Stereological assessment of the blood‐air barrier and the surfactant system after mesenchymal stem cell pretreatment in a porcine non‐heart‐beating donor model for lung transplantation
More frequent utilization of non‐heart‐beating donor (NHBD) organs for lung transplantation has the potential to relieve the shortage of donor organs. In particular with respect to uncontrolled NHBD, concerns exist regarding the risk of ischaemia/reperfusion (IR) injury‐related graft damage or dysfu...
Gespeichert in:
Veröffentlicht in: | Journal of anatomy 2018-02, Vol.232 (2), p.283-295 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 295 |
---|---|
container_issue | 2 |
container_start_page | 283 |
container_title | Journal of anatomy |
container_volume | 232 |
creator | Schnapper, Anke Christmann, Astrid Knudsen, Lars Rahmanian, Parwis Choi, Yeong‐Hoon Zeriouh, Mohamed Karavidic, Samira Neef, Klaus Sterner‐Kock, Anja Guschlbauer, Maria Hofmaier, Florian Maul, Alexandra C. Wittwer, Thorsten Wahlers, Thorsten Mühlfeld, Christian Ochs, Matthias |
description | More frequent utilization of non‐heart‐beating donor (NHBD) organs for lung transplantation has the potential to relieve the shortage of donor organs. In particular with respect to uncontrolled NHBD, concerns exist regarding the risk of ischaemia/reperfusion (IR) injury‐related graft damage or dysfunction. Due to their immunomodulating and tissue‐remodelling properties, bone‐marrow‐derived mesenchymal stem cells (MSCs) have been suspected of playing a beneficial role regarding short‐ and long‐term survival and function of the allograft. Thus, MSC administration might represent a promising pretreatment strategy for NHBD organs. To study the initial effects of warm ischaemia and MSC application, a large animal lung transplantation model was generated, and the structural organ composition of the transplanted lungs was analysed stereologically with particular respect to the blood–gas barrier and the surfactant system. In this study, porcine lungs (n = 5/group) were analysed. Group 1 was the sham‐operated control group. In pigs of groups 2–4, cardiac arrest was induced, followed by a period of 3 h of ventilated ischaemia at room temperature. In groups 3 and 4, 50 × 106 MSCs were administered intravascularly via the pulmonary artery and endobronchially, respectively, during the last 10 min of ischaemia. The left lungs were transplanted, followed by a reperfusion period of 4 h. Then, lungs were perfusion‐fixed and processed for light and electron microscopy. Samples were analysed stereologically for IR injury‐related structural parameters, including volume densities and absolute volumes of parenchyma components, alveolar septum components, intra‐alveolar oedema, and the intracellular and intra‐alveolar surfactant pool. Additionally, the volume‐weighted mean volume of lamellar bodies (lbs) and their profile size distribution were determined. Three hours of ventilated warm ischaemia was tolerated without eliciting histological or ultrastructural signs of IR injury, as revealed by qualitative and quantitative assessment. However, warm ischaemia influenced the surfactant system. The volume‐weighted mean volume of lbs was reduced significantly (P = 0.024) in groups subjected to ischaemia (group medians of groups 2–4: 0.180–0.373 μm³) compared with the sham control group (median 0.814 μm³). This was due to a lower number of large lb profiles (size classes 5–15). In contrast, the intra‐alveolar surfactant system was not altered significantly. No significant differences |
doi_str_mv | 10.1111/joa.12747 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5770329</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1971652405</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4437-48661bed39327fa1a4e8cb92c37ab73fd8cf00ddf68adc9f29bfee5999bca913</originalsourceid><addsrcrecordid>eNp1ks1u1DAQgCMEokvhwAsgS1zgkNbOn-MLUlXxq0o90Hs0cca7Xjl2sJOivfUR-kQ8DE_CdLdUgIQvY3k-f56xJsteCn4iaJ1uA5yIQlbyUbYSVaNyWbf8cbbivBB5K9viKHuW0pZzUXJVPc2OCiVUyZt6lf34OmPE4MLaanAMUsKURvQzC4bNG2S9C2H4eXMLNrIeYrQYGfhhn0tLNKBnIDrt0owjA0M6NmJCrze7kYz7Y43OsSniHBHmvd16BmwKUVuPzAdPL2wQ4kyxJ8b6NRuCD-QKAzpmaOcWOpwj-DQ5epKg4J9nTwy4hC_u43F29eH91fmn_OLy4-fzs4tcV1Up86ptGtHjUKqykAYEVNjqXhW6lNDL0gytNpwPg2laGLQyheoNYq2U6jUoUR5n7w7aaelHHDR1EMF1U7QjxF0XwHZ_Z7zddOtw3dVS8rJQJHhzL4jh24Jp7kab7n4FPIYldUJJ0dRFxWtCX_-DbsMSPXVHVCtVUzVVSdTbA6VjSCmieShG8O5uKOgWdPuhIPbVn9U_kL-ngIDTA_DdOtz939R9uTw7KH8BlkrLVw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1987964643</pqid></control><display><type>article</type><title>Stereological assessment of the blood‐air barrier and the surfactant system after mesenchymal stem cell pretreatment in a porcine non‐heart‐beating donor model for lung transplantation</title><source>Wiley Free Content</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Schnapper, Anke ; Christmann, Astrid ; Knudsen, Lars ; Rahmanian, Parwis ; Choi, Yeong‐Hoon ; Zeriouh, Mohamed ; Karavidic, Samira ; Neef, Klaus ; Sterner‐Kock, Anja ; Guschlbauer, Maria ; Hofmaier, Florian ; Maul, Alexandra C. ; Wittwer, Thorsten ; Wahlers, Thorsten ; Mühlfeld, Christian ; Ochs, Matthias</creator><creatorcontrib>Schnapper, Anke ; Christmann, Astrid ; Knudsen, Lars ; Rahmanian, Parwis ; Choi, Yeong‐Hoon ; Zeriouh, Mohamed ; Karavidic, Samira ; Neef, Klaus ; Sterner‐Kock, Anja ; Guschlbauer, Maria ; Hofmaier, Florian ; Maul, Alexandra C. ; Wittwer, Thorsten ; Wahlers, Thorsten ; Mühlfeld, Christian ; Ochs, Matthias</creatorcontrib><description>More frequent utilization of non‐heart‐beating donor (NHBD) organs for lung transplantation has the potential to relieve the shortage of donor organs. In particular with respect to uncontrolled NHBD, concerns exist regarding the risk of ischaemia/reperfusion (IR) injury‐related graft damage or dysfunction. Due to their immunomodulating and tissue‐remodelling properties, bone‐marrow‐derived mesenchymal stem cells (MSCs) have been suspected of playing a beneficial role regarding short‐ and long‐term survival and function of the allograft. Thus, MSC administration might represent a promising pretreatment strategy for NHBD organs. To study the initial effects of warm ischaemia and MSC application, a large animal lung transplantation model was generated, and the structural organ composition of the transplanted lungs was analysed stereologically with particular respect to the blood–gas barrier and the surfactant system. In this study, porcine lungs (n = 5/group) were analysed. Group 1 was the sham‐operated control group. In pigs of groups 2–4, cardiac arrest was induced, followed by a period of 3 h of ventilated ischaemia at room temperature. In groups 3 and 4, 50 × 106 MSCs were administered intravascularly via the pulmonary artery and endobronchially, respectively, during the last 10 min of ischaemia. The left lungs were transplanted, followed by a reperfusion period of 4 h. Then, lungs were perfusion‐fixed and processed for light and electron microscopy. Samples were analysed stereologically for IR injury‐related structural parameters, including volume densities and absolute volumes of parenchyma components, alveolar septum components, intra‐alveolar oedema, and the intracellular and intra‐alveolar surfactant pool. Additionally, the volume‐weighted mean volume of lamellar bodies (lbs) and their profile size distribution were determined. Three hours of ventilated warm ischaemia was tolerated without eliciting histological or ultrastructural signs of IR injury, as revealed by qualitative and quantitative assessment. However, warm ischaemia influenced the surfactant system. The volume‐weighted mean volume of lbs was reduced significantly (P = 0.024) in groups subjected to ischaemia (group medians of groups 2–4: 0.180–0.373 μm³) compared with the sham control group (median 0.814 μm³). This was due to a lower number of large lb profiles (size classes 5–15). In contrast, the intra‐alveolar surfactant system was not altered significantly. No significant differences were encountered comparing ischaemia alone (group 2) or ischaemia plus application of MSCs (groups 3 and 4) in this short‐term model.</description><identifier>ISSN: 0021-8782</identifier><identifier>EISSN: 1469-7580</identifier><identifier>DOI: 10.1111/joa.12747</identifier><identifier>PMID: 29193065</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Allografts ; Animals ; Blood-Air Barrier - pathology ; Bone marrow ; Bone remodeling ; Cerebral blood flow ; Disease Models, Animal ; Edema ; Electron microscopy ; Heart Arrest ; Heart diseases ; Injury analysis ; Ischemia ; Lung - pathology ; Lung transplantation ; Lung Transplantation - methods ; Lungs ; Mesenchymal Stem Cell Transplantation - methods ; mesenchymal stem cells ; Mesenchyme ; non‐heart‐beating donor ; Organs ; Original ; Parenchyma ; Perfusion ; Pulmonary arteries ; Pulmonary artery ; Pulmonary Surfactants ; Reperfusion ; Reperfusion Injury - pathology ; Septum ; Size distribution ; Stem cell transplantation ; Stem cells ; stereology ; surfactant system ; Surfactants ; Swine ; Transplantation ; Warm Ischemia</subject><ispartof>Journal of anatomy, 2018-02, Vol.232 (2), p.283-295</ispartof><rights>2017 Anatomical Society</rights><rights>2017 Anatomical Society.</rights><rights>Journal of Anatomy © 2018 Anatomical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4437-48661bed39327fa1a4e8cb92c37ab73fd8cf00ddf68adc9f29bfee5999bca913</citedby><cites>FETCH-LOGICAL-c4437-48661bed39327fa1a4e8cb92c37ab73fd8cf00ddf68adc9f29bfee5999bca913</cites><orcidid>0000-0002-1845-8875 ; 0000-0002-7827-4867</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5770329/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5770329/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,1427,27901,27902,45550,45551,46384,46808,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29193065$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schnapper, Anke</creatorcontrib><creatorcontrib>Christmann, Astrid</creatorcontrib><creatorcontrib>Knudsen, Lars</creatorcontrib><creatorcontrib>Rahmanian, Parwis</creatorcontrib><creatorcontrib>Choi, Yeong‐Hoon</creatorcontrib><creatorcontrib>Zeriouh, Mohamed</creatorcontrib><creatorcontrib>Karavidic, Samira</creatorcontrib><creatorcontrib>Neef, Klaus</creatorcontrib><creatorcontrib>Sterner‐Kock, Anja</creatorcontrib><creatorcontrib>Guschlbauer, Maria</creatorcontrib><creatorcontrib>Hofmaier, Florian</creatorcontrib><creatorcontrib>Maul, Alexandra C.</creatorcontrib><creatorcontrib>Wittwer, Thorsten</creatorcontrib><creatorcontrib>Wahlers, Thorsten</creatorcontrib><creatorcontrib>Mühlfeld, Christian</creatorcontrib><creatorcontrib>Ochs, Matthias</creatorcontrib><title>Stereological assessment of the blood‐air barrier and the surfactant system after mesenchymal stem cell pretreatment in a porcine non‐heart‐beating donor model for lung transplantation</title><title>Journal of anatomy</title><addtitle>J Anat</addtitle><description>More frequent utilization of non‐heart‐beating donor (NHBD) organs for lung transplantation has the potential to relieve the shortage of donor organs. In particular with respect to uncontrolled NHBD, concerns exist regarding the risk of ischaemia/reperfusion (IR) injury‐related graft damage or dysfunction. Due to their immunomodulating and tissue‐remodelling properties, bone‐marrow‐derived mesenchymal stem cells (MSCs) have been suspected of playing a beneficial role regarding short‐ and long‐term survival and function of the allograft. Thus, MSC administration might represent a promising pretreatment strategy for NHBD organs. To study the initial effects of warm ischaemia and MSC application, a large animal lung transplantation model was generated, and the structural organ composition of the transplanted lungs was analysed stereologically with particular respect to the blood–gas barrier and the surfactant system. In this study, porcine lungs (n = 5/group) were analysed. Group 1 was the sham‐operated control group. In pigs of groups 2–4, cardiac arrest was induced, followed by a period of 3 h of ventilated ischaemia at room temperature. In groups 3 and 4, 50 × 106 MSCs were administered intravascularly via the pulmonary artery and endobronchially, respectively, during the last 10 min of ischaemia. The left lungs were transplanted, followed by a reperfusion period of 4 h. Then, lungs were perfusion‐fixed and processed for light and electron microscopy. Samples were analysed stereologically for IR injury‐related structural parameters, including volume densities and absolute volumes of parenchyma components, alveolar septum components, intra‐alveolar oedema, and the intracellular and intra‐alveolar surfactant pool. Additionally, the volume‐weighted mean volume of lamellar bodies (lbs) and their profile size distribution were determined. Three hours of ventilated warm ischaemia was tolerated without eliciting histological or ultrastructural signs of IR injury, as revealed by qualitative and quantitative assessment. However, warm ischaemia influenced the surfactant system. The volume‐weighted mean volume of lbs was reduced significantly (P = 0.024) in groups subjected to ischaemia (group medians of groups 2–4: 0.180–0.373 μm³) compared with the sham control group (median 0.814 μm³). This was due to a lower number of large lb profiles (size classes 5–15). In contrast, the intra‐alveolar surfactant system was not altered significantly. No significant differences were encountered comparing ischaemia alone (group 2) or ischaemia plus application of MSCs (groups 3 and 4) in this short‐term model.</description><subject>Allografts</subject><subject>Animals</subject><subject>Blood-Air Barrier - pathology</subject><subject>Bone marrow</subject><subject>Bone remodeling</subject><subject>Cerebral blood flow</subject><subject>Disease Models, Animal</subject><subject>Edema</subject><subject>Electron microscopy</subject><subject>Heart Arrest</subject><subject>Heart diseases</subject><subject>Injury analysis</subject><subject>Ischemia</subject><subject>Lung - pathology</subject><subject>Lung transplantation</subject><subject>Lung Transplantation - methods</subject><subject>Lungs</subject><subject>Mesenchymal Stem Cell Transplantation - methods</subject><subject>mesenchymal stem cells</subject><subject>Mesenchyme</subject><subject>non‐heart‐beating donor</subject><subject>Organs</subject><subject>Original</subject><subject>Parenchyma</subject><subject>Perfusion</subject><subject>Pulmonary arteries</subject><subject>Pulmonary artery</subject><subject>Pulmonary Surfactants</subject><subject>Reperfusion</subject><subject>Reperfusion Injury - pathology</subject><subject>Septum</subject><subject>Size distribution</subject><subject>Stem cell transplantation</subject><subject>Stem cells</subject><subject>stereology</subject><subject>surfactant system</subject><subject>Surfactants</subject><subject>Swine</subject><subject>Transplantation</subject><subject>Warm Ischemia</subject><issn>0021-8782</issn><issn>1469-7580</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1ks1u1DAQgCMEokvhwAsgS1zgkNbOn-MLUlXxq0o90Hs0cca7Xjl2sJOivfUR-kQ8DE_CdLdUgIQvY3k-f56xJsteCn4iaJ1uA5yIQlbyUbYSVaNyWbf8cbbivBB5K9viKHuW0pZzUXJVPc2OCiVUyZt6lf34OmPE4MLaanAMUsKURvQzC4bNG2S9C2H4eXMLNrIeYrQYGfhhn0tLNKBnIDrt0owjA0M6NmJCrze7kYz7Y43OsSniHBHmvd16BmwKUVuPzAdPL2wQ4kyxJ8b6NRuCD-QKAzpmaOcWOpwj-DQ5epKg4J9nTwy4hC_u43F29eH91fmn_OLy4-fzs4tcV1Up86ptGtHjUKqykAYEVNjqXhW6lNDL0gytNpwPg2laGLQyheoNYq2U6jUoUR5n7w7aaelHHDR1EMF1U7QjxF0XwHZ_Z7zddOtw3dVS8rJQJHhzL4jh24Jp7kab7n4FPIYldUJJ0dRFxWtCX_-DbsMSPXVHVCtVUzVVSdTbA6VjSCmieShG8O5uKOgWdPuhIPbVn9U_kL-ngIDTA_DdOtz939R9uTw7KH8BlkrLVw</recordid><startdate>201802</startdate><enddate>201802</enddate><creator>Schnapper, Anke</creator><creator>Christmann, Astrid</creator><creator>Knudsen, Lars</creator><creator>Rahmanian, Parwis</creator><creator>Choi, Yeong‐Hoon</creator><creator>Zeriouh, Mohamed</creator><creator>Karavidic, Samira</creator><creator>Neef, Klaus</creator><creator>Sterner‐Kock, Anja</creator><creator>Guschlbauer, Maria</creator><creator>Hofmaier, Florian</creator><creator>Maul, Alexandra C.</creator><creator>Wittwer, Thorsten</creator><creator>Wahlers, Thorsten</creator><creator>Mühlfeld, Christian</creator><creator>Ochs, Matthias</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1845-8875</orcidid><orcidid>https://orcid.org/0000-0002-7827-4867</orcidid></search><sort><creationdate>201802</creationdate><title>Stereological assessment of the blood‐air barrier and the surfactant system after mesenchymal stem cell pretreatment in a porcine non‐heart‐beating donor model for lung transplantation</title><author>Schnapper, Anke ; Christmann, Astrid ; Knudsen, Lars ; Rahmanian, Parwis ; Choi, Yeong‐Hoon ; Zeriouh, Mohamed ; Karavidic, Samira ; Neef, Klaus ; Sterner‐Kock, Anja ; Guschlbauer, Maria ; Hofmaier, Florian ; Maul, Alexandra C. ; Wittwer, Thorsten ; Wahlers, Thorsten ; Mühlfeld, Christian ; Ochs, Matthias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4437-48661bed39327fa1a4e8cb92c37ab73fd8cf00ddf68adc9f29bfee5999bca913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Allografts</topic><topic>Animals</topic><topic>Blood-Air Barrier - pathology</topic><topic>Bone marrow</topic><topic>Bone remodeling</topic><topic>Cerebral blood flow</topic><topic>Disease Models, Animal</topic><topic>Edema</topic><topic>Electron microscopy</topic><topic>Heart Arrest</topic><topic>Heart diseases</topic><topic>Injury analysis</topic><topic>Ischemia</topic><topic>Lung - pathology</topic><topic>Lung transplantation</topic><topic>Lung Transplantation - methods</topic><topic>Lungs</topic><topic>Mesenchymal Stem Cell Transplantation - methods</topic><topic>mesenchymal stem cells</topic><topic>Mesenchyme</topic><topic>non‐heart‐beating donor</topic><topic>Organs</topic><topic>Original</topic><topic>Parenchyma</topic><topic>Perfusion</topic><topic>Pulmonary arteries</topic><topic>Pulmonary artery</topic><topic>Pulmonary Surfactants</topic><topic>Reperfusion</topic><topic>Reperfusion Injury - pathology</topic><topic>Septum</topic><topic>Size distribution</topic><topic>Stem cell transplantation</topic><topic>Stem cells</topic><topic>stereology</topic><topic>surfactant system</topic><topic>Surfactants</topic><topic>Swine</topic><topic>Transplantation</topic><topic>Warm Ischemia</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schnapper, Anke</creatorcontrib><creatorcontrib>Christmann, Astrid</creatorcontrib><creatorcontrib>Knudsen, Lars</creatorcontrib><creatorcontrib>Rahmanian, Parwis</creatorcontrib><creatorcontrib>Choi, Yeong‐Hoon</creatorcontrib><creatorcontrib>Zeriouh, Mohamed</creatorcontrib><creatorcontrib>Karavidic, Samira</creatorcontrib><creatorcontrib>Neef, Klaus</creatorcontrib><creatorcontrib>Sterner‐Kock, Anja</creatorcontrib><creatorcontrib>Guschlbauer, Maria</creatorcontrib><creatorcontrib>Hofmaier, Florian</creatorcontrib><creatorcontrib>Maul, Alexandra C.</creatorcontrib><creatorcontrib>Wittwer, Thorsten</creatorcontrib><creatorcontrib>Wahlers, Thorsten</creatorcontrib><creatorcontrib>Mühlfeld, Christian</creatorcontrib><creatorcontrib>Ochs, Matthias</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of anatomy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schnapper, Anke</au><au>Christmann, Astrid</au><au>Knudsen, Lars</au><au>Rahmanian, Parwis</au><au>Choi, Yeong‐Hoon</au><au>Zeriouh, Mohamed</au><au>Karavidic, Samira</au><au>Neef, Klaus</au><au>Sterner‐Kock, Anja</au><au>Guschlbauer, Maria</au><au>Hofmaier, Florian</au><au>Maul, Alexandra C.</au><au>Wittwer, Thorsten</au><au>Wahlers, Thorsten</au><au>Mühlfeld, Christian</au><au>Ochs, Matthias</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stereological assessment of the blood‐air barrier and the surfactant system after mesenchymal stem cell pretreatment in a porcine non‐heart‐beating donor model for lung transplantation</atitle><jtitle>Journal of anatomy</jtitle><addtitle>J Anat</addtitle><date>2018-02</date><risdate>2018</risdate><volume>232</volume><issue>2</issue><spage>283</spage><epage>295</epage><pages>283-295</pages><issn>0021-8782</issn><eissn>1469-7580</eissn><abstract>More frequent utilization of non‐heart‐beating donor (NHBD) organs for lung transplantation has the potential to relieve the shortage of donor organs. In particular with respect to uncontrolled NHBD, concerns exist regarding the risk of ischaemia/reperfusion (IR) injury‐related graft damage or dysfunction. Due to their immunomodulating and tissue‐remodelling properties, bone‐marrow‐derived mesenchymal stem cells (MSCs) have been suspected of playing a beneficial role regarding short‐ and long‐term survival and function of the allograft. Thus, MSC administration might represent a promising pretreatment strategy for NHBD organs. To study the initial effects of warm ischaemia and MSC application, a large animal lung transplantation model was generated, and the structural organ composition of the transplanted lungs was analysed stereologically with particular respect to the blood–gas barrier and the surfactant system. In this study, porcine lungs (n = 5/group) were analysed. Group 1 was the sham‐operated control group. In pigs of groups 2–4, cardiac arrest was induced, followed by a period of 3 h of ventilated ischaemia at room temperature. In groups 3 and 4, 50 × 106 MSCs were administered intravascularly via the pulmonary artery and endobronchially, respectively, during the last 10 min of ischaemia. The left lungs were transplanted, followed by a reperfusion period of 4 h. Then, lungs were perfusion‐fixed and processed for light and electron microscopy. Samples were analysed stereologically for IR injury‐related structural parameters, including volume densities and absolute volumes of parenchyma components, alveolar septum components, intra‐alveolar oedema, and the intracellular and intra‐alveolar surfactant pool. Additionally, the volume‐weighted mean volume of lamellar bodies (lbs) and their profile size distribution were determined. Three hours of ventilated warm ischaemia was tolerated without eliciting histological or ultrastructural signs of IR injury, as revealed by qualitative and quantitative assessment. However, warm ischaemia influenced the surfactant system. The volume‐weighted mean volume of lbs was reduced significantly (P = 0.024) in groups subjected to ischaemia (group medians of groups 2–4: 0.180–0.373 μm³) compared with the sham control group (median 0.814 μm³). This was due to a lower number of large lb profiles (size classes 5–15). In contrast, the intra‐alveolar surfactant system was not altered significantly. No significant differences were encountered comparing ischaemia alone (group 2) or ischaemia plus application of MSCs (groups 3 and 4) in this short‐term model.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>29193065</pmid><doi>10.1111/joa.12747</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-1845-8875</orcidid><orcidid>https://orcid.org/0000-0002-7827-4867</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8782 |
ispartof | Journal of anatomy, 2018-02, Vol.232 (2), p.283-295 |
issn | 0021-8782 1469-7580 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5770329 |
source | Wiley Free Content; MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection |
subjects | Allografts Animals Blood-Air Barrier - pathology Bone marrow Bone remodeling Cerebral blood flow Disease Models, Animal Edema Electron microscopy Heart Arrest Heart diseases Injury analysis Ischemia Lung - pathology Lung transplantation Lung Transplantation - methods Lungs Mesenchymal Stem Cell Transplantation - methods mesenchymal stem cells Mesenchyme non‐heart‐beating donor Organs Original Parenchyma Perfusion Pulmonary arteries Pulmonary artery Pulmonary Surfactants Reperfusion Reperfusion Injury - pathology Septum Size distribution Stem cell transplantation Stem cells stereology surfactant system Surfactants Swine Transplantation Warm Ischemia |
title | Stereological assessment of the blood‐air barrier and the surfactant system after mesenchymal stem cell pretreatment in a porcine non‐heart‐beating donor model for lung transplantation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T15%3A20%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stereological%20assessment%20of%20the%20blood%E2%80%90air%20barrier%20and%20the%20surfactant%20system%20after%20mesenchymal%20stem%20cell%20pretreatment%20in%20a%20porcine%20non%E2%80%90heart%E2%80%90beating%20donor%20model%20for%20lung%20transplantation&rft.jtitle=Journal%20of%20anatomy&rft.au=Schnapper,%20Anke&rft.date=2018-02&rft.volume=232&rft.issue=2&rft.spage=283&rft.epage=295&rft.pages=283-295&rft.issn=0021-8782&rft.eissn=1469-7580&rft_id=info:doi/10.1111/joa.12747&rft_dat=%3Cproquest_pubme%3E1971652405%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1987964643&rft_id=info:pmid/29193065&rfr_iscdi=true |