An evaluation of the effect of pulse-shape on grey and white matter stimulation in the rat brain

Despite the current success of neuromodulation, standard biphasic, rectangular pulse shapes may not be optimal to achieve symptom alleviation. Here, we compared stimulation efficiency (in terms of charge) between complex and standard pulses in two areas of the rat brain. In motor cortex, Gaussian an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2018-01, Vol.8 (1), p.752-10, Article 752
Hauptverfasser: Deprez, Marjolijn, Luyck, Kelly, Luyten, Laura, Tambuyzer, Tim, Nuttin, Bart, Mc Laughlin, Myles
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue 1
container_start_page 752
container_title Scientific reports
container_volume 8
creator Deprez, Marjolijn
Luyck, Kelly
Luyten, Laura
Tambuyzer, Tim
Nuttin, Bart
Mc Laughlin, Myles
description Despite the current success of neuromodulation, standard biphasic, rectangular pulse shapes may not be optimal to achieve symptom alleviation. Here, we compared stimulation efficiency (in terms of charge) between complex and standard pulses in two areas of the rat brain. In motor cortex, Gaussian and interphase gap stimulation (IPG) increased stimulation efficiency in terms of charge per phase compared with a standard pulse. Moreover, IPG stimulation of the deep mesencephalic reticular formation in freely moving rats was more efficient compared to a standard pulse. We therefore conclude that complex pulses are superior to standard stimulation, as less charge is required to achieve the same behavioral effects in a motor paradigm. These results have important implications for the understanding of electrical stimulation of the nervous system and open new perspectives for the design of the next generation of safe and efficient neural implants.
doi_str_mv 10.1038/s41598-017-19023-0
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5768709</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1987709885</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3890-cb4fb25d467563c124c67ed4a3d18c6cc54bb8c5871c2fcec5cc72be21a9fad33</originalsourceid><addsrcrecordid>eNp1kU1LHTEUhkOpVFH_QBcScNPN1HxMJslGEKlaELqp65jJnLk3MpO5JhmL_95cx8q10GyScJ7zJIcXoa-UfKeEq7NUU6FVRaisqCaMV-QTOmCkFhXjjH3eOe-j45QeSFmC6ZrqL2ifac6FoM0Bur8IGJ7sMNvsp4CnHuc1YOh7cHl728xDgiqt7QZwqa8iPGMbOvxn7TPg0eYMEafsx3lYDD68GqLNuI3WhyO019viOH7bD9Hd1Y_flzfV7a_rn5cXt5XjSpPKtXXfMtHVjRQNd5TVrpHQ1ZZ3VLnGOVG3rXJCSepY78AJ5yRrgVGre9txfojOF-9mbkfoHIQc7WA20Y82PpvJevOxEvzarKYnI2SjJNFF8O1NEKfHGVI2o08OhsEGmOZkqFZaKMIkLejpP-jDNMdQxttSstiUEoViC-XilFKE_v0zlJhthmbJ0JQMzWuGhpSmk90x3lv-JlYAvgCplMIK4s7b_9e-AI5BqHE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1987709885</pqid></control><display><type>article</type><title>An evaluation of the effect of pulse-shape on grey and white matter stimulation in the rat brain</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Deprez, Marjolijn ; Luyck, Kelly ; Luyten, Laura ; Tambuyzer, Tim ; Nuttin, Bart ; Mc Laughlin, Myles</creator><creatorcontrib>Deprez, Marjolijn ; Luyck, Kelly ; Luyten, Laura ; Tambuyzer, Tim ; Nuttin, Bart ; Mc Laughlin, Myles</creatorcontrib><description>Despite the current success of neuromodulation, standard biphasic, rectangular pulse shapes may not be optimal to achieve symptom alleviation. Here, we compared stimulation efficiency (in terms of charge) between complex and standard pulses in two areas of the rat brain. In motor cortex, Gaussian and interphase gap stimulation (IPG) increased stimulation efficiency in terms of charge per phase compared with a standard pulse. Moreover, IPG stimulation of the deep mesencephalic reticular formation in freely moving rats was more efficient compared to a standard pulse. We therefore conclude that complex pulses are superior to standard stimulation, as less charge is required to achieve the same behavioral effects in a motor paradigm. These results have important implications for the understanding of electrical stimulation of the nervous system and open new perspectives for the design of the next generation of safe and efficient neural implants.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-017-19023-0</identifier><identifier>PMID: 29335516</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/378 ; 692/617 ; Animals ; Cortex (motor) ; Electric Stimulation - methods ; Electrical stimuli ; Gray Matter - physiology ; Humanities and Social Sciences ; Motion ; multidisciplinary ; Nervous system ; Neuromodulation ; Rats ; Reticular formation ; Rodents ; Science ; Science (multidisciplinary) ; Substantia alba ; White Matter - physiology</subject><ispartof>Scientific reports, 2018-01, Vol.8 (1), p.752-10, Article 752</ispartof><rights>The Author(s) 2018</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3890-cb4fb25d467563c124c67ed4a3d18c6cc54bb8c5871c2fcec5cc72be21a9fad33</citedby><cites>FETCH-LOGICAL-c3890-cb4fb25d467563c124c67ed4a3d18c6cc54bb8c5871c2fcec5cc72be21a9fad33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5768709/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5768709/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27923,27924,41119,42188,51575,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29335516$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Deprez, Marjolijn</creatorcontrib><creatorcontrib>Luyck, Kelly</creatorcontrib><creatorcontrib>Luyten, Laura</creatorcontrib><creatorcontrib>Tambuyzer, Tim</creatorcontrib><creatorcontrib>Nuttin, Bart</creatorcontrib><creatorcontrib>Mc Laughlin, Myles</creatorcontrib><title>An evaluation of the effect of pulse-shape on grey and white matter stimulation in the rat brain</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Despite the current success of neuromodulation, standard biphasic, rectangular pulse shapes may not be optimal to achieve symptom alleviation. Here, we compared stimulation efficiency (in terms of charge) between complex and standard pulses in two areas of the rat brain. In motor cortex, Gaussian and interphase gap stimulation (IPG) increased stimulation efficiency in terms of charge per phase compared with a standard pulse. Moreover, IPG stimulation of the deep mesencephalic reticular formation in freely moving rats was more efficient compared to a standard pulse. We therefore conclude that complex pulses are superior to standard stimulation, as less charge is required to achieve the same behavioral effects in a motor paradigm. These results have important implications for the understanding of electrical stimulation of the nervous system and open new perspectives for the design of the next generation of safe and efficient neural implants.</description><subject>631/378</subject><subject>692/617</subject><subject>Animals</subject><subject>Cortex (motor)</subject><subject>Electric Stimulation - methods</subject><subject>Electrical stimuli</subject><subject>Gray Matter - physiology</subject><subject>Humanities and Social Sciences</subject><subject>Motion</subject><subject>multidisciplinary</subject><subject>Nervous system</subject><subject>Neuromodulation</subject><subject>Rats</subject><subject>Reticular formation</subject><subject>Rodents</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Substantia alba</subject><subject>White Matter - physiology</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kU1LHTEUhkOpVFH_QBcScNPN1HxMJslGEKlaELqp65jJnLk3MpO5JhmL_95cx8q10GyScJ7zJIcXoa-UfKeEq7NUU6FVRaisqCaMV-QTOmCkFhXjjH3eOe-j45QeSFmC6ZrqL2ifac6FoM0Bur8IGJ7sMNvsp4CnHuc1YOh7cHl728xDgiqt7QZwqa8iPGMbOvxn7TPg0eYMEafsx3lYDD68GqLNuI3WhyO019viOH7bD9Hd1Y_flzfV7a_rn5cXt5XjSpPKtXXfMtHVjRQNd5TVrpHQ1ZZ3VLnGOVG3rXJCSepY78AJ5yRrgVGre9txfojOF-9mbkfoHIQc7WA20Y82PpvJevOxEvzarKYnI2SjJNFF8O1NEKfHGVI2o08OhsEGmOZkqFZaKMIkLejpP-jDNMdQxttSstiUEoViC-XilFKE_v0zlJhthmbJ0JQMzWuGhpSmk90x3lv-JlYAvgCplMIK4s7b_9e-AI5BqHE</recordid><startdate>20180115</startdate><enddate>20180115</enddate><creator>Deprez, Marjolijn</creator><creator>Luyck, Kelly</creator><creator>Luyten, Laura</creator><creator>Tambuyzer, Tim</creator><creator>Nuttin, Bart</creator><creator>Mc Laughlin, Myles</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20180115</creationdate><title>An evaluation of the effect of pulse-shape on grey and white matter stimulation in the rat brain</title><author>Deprez, Marjolijn ; Luyck, Kelly ; Luyten, Laura ; Tambuyzer, Tim ; Nuttin, Bart ; Mc Laughlin, Myles</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3890-cb4fb25d467563c124c67ed4a3d18c6cc54bb8c5871c2fcec5cc72be21a9fad33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>631/378</topic><topic>692/617</topic><topic>Animals</topic><topic>Cortex (motor)</topic><topic>Electric Stimulation - methods</topic><topic>Electrical stimuli</topic><topic>Gray Matter - physiology</topic><topic>Humanities and Social Sciences</topic><topic>Motion</topic><topic>multidisciplinary</topic><topic>Nervous system</topic><topic>Neuromodulation</topic><topic>Rats</topic><topic>Reticular formation</topic><topic>Rodents</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Substantia alba</topic><topic>White Matter - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deprez, Marjolijn</creatorcontrib><creatorcontrib>Luyck, Kelly</creatorcontrib><creatorcontrib>Luyten, Laura</creatorcontrib><creatorcontrib>Tambuyzer, Tim</creatorcontrib><creatorcontrib>Nuttin, Bart</creatorcontrib><creatorcontrib>Mc Laughlin, Myles</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deprez, Marjolijn</au><au>Luyck, Kelly</au><au>Luyten, Laura</au><au>Tambuyzer, Tim</au><au>Nuttin, Bart</au><au>Mc Laughlin, Myles</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An evaluation of the effect of pulse-shape on grey and white matter stimulation in the rat brain</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2018-01-15</date><risdate>2018</risdate><volume>8</volume><issue>1</issue><spage>752</spage><epage>10</epage><pages>752-10</pages><artnum>752</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Despite the current success of neuromodulation, standard biphasic, rectangular pulse shapes may not be optimal to achieve symptom alleviation. Here, we compared stimulation efficiency (in terms of charge) between complex and standard pulses in two areas of the rat brain. In motor cortex, Gaussian and interphase gap stimulation (IPG) increased stimulation efficiency in terms of charge per phase compared with a standard pulse. Moreover, IPG stimulation of the deep mesencephalic reticular formation in freely moving rats was more efficient compared to a standard pulse. We therefore conclude that complex pulses are superior to standard stimulation, as less charge is required to achieve the same behavioral effects in a motor paradigm. These results have important implications for the understanding of electrical stimulation of the nervous system and open new perspectives for the design of the next generation of safe and efficient neural implants.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>29335516</pmid><doi>10.1038/s41598-017-19023-0</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2018-01, Vol.8 (1), p.752-10, Article 752
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5768709
source MEDLINE; DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects 631/378
692/617
Animals
Cortex (motor)
Electric Stimulation - methods
Electrical stimuli
Gray Matter - physiology
Humanities and Social Sciences
Motion
multidisciplinary
Nervous system
Neuromodulation
Rats
Reticular formation
Rodents
Science
Science (multidisciplinary)
Substantia alba
White Matter - physiology
title An evaluation of the effect of pulse-shape on grey and white matter stimulation in the rat brain
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T21%3A41%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20evaluation%20of%20the%20effect%20of%20pulse-shape%20on%20grey%20and%20white%20matter%20stimulation%20in%20the%20rat%20brain&rft.jtitle=Scientific%20reports&rft.au=Deprez,%20Marjolijn&rft.date=2018-01-15&rft.volume=8&rft.issue=1&rft.spage=752&rft.epage=10&rft.pages=752-10&rft.artnum=752&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-017-19023-0&rft_dat=%3Cproquest_pubme%3E1987709885%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1987709885&rft_id=info:pmid/29335516&rfr_iscdi=true