ; Tsai, Ting‐Fen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5815-243652deef3d423c9982199796680c24af3d8753918e925bce860e9a5bdbc5623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aging</topic><topic>Aging - metabolism</topic><topic>Aging, Premature - metabolism</topic><topic>Animals</topic><topic>Ca2+-transporting ATPase</topic><topic>calcium homeostasis</topic><topic>Calcium signalling</topic><topic>Carrier Proteins - metabolism</topic><topic>Cisd2</topic><topic>Comparative analysis</topic><topic>ER stress</topic><topic>Gastrocnemius muscle</topic><topic>Glycolysis</topic><topic>Hearing Loss, Sensorineural - metabolism</topic><topic>Homeostasis - physiology</topic><topic>Life span</topic><topic>Longevity - genetics</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondrial Diseases - metabolism</topic><topic>Muscle, Skeletal - metabolism</topic><topic>Muscles</topic><topic>Musculoskeletal system</topic><topic>Nerve Tissue Proteins - metabolism</topic><topic>Optic Atrophy - metabolism</topic><topic>Original</topic><topic>Physiological aspects</topic><topic>Proteomics</topic><topic>Proteomics - methods</topic><topic>Rodents</topic><topic>Serca</topic><topic>Skeletal muscle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Yi‐Long</creatorcontrib><creatorcontrib>Shen, Zhao‐Qing</creatorcontrib><creatorcontrib>Wu, Chia‐Yu</creatorcontrib><creatorcontrib>Teng, Yuan‐Chi</creatorcontrib><creatorcontrib>Liao, Chen‐Chung</creatorcontrib><creatorcontrib>Kao, Cheng‐Heng</creatorcontrib><creatorcontrib>Chen, Liang‐Kung</creatorcontrib><creatorcontrib>Lin, Chao‐Hsiung</creatorcontrib><creatorcontrib>Tsai, Ting‐Fen</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Aging cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Yi‐Long</au><au>Shen, Zhao‐Qing</au><au>Wu, Chia‐Yu</au><au>Teng, Yuan‐Chi</au><au>Liao, Chen‐Chung</au><au>Kao, Cheng‐Heng</au><au>Chen, Liang‐Kung</au><au>Lin, Chao‐Hsiung</au><au>Tsai, Ting‐Fen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparative proteomic profiling reveals a role for Cisd2 in skeletal muscle aging</atitle><jtitle>Aging cell</jtitle><addtitle>Aging Cell</addtitle><date>2018-02</date><risdate>2018</risdate><volume>17</volume><issue>1</issue><epage>n/a</epage><issn>1474-9718</issn><eissn>1474-9726</eissn><abstract>Summary Skeletal muscle has emerged as one of the most important tissues involved in regulating systemic metabolism. The gastrocnemius is a powerful skeletal muscle composed of predominantly glycolytic fast‐twitch fibers that are preferentially lost among old age. This decrease in gastrocnemius muscle mass is remarkable during aging; however, the underlying molecular mechanism is not fully understood. Strikingly, there is a ~70% decrease in Cisd2 protein, a key regulator of lifespan in mice and the disease gene for Wolfram syndrome 2 in humans, within the gastrocnemius after middle age among mice. A proteomics approach was used to investigate the gastrocnemius of naturally aged mice, and this was compared to the autonomous effect of Cisd2 on gastrocnemius aging using muscle‐specific Cisd2 knockout (mKO) mice as a premature aging model. Intriguingly, dysregulation of calcium signaling and activation of UPR/ER stress stand out as the top two pathways. Additionally, the activity of Serca1 was significantly impaired and this impairment is mainly attributable to irreversibly oxidative modifications of Serca. Our results reveal that the overall characteristics of the gastrocnemius are very similar when naturally aged mice and the Cisd2 mKO mice are compared in terms of pathological alterations, ultrastructural abnormalities, and proteomics profiling. This suggests that Cisd2 mKO mouse is a unique model for understanding the aging mechanism of skeletal muscle. Furthermore, this work substantiates the hypothesis that Cisd2 is crucial to the gastrocnemius muscle and suggests that Cisd2 is a potential therapeutic target for muscle aging.</abstract><cop>England</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>29168286</pmid><doi>10.1111/acel.12705</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1474-9718
ispartof Aging cell, 2018-02, Vol.17 (1), p.n/a
issn 1474-9718
1474-9726
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5770874
source MEDLINE; Wiley Online Library Open Access; DOAJ Directory of Open Access Journals; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection
subjects Aging
Aging - metabolism
Aging, Premature - metabolism
Animals
Ca2+-transporting ATPase
calcium homeostasis
Calcium signalling
Carrier Proteins - metabolism
Cisd2
Comparative analysis
ER stress
Gastrocnemius muscle
Glycolysis
Hearing Loss, Sensorineural - metabolism
Homeostasis - physiology
Life span
Longevity - genetics
Mice
Mice, Transgenic
Mitochondria - metabolism
Mitochondrial Diseases - metabolism
Muscle, Skeletal - metabolism
Muscles
Musculoskeletal system
Nerve Tissue Proteins - metabolism
Optic Atrophy - metabolism
Original
Physiological aspects
Proteomics
Proteomics - methods
Rodents
Serca
Skeletal muscle
title Comparative proteomic profiling reveals a role for Cisd2 in skeletal muscle aging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T05%3A49%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparative%20proteomic%20profiling%20reveals%20a%20role%20for%20Cisd2%20in%20skeletal%20muscle%20aging&rft.jtitle=Aging%20cell&rft.au=Huang,%20Yi%E2%80%90Long&rft.date=2018-02&rft.volume=17&rft.issue=1&rft.epage=n/a&rft.issn=1474-9718&rft.eissn=1474-9726&rft_id=info:doi/10.1111/acel.12705&rft_dat=%3Cgale_pubme%3EA707853028%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1988052143&rft_id=info:pmid/29168286&rft_galeid=A707853028&rfr_iscdi=true