Novel Indicators for the Quantification of Resilience in Critical Material Supply Chains, with a 2010 Rare Earth Crisis Case Study

We introduce several new resilience metrics for quantifying the resilience of critical material supply chains to disruptions and validate these metrics using the 2010 rare earth element (REE) crisis as a case study. Our method is a novel application of Event Sequence Analysis, supplemented with inte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2017-04, Vol.51 (7), p.3860-3870
Hauptverfasser: Sprecher, Benjamin, Daigo, Ichiro, Spekkink, Wouter, Vos, Matthijs, Kleijn, René, Murakami, Shinsuke, Kramer, Gert Jan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3870
container_issue 7
container_start_page 3860
container_title Environmental science & technology
container_volume 51
creator Sprecher, Benjamin
Daigo, Ichiro
Spekkink, Wouter
Vos, Matthijs
Kleijn, René
Murakami, Shinsuke
Kramer, Gert Jan
description We introduce several new resilience metrics for quantifying the resilience of critical material supply chains to disruptions and validate these metrics using the 2010 rare earth element (REE) crisis as a case study. Our method is a novel application of Event Sequence Analysis, supplemented with interviews of actors across the entire supply chain. We discuss resilience mechanisms in quantitative terms–time lags, response speeds, and maximum magnitudes–and in light of cultural differences between Japanese and European corporate practice. This quantification is crucial if resilience is ever to be taken into account in criticality assessments and a step toward determining supply and demand elasticities in the REE supply chain. We find that the REE system showed resilience mainly through substitution and increased non-Chinese primary production, with a distinct role for stockpiling. Overall, annual substitution rates reached 10% of total demand. Non-Chinese primary production ramped up at a speed of 4% of total market volume per year. The compound effect of these mechanisms was that recovery from the 2010 disruption took two years. The supply disruption did not nudge a system toward an appreciable degree of recycling. This finding has important implications for the circular economy concept, indicating that quite a long period of sustained material constraints will be necessary for a production-consumption system to naturally evolve toward a circular configuration.
doi_str_mv 10.1021/acs.est.6b05751
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5770137</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1874448276</sourcerecordid><originalsourceid>FETCH-LOGICAL-a510t-532baf4795c35549a52aee785a3d6a376746a35a13d6a42c54d879d0ed2dfc3a3</originalsourceid><addsrcrecordid>eNp1kU1v1DAQhi0EokvhzA1Z4oIE2fozTi5IKCpQqYBoQeJmzToO6yprL7ZTtNf-8jrapXxInMaeeea1Z16EnlKypITREzBpaVNe1isilaT30IJKRirZSHofLQihvGp5_e0IPUrpihDCOGkeoiPWMKloQxfo5mO4tiM-870zkENMeAgR57XFnyfw2Q1z2gWPw4AvbHKjs95Y7DzuosulOOIPkG105XA5bbfjDndrcD69wj9dXmPAjFCCLyBafAqxZEpfcgl3kCy-zFO_e4weDDAm--QQj9HXt6dfuvfV-ad3Z92b8wokJbmSnK1gEKqVhkspWpAMrFWNBN7XwFWtRAkS6HwVzEjRN6rtie1ZPxgO_Bi93utup9XG9sb6HGHU2-g2EHc6gNN_V7xb6-_hWkulyiJVEXhxEIjhx1TWrjcuGTuO4G2YkqaNEkI0TNUFff4PehWm6Mt4hWpbIRghvFAne8rEkFK0w91nKNGzv7r4q-fug7-l49mfM9zxvwwtwMs9MHf-fvM_crfeOrFZ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1899442003</pqid></control><display><type>article</type><title>Novel Indicators for the Quantification of Resilience in Critical Material Supply Chains, with a 2010 Rare Earth Crisis Case Study</title><source>MEDLINE</source><source>ACS Publications</source><creator>Sprecher, Benjamin ; Daigo, Ichiro ; Spekkink, Wouter ; Vos, Matthijs ; Kleijn, René ; Murakami, Shinsuke ; Kramer, Gert Jan</creator><creatorcontrib>Sprecher, Benjamin ; Daigo, Ichiro ; Spekkink, Wouter ; Vos, Matthijs ; Kleijn, René ; Murakami, Shinsuke ; Kramer, Gert Jan</creatorcontrib><description>We introduce several new resilience metrics for quantifying the resilience of critical material supply chains to disruptions and validate these metrics using the 2010 rare earth element (REE) crisis as a case study. Our method is a novel application of Event Sequence Analysis, supplemented with interviews of actors across the entire supply chain. We discuss resilience mechanisms in quantitative terms–time lags, response speeds, and maximum magnitudes–and in light of cultural differences between Japanese and European corporate practice. This quantification is crucial if resilience is ever to be taken into account in criticality assessments and a step toward determining supply and demand elasticities in the REE supply chain. We find that the REE system showed resilience mainly through substitution and increased non-Chinese primary production, with a distinct role for stockpiling. Overall, annual substitution rates reached 10% of total demand. Non-Chinese primary production ramped up at a speed of 4% of total market volume per year. The compound effect of these mechanisms was that recovery from the 2010 disruption took two years. The supply disruption did not nudge a system toward an appreciable degree of recycling. This finding has important implications for the circular economy concept, indicating that quite a long period of sustained material constraints will be necessary for a production-consumption system to naturally evolve toward a circular configuration.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.6b05751</identifier><identifier>PMID: 28257181</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Case studies ; Consumption ; Cultural differences ; Demand ; Disruption ; Economic conditions ; Elasticity of demand ; Humans ; Markets ; Metals, Rare Earth ; Primary production ; Rare earth elements ; Recovering ; Recycling ; Resilience ; Supply &amp; demand ; Supply chains</subject><ispartof>Environmental science &amp; technology, 2017-04, Vol.51 (7), p.3860-3870</ispartof><rights>Copyright © 2017 American Chemical Society</rights><rights>Copyright American Chemical Society Apr 4, 2017</rights><rights>Copyright © 2017 American Chemical Society 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a510t-532baf4795c35549a52aee785a3d6a376746a35a13d6a42c54d879d0ed2dfc3a3</citedby><cites>FETCH-LOGICAL-a510t-532baf4795c35549a52aee785a3d6a376746a35a13d6a42c54d879d0ed2dfc3a3</cites><orcidid>0000-0002-0136-5656</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.est.6b05751$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.est.6b05751$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28257181$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sprecher, Benjamin</creatorcontrib><creatorcontrib>Daigo, Ichiro</creatorcontrib><creatorcontrib>Spekkink, Wouter</creatorcontrib><creatorcontrib>Vos, Matthijs</creatorcontrib><creatorcontrib>Kleijn, René</creatorcontrib><creatorcontrib>Murakami, Shinsuke</creatorcontrib><creatorcontrib>Kramer, Gert Jan</creatorcontrib><title>Novel Indicators for the Quantification of Resilience in Critical Material Supply Chains, with a 2010 Rare Earth Crisis Case Study</title><title>Environmental science &amp; technology</title><addtitle>Environ. Sci. Technol</addtitle><description>We introduce several new resilience metrics for quantifying the resilience of critical material supply chains to disruptions and validate these metrics using the 2010 rare earth element (REE) crisis as a case study. Our method is a novel application of Event Sequence Analysis, supplemented with interviews of actors across the entire supply chain. We discuss resilience mechanisms in quantitative terms–time lags, response speeds, and maximum magnitudes–and in light of cultural differences between Japanese and European corporate practice. This quantification is crucial if resilience is ever to be taken into account in criticality assessments and a step toward determining supply and demand elasticities in the REE supply chain. We find that the REE system showed resilience mainly through substitution and increased non-Chinese primary production, with a distinct role for stockpiling. Overall, annual substitution rates reached 10% of total demand. Non-Chinese primary production ramped up at a speed of 4% of total market volume per year. The compound effect of these mechanisms was that recovery from the 2010 disruption took two years. The supply disruption did not nudge a system toward an appreciable degree of recycling. This finding has important implications for the circular economy concept, indicating that quite a long period of sustained material constraints will be necessary for a production-consumption system to naturally evolve toward a circular configuration.</description><subject>Case studies</subject><subject>Consumption</subject><subject>Cultural differences</subject><subject>Demand</subject><subject>Disruption</subject><subject>Economic conditions</subject><subject>Elasticity of demand</subject><subject>Humans</subject><subject>Markets</subject><subject>Metals, Rare Earth</subject><subject>Primary production</subject><subject>Rare earth elements</subject><subject>Recovering</subject><subject>Recycling</subject><subject>Resilience</subject><subject>Supply &amp; demand</subject><subject>Supply chains</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kU1v1DAQhi0EokvhzA1Z4oIE2fozTi5IKCpQqYBoQeJmzToO6yprL7ZTtNf-8jrapXxInMaeeea1Z16EnlKypITREzBpaVNe1isilaT30IJKRirZSHofLQihvGp5_e0IPUrpihDCOGkeoiPWMKloQxfo5mO4tiM-870zkENMeAgR57XFnyfw2Q1z2gWPw4AvbHKjs95Y7DzuosulOOIPkG105XA5bbfjDndrcD69wj9dXmPAjFCCLyBafAqxZEpfcgl3kCy-zFO_e4weDDAm--QQj9HXt6dfuvfV-ad3Z92b8wokJbmSnK1gEKqVhkspWpAMrFWNBN7XwFWtRAkS6HwVzEjRN6rtie1ZPxgO_Bi93utup9XG9sb6HGHU2-g2EHc6gNN_V7xb6-_hWkulyiJVEXhxEIjhx1TWrjcuGTuO4G2YkqaNEkI0TNUFff4PehWm6Mt4hWpbIRghvFAne8rEkFK0w91nKNGzv7r4q-fug7-l49mfM9zxvwwtwMs9MHf-fvM_crfeOrFZ</recordid><startdate>20170404</startdate><enddate>20170404</enddate><creator>Sprecher, Benjamin</creator><creator>Daigo, Ichiro</creator><creator>Spekkink, Wouter</creator><creator>Vos, Matthijs</creator><creator>Kleijn, René</creator><creator>Murakami, Shinsuke</creator><creator>Kramer, Gert Jan</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0136-5656</orcidid></search><sort><creationdate>20170404</creationdate><title>Novel Indicators for the Quantification of Resilience in Critical Material Supply Chains, with a 2010 Rare Earth Crisis Case Study</title><author>Sprecher, Benjamin ; Daigo, Ichiro ; Spekkink, Wouter ; Vos, Matthijs ; Kleijn, René ; Murakami, Shinsuke ; Kramer, Gert Jan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a510t-532baf4795c35549a52aee785a3d6a376746a35a13d6a42c54d879d0ed2dfc3a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Case studies</topic><topic>Consumption</topic><topic>Cultural differences</topic><topic>Demand</topic><topic>Disruption</topic><topic>Economic conditions</topic><topic>Elasticity of demand</topic><topic>Humans</topic><topic>Markets</topic><topic>Metals, Rare Earth</topic><topic>Primary production</topic><topic>Rare earth elements</topic><topic>Recovering</topic><topic>Recycling</topic><topic>Resilience</topic><topic>Supply &amp; demand</topic><topic>Supply chains</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sprecher, Benjamin</creatorcontrib><creatorcontrib>Daigo, Ichiro</creatorcontrib><creatorcontrib>Spekkink, Wouter</creatorcontrib><creatorcontrib>Vos, Matthijs</creatorcontrib><creatorcontrib>Kleijn, René</creatorcontrib><creatorcontrib>Murakami, Shinsuke</creatorcontrib><creatorcontrib>Kramer, Gert Jan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Environmental science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sprecher, Benjamin</au><au>Daigo, Ichiro</au><au>Spekkink, Wouter</au><au>Vos, Matthijs</au><au>Kleijn, René</au><au>Murakami, Shinsuke</au><au>Kramer, Gert Jan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel Indicators for the Quantification of Resilience in Critical Material Supply Chains, with a 2010 Rare Earth Crisis Case Study</atitle><jtitle>Environmental science &amp; technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2017-04-04</date><risdate>2017</risdate><volume>51</volume><issue>7</issue><spage>3860</spage><epage>3870</epage><pages>3860-3870</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><abstract>We introduce several new resilience metrics for quantifying the resilience of critical material supply chains to disruptions and validate these metrics using the 2010 rare earth element (REE) crisis as a case study. Our method is a novel application of Event Sequence Analysis, supplemented with interviews of actors across the entire supply chain. We discuss resilience mechanisms in quantitative terms–time lags, response speeds, and maximum magnitudes–and in light of cultural differences between Japanese and European corporate practice. This quantification is crucial if resilience is ever to be taken into account in criticality assessments and a step toward determining supply and demand elasticities in the REE supply chain. We find that the REE system showed resilience mainly through substitution and increased non-Chinese primary production, with a distinct role for stockpiling. Overall, annual substitution rates reached 10% of total demand. Non-Chinese primary production ramped up at a speed of 4% of total market volume per year. The compound effect of these mechanisms was that recovery from the 2010 disruption took two years. The supply disruption did not nudge a system toward an appreciable degree of recycling. This finding has important implications for the circular economy concept, indicating that quite a long period of sustained material constraints will be necessary for a production-consumption system to naturally evolve toward a circular configuration.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>28257181</pmid><doi>10.1021/acs.est.6b05751</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-0136-5656</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0013-936X
ispartof Environmental science & technology, 2017-04, Vol.51 (7), p.3860-3870
issn 0013-936X
1520-5851
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5770137
source MEDLINE; ACS Publications
subjects Case studies
Consumption
Cultural differences
Demand
Disruption
Economic conditions
Elasticity of demand
Humans
Markets
Metals, Rare Earth
Primary production
Rare earth elements
Recovering
Recycling
Resilience
Supply & demand
Supply chains
title Novel Indicators for the Quantification of Resilience in Critical Material Supply Chains, with a 2010 Rare Earth Crisis Case Study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T04%3A31%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20Indicators%20for%20the%20Quantification%20of%20Resilience%20in%20Critical%20Material%20Supply%20Chains,%20with%20a%202010%20Rare%20Earth%20Crisis%20Case%20Study&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Sprecher,%20Benjamin&rft.date=2017-04-04&rft.volume=51&rft.issue=7&rft.spage=3860&rft.epage=3870&rft.pages=3860-3870&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.6b05751&rft_dat=%3Cproquest_pubme%3E1874448276%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1899442003&rft_id=info:pmid/28257181&rfr_iscdi=true