Different shades of default mode disturbance in schizophrenia: Subnodal covariance estimation in structure and function

Schizophrenia is a devastating mental disease with an apparent disruption in the highly associative default mode network (DMN). Interplay between this canonical network and others probably contributes to goal-directed behavior so its disturbance is a candidate neural fingerprint underlying schizophr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Human brain mapping 2018-02, Vol.39 (2), p.644-661
Hauptverfasser: Lefort-Besnard, Jérémy, Bassett, Danielle S, Smallwood, Jonathan, Margulies, Daniel S, Derntl, Birgit, Gruber, Oliver, Aleman, Andre, Jardri, Renaud, Varoquaux, Gaël, Thirion, Bertrand, Eickhoff, Simon B, Bzdok, Danilo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 661
container_issue 2
container_start_page 644
container_title Human brain mapping
container_volume 39
creator Lefort-Besnard, Jérémy
Bassett, Danielle S
Smallwood, Jonathan
Margulies, Daniel S
Derntl, Birgit
Gruber, Oliver
Aleman, Andre
Jardri, Renaud
Varoquaux, Gaël
Thirion, Bertrand
Eickhoff, Simon B
Bzdok, Danilo
description Schizophrenia is a devastating mental disease with an apparent disruption in the highly associative default mode network (DMN). Interplay between this canonical network and others probably contributes to goal-directed behavior so its disturbance is a candidate neural fingerprint underlying schizophrenia psychopathology. Previous research has reported both hyperconnectivity and hypoconnectivity within the DMN, and both increased and decreased DMN coupling with the multimodal saliency network (SN) and dorsal attention network (DAN). This study systematically revisited network disruption in patients with schizophrenia using data-derived network atlases and multivariate pattern-learning algorithms in a multisite dataset (n = 325). Resting-state fluctuations in unconstrained brain states were used to estimate functional connectivity, and local volume differences between individuals were used to estimate structural co-occurrence within and between the DMN, SN, and DAN. In brain structure and function, sparse inverse covariance estimates of network coupling were used to characterize healthy participants and patients with schizophrenia, and to identify statistically significant group differences. Evidence did not confirm that the backbone of the DMN was the primary driver of brain dysfunction in schizophrenia. Instead, functional and structural aberrations were frequently located outside of the DMN core, such as in the anterior temporoparietal junction and precuneus. Additionally, functional covariation analyses highlighted dysfunctional DMN-DAN coupling, while structural covariation results highlighted aberrant DMN-SN coupling. Our findings reframe the role of the DMN core and its relation to canonical networks in schizophrenia. We thus underline the importance of large-scale neural interactions as effective biomarkers and indicators of how to tailor psychiatric care to single patients.
doi_str_mv 10.1002/hbm.23870
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5764781</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1986419200</sourcerecordid><originalsourceid>FETCH-LOGICAL-c437t-37f8d8892a42f0118a2dfb0104872909b3681b9c654eec6090fb9aea65786dfb3</originalsourceid><addsrcrecordid>eNpdkc1u1TAQhSMEoqWw4AWQJTawSDu2Y8dmgVSVliJdqQtgbTmOTVwl9sVOblWeHue2FOjKI883Z35OVb3GcIwByMnQTceEihaeVIcYZFsDlvTpGnNWy6bFB9WLnK8BMGaAn1cHRGJghMrD6uaTd84mG2aUB93bjKJDvXV6GWc0xd6i3ud5SZ0OxiIfUDaD_xW3Qynx-gP6unQh9npEJu508nvK5tlPevYx7AvmtJiiYJEOPXJLMGvmZfXM6THbV_fvUfX94vzb2WW9ufr85ex0U5uGtnNNWyd6ISTRDXFlfKFJ7zrA0IiWSJAd5QJ30nDWWGs4SHCd1FZz1gpeSHpUfbzT3S7dZHtTFk16VNtUJky3Kmqv_s8EP6gfcadYy5tW4CLw_k5geFR2ebpR6x-QhlLK2G5l3903S_HnUs6gJp-NHUcdbFyywpJjoJwwXtC3j9DruKRQTlEowRssCcDf5ibFnJN1DxNgUKv1qliv9tYX9s2_mz6Qf7ymvwFTBqr7</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1986419200</pqid></control><display><type>article</type><title>Different shades of default mode disturbance in schizophrenia: Subnodal covariance estimation in structure and function</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Lefort-Besnard, Jérémy ; Bassett, Danielle S ; Smallwood, Jonathan ; Margulies, Daniel S ; Derntl, Birgit ; Gruber, Oliver ; Aleman, Andre ; Jardri, Renaud ; Varoquaux, Gaël ; Thirion, Bertrand ; Eickhoff, Simon B ; Bzdok, Danilo</creator><creatorcontrib>Lefort-Besnard, Jérémy ; Bassett, Danielle S ; Smallwood, Jonathan ; Margulies, Daniel S ; Derntl, Birgit ; Gruber, Oliver ; Aleman, Andre ; Jardri, Renaud ; Varoquaux, Gaël ; Thirion, Bertrand ; Eickhoff, Simon B ; Bzdok, Danilo</creatorcontrib><description>Schizophrenia is a devastating mental disease with an apparent disruption in the highly associative default mode network (DMN). Interplay between this canonical network and others probably contributes to goal-directed behavior so its disturbance is a candidate neural fingerprint underlying schizophrenia psychopathology. Previous research has reported both hyperconnectivity and hypoconnectivity within the DMN, and both increased and decreased DMN coupling with the multimodal saliency network (SN) and dorsal attention network (DAN). This study systematically revisited network disruption in patients with schizophrenia using data-derived network atlases and multivariate pattern-learning algorithms in a multisite dataset (n = 325). Resting-state fluctuations in unconstrained brain states were used to estimate functional connectivity, and local volume differences between individuals were used to estimate structural co-occurrence within and between the DMN, SN, and DAN. In brain structure and function, sparse inverse covariance estimates of network coupling were used to characterize healthy participants and patients with schizophrenia, and to identify statistically significant group differences. Evidence did not confirm that the backbone of the DMN was the primary driver of brain dysfunction in schizophrenia. Instead, functional and structural aberrations were frequently located outside of the DMN core, such as in the anterior temporoparietal junction and precuneus. Additionally, functional covariation analyses highlighted dysfunctional DMN-DAN coupling, while structural covariation results highlighted aberrant DMN-SN coupling. Our findings reframe the role of the DMN core and its relation to canonical networks in schizophrenia. We thus underline the importance of large-scale neural interactions as effective biomarkers and indicators of how to tailor psychiatric care to single patients.</description><identifier>ISSN: 1065-9471</identifier><identifier>ISSN: 1097-0193</identifier><identifier>EISSN: 1097-0193</identifier><identifier>DOI: 10.1002/hbm.23870</identifier><identifier>PMID: 29105239</identifier><language>eng</language><publisher>United States: John Wiley &amp; Sons, Inc</publisher><subject>Aberration ; Algorithms ; Attention ; Bioindicators ; Biomarkers ; Brain ; Brain - diagnostic imaging ; Brain - physiopathology ; Brain Mapping - methods ; Cognitive science ; Cortex (parietal) ; Coupling ; Covariance ; Disturbance ; Functional anatomy ; Humans ; Learning algorithms ; Machine learning ; Magnetic Resonance Imaging ; Mental disorders ; Neural networks ; Neural Pathways - diagnostic imaging ; Neural Pathways - physiopathology ; Patients ; Psychopathology ; Rest ; Schizophrenia ; Schizophrenia - diagnostic imaging ; Schizophrenia - physiopathology ; Shades ; Statistical analysis ; Structure-function relationships ; Variations</subject><ispartof>Human brain mapping, 2018-02, Vol.39 (2), p.644-661</ispartof><rights>2017 Wiley Periodicals, Inc.</rights><rights>2018 Wiley Periodicals, Inc.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c437t-37f8d8892a42f0118a2dfb0104872909b3681b9c654eec6090fb9aea65786dfb3</citedby><cites>FETCH-LOGICAL-c437t-37f8d8892a42f0118a2dfb0104872909b3681b9c654eec6090fb9aea65786dfb3</cites><orcidid>0000-0002-8033-4953 ; 0000-0002-6183-4493 ; 0000-0001-5018-7895 ; 0000-0003-4596-1502</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5764781/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5764781/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29105239$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.univ-lille.fr/hal-02433355$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Lefort-Besnard, Jérémy</creatorcontrib><creatorcontrib>Bassett, Danielle S</creatorcontrib><creatorcontrib>Smallwood, Jonathan</creatorcontrib><creatorcontrib>Margulies, Daniel S</creatorcontrib><creatorcontrib>Derntl, Birgit</creatorcontrib><creatorcontrib>Gruber, Oliver</creatorcontrib><creatorcontrib>Aleman, Andre</creatorcontrib><creatorcontrib>Jardri, Renaud</creatorcontrib><creatorcontrib>Varoquaux, Gaël</creatorcontrib><creatorcontrib>Thirion, Bertrand</creatorcontrib><creatorcontrib>Eickhoff, Simon B</creatorcontrib><creatorcontrib>Bzdok, Danilo</creatorcontrib><title>Different shades of default mode disturbance in schizophrenia: Subnodal covariance estimation in structure and function</title><title>Human brain mapping</title><addtitle>Hum Brain Mapp</addtitle><description>Schizophrenia is a devastating mental disease with an apparent disruption in the highly associative default mode network (DMN). Interplay between this canonical network and others probably contributes to goal-directed behavior so its disturbance is a candidate neural fingerprint underlying schizophrenia psychopathology. Previous research has reported both hyperconnectivity and hypoconnectivity within the DMN, and both increased and decreased DMN coupling with the multimodal saliency network (SN) and dorsal attention network (DAN). This study systematically revisited network disruption in patients with schizophrenia using data-derived network atlases and multivariate pattern-learning algorithms in a multisite dataset (n = 325). Resting-state fluctuations in unconstrained brain states were used to estimate functional connectivity, and local volume differences between individuals were used to estimate structural co-occurrence within and between the DMN, SN, and DAN. In brain structure and function, sparse inverse covariance estimates of network coupling were used to characterize healthy participants and patients with schizophrenia, and to identify statistically significant group differences. Evidence did not confirm that the backbone of the DMN was the primary driver of brain dysfunction in schizophrenia. Instead, functional and structural aberrations were frequently located outside of the DMN core, such as in the anterior temporoparietal junction and precuneus. Additionally, functional covariation analyses highlighted dysfunctional DMN-DAN coupling, while structural covariation results highlighted aberrant DMN-SN coupling. Our findings reframe the role of the DMN core and its relation to canonical networks in schizophrenia. We thus underline the importance of large-scale neural interactions as effective biomarkers and indicators of how to tailor psychiatric care to single patients.</description><subject>Aberration</subject><subject>Algorithms</subject><subject>Attention</subject><subject>Bioindicators</subject><subject>Biomarkers</subject><subject>Brain</subject><subject>Brain - diagnostic imaging</subject><subject>Brain - physiopathology</subject><subject>Brain Mapping - methods</subject><subject>Cognitive science</subject><subject>Cortex (parietal)</subject><subject>Coupling</subject><subject>Covariance</subject><subject>Disturbance</subject><subject>Functional anatomy</subject><subject>Humans</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Magnetic Resonance Imaging</subject><subject>Mental disorders</subject><subject>Neural networks</subject><subject>Neural Pathways - diagnostic imaging</subject><subject>Neural Pathways - physiopathology</subject><subject>Patients</subject><subject>Psychopathology</subject><subject>Rest</subject><subject>Schizophrenia</subject><subject>Schizophrenia - diagnostic imaging</subject><subject>Schizophrenia - physiopathology</subject><subject>Shades</subject><subject>Statistical analysis</subject><subject>Structure-function relationships</subject><subject>Variations</subject><issn>1065-9471</issn><issn>1097-0193</issn><issn>1097-0193</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1u1TAQhSMEoqWw4AWQJTawSDu2Y8dmgVSVliJdqQtgbTmOTVwl9sVOblWeHue2FOjKI883Z35OVb3GcIwByMnQTceEihaeVIcYZFsDlvTpGnNWy6bFB9WLnK8BMGaAn1cHRGJghMrD6uaTd84mG2aUB93bjKJDvXV6GWc0xd6i3ud5SZ0OxiIfUDaD_xW3Qynx-gP6unQh9npEJu508nvK5tlPevYx7AvmtJiiYJEOPXJLMGvmZfXM6THbV_fvUfX94vzb2WW9ufr85ex0U5uGtnNNWyd6ISTRDXFlfKFJ7zrA0IiWSJAd5QJ30nDWWGs4SHCd1FZz1gpeSHpUfbzT3S7dZHtTFk16VNtUJky3Kmqv_s8EP6gfcadYy5tW4CLw_k5geFR2ebpR6x-QhlLK2G5l3903S_HnUs6gJp-NHUcdbFyywpJjoJwwXtC3j9DruKRQTlEowRssCcDf5ibFnJN1DxNgUKv1qliv9tYX9s2_mz6Qf7ymvwFTBqr7</recordid><startdate>20180201</startdate><enddate>20180201</enddate><creator>Lefort-Besnard, Jérémy</creator><creator>Bassett, Danielle S</creator><creator>Smallwood, Jonathan</creator><creator>Margulies, Daniel S</creator><creator>Derntl, Birgit</creator><creator>Gruber, Oliver</creator><creator>Aleman, Andre</creator><creator>Jardri, Renaud</creator><creator>Varoquaux, Gaël</creator><creator>Thirion, Bertrand</creator><creator>Eickhoff, Simon B</creator><creator>Bzdok, Danilo</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley</general><general>John Wiley and Sons Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8033-4953</orcidid><orcidid>https://orcid.org/0000-0002-6183-4493</orcidid><orcidid>https://orcid.org/0000-0001-5018-7895</orcidid><orcidid>https://orcid.org/0000-0003-4596-1502</orcidid></search><sort><creationdate>20180201</creationdate><title>Different shades of default mode disturbance in schizophrenia: Subnodal covariance estimation in structure and function</title><author>Lefort-Besnard, Jérémy ; Bassett, Danielle S ; Smallwood, Jonathan ; Margulies, Daniel S ; Derntl, Birgit ; Gruber, Oliver ; Aleman, Andre ; Jardri, Renaud ; Varoquaux, Gaël ; Thirion, Bertrand ; Eickhoff, Simon B ; Bzdok, Danilo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c437t-37f8d8892a42f0118a2dfb0104872909b3681b9c654eec6090fb9aea65786dfb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aberration</topic><topic>Algorithms</topic><topic>Attention</topic><topic>Bioindicators</topic><topic>Biomarkers</topic><topic>Brain</topic><topic>Brain - diagnostic imaging</topic><topic>Brain - physiopathology</topic><topic>Brain Mapping - methods</topic><topic>Cognitive science</topic><topic>Cortex (parietal)</topic><topic>Coupling</topic><topic>Covariance</topic><topic>Disturbance</topic><topic>Functional anatomy</topic><topic>Humans</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Magnetic Resonance Imaging</topic><topic>Mental disorders</topic><topic>Neural networks</topic><topic>Neural Pathways - diagnostic imaging</topic><topic>Neural Pathways - physiopathology</topic><topic>Patients</topic><topic>Psychopathology</topic><topic>Rest</topic><topic>Schizophrenia</topic><topic>Schizophrenia - diagnostic imaging</topic><topic>Schizophrenia - physiopathology</topic><topic>Shades</topic><topic>Statistical analysis</topic><topic>Structure-function relationships</topic><topic>Variations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lefort-Besnard, Jérémy</creatorcontrib><creatorcontrib>Bassett, Danielle S</creatorcontrib><creatorcontrib>Smallwood, Jonathan</creatorcontrib><creatorcontrib>Margulies, Daniel S</creatorcontrib><creatorcontrib>Derntl, Birgit</creatorcontrib><creatorcontrib>Gruber, Oliver</creatorcontrib><creatorcontrib>Aleman, Andre</creatorcontrib><creatorcontrib>Jardri, Renaud</creatorcontrib><creatorcontrib>Varoquaux, Gaël</creatorcontrib><creatorcontrib>Thirion, Bertrand</creatorcontrib><creatorcontrib>Eickhoff, Simon B</creatorcontrib><creatorcontrib>Bzdok, Danilo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Human brain mapping</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lefort-Besnard, Jérémy</au><au>Bassett, Danielle S</au><au>Smallwood, Jonathan</au><au>Margulies, Daniel S</au><au>Derntl, Birgit</au><au>Gruber, Oliver</au><au>Aleman, Andre</au><au>Jardri, Renaud</au><au>Varoquaux, Gaël</au><au>Thirion, Bertrand</au><au>Eickhoff, Simon B</au><au>Bzdok, Danilo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Different shades of default mode disturbance in schizophrenia: Subnodal covariance estimation in structure and function</atitle><jtitle>Human brain mapping</jtitle><addtitle>Hum Brain Mapp</addtitle><date>2018-02-01</date><risdate>2018</risdate><volume>39</volume><issue>2</issue><spage>644</spage><epage>661</epage><pages>644-661</pages><issn>1065-9471</issn><issn>1097-0193</issn><eissn>1097-0193</eissn><abstract>Schizophrenia is a devastating mental disease with an apparent disruption in the highly associative default mode network (DMN). Interplay between this canonical network and others probably contributes to goal-directed behavior so its disturbance is a candidate neural fingerprint underlying schizophrenia psychopathology. Previous research has reported both hyperconnectivity and hypoconnectivity within the DMN, and both increased and decreased DMN coupling with the multimodal saliency network (SN) and dorsal attention network (DAN). This study systematically revisited network disruption in patients with schizophrenia using data-derived network atlases and multivariate pattern-learning algorithms in a multisite dataset (n = 325). Resting-state fluctuations in unconstrained brain states were used to estimate functional connectivity, and local volume differences between individuals were used to estimate structural co-occurrence within and between the DMN, SN, and DAN. In brain structure and function, sparse inverse covariance estimates of network coupling were used to characterize healthy participants and patients with schizophrenia, and to identify statistically significant group differences. Evidence did not confirm that the backbone of the DMN was the primary driver of brain dysfunction in schizophrenia. Instead, functional and structural aberrations were frequently located outside of the DMN core, such as in the anterior temporoparietal junction and precuneus. Additionally, functional covariation analyses highlighted dysfunctional DMN-DAN coupling, while structural covariation results highlighted aberrant DMN-SN coupling. Our findings reframe the role of the DMN core and its relation to canonical networks in schizophrenia. We thus underline the importance of large-scale neural interactions as effective biomarkers and indicators of how to tailor psychiatric care to single patients.</abstract><cop>United States</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>29105239</pmid><doi>10.1002/hbm.23870</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-8033-4953</orcidid><orcidid>https://orcid.org/0000-0002-6183-4493</orcidid><orcidid>https://orcid.org/0000-0001-5018-7895</orcidid><orcidid>https://orcid.org/0000-0003-4596-1502</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1065-9471
ispartof Human brain mapping, 2018-02, Vol.39 (2), p.644-661
issn 1065-9471
1097-0193
1097-0193
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5764781
source MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Aberration
Algorithms
Attention
Bioindicators
Biomarkers
Brain
Brain - diagnostic imaging
Brain - physiopathology
Brain Mapping - methods
Cognitive science
Cortex (parietal)
Coupling
Covariance
Disturbance
Functional anatomy
Humans
Learning algorithms
Machine learning
Magnetic Resonance Imaging
Mental disorders
Neural networks
Neural Pathways - diagnostic imaging
Neural Pathways - physiopathology
Patients
Psychopathology
Rest
Schizophrenia
Schizophrenia - diagnostic imaging
Schizophrenia - physiopathology
Shades
Statistical analysis
Structure-function relationships
Variations
title Different shades of default mode disturbance in schizophrenia: Subnodal covariance estimation in structure and function
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T07%3A43%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Different%20shades%20of%20default%20mode%20disturbance%20in%20schizophrenia:%20Subnodal%20covariance%20estimation%20in%20structure%20and%20function&rft.jtitle=Human%20brain%20mapping&rft.au=Lefort-Besnard,%20J%C3%A9r%C3%A9my&rft.date=2018-02-01&rft.volume=39&rft.issue=2&rft.spage=644&rft.epage=661&rft.pages=644-661&rft.issn=1065-9471&rft.eissn=1097-0193&rft_id=info:doi/10.1002/hbm.23870&rft_dat=%3Cproquest_pubme%3E1986419200%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1986419200&rft_id=info:pmid/29105239&rfr_iscdi=true