Different shades of default mode disturbance in schizophrenia: Subnodal covariance estimation in structure and function
Schizophrenia is a devastating mental disease with an apparent disruption in the highly associative default mode network (DMN). Interplay between this canonical network and others probably contributes to goal-directed behavior so its disturbance is a candidate neural fingerprint underlying schizophr...
Gespeichert in:
Veröffentlicht in: | Human brain mapping 2018-02, Vol.39 (2), p.644-661 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 661 |
---|---|
container_issue | 2 |
container_start_page | 644 |
container_title | Human brain mapping |
container_volume | 39 |
creator | Lefort-Besnard, Jérémy Bassett, Danielle S Smallwood, Jonathan Margulies, Daniel S Derntl, Birgit Gruber, Oliver Aleman, Andre Jardri, Renaud Varoquaux, Gaël Thirion, Bertrand Eickhoff, Simon B Bzdok, Danilo |
description | Schizophrenia is a devastating mental disease with an apparent disruption in the highly associative default mode network (DMN). Interplay between this canonical network and others probably contributes to goal-directed behavior so its disturbance is a candidate neural fingerprint underlying schizophrenia psychopathology. Previous research has reported both hyperconnectivity and hypoconnectivity within the DMN, and both increased and decreased DMN coupling with the multimodal saliency network (SN) and dorsal attention network (DAN). This study systematically revisited network disruption in patients with schizophrenia using data-derived network atlases and multivariate pattern-learning algorithms in a multisite dataset (n = 325). Resting-state fluctuations in unconstrained brain states were used to estimate functional connectivity, and local volume differences between individuals were used to estimate structural co-occurrence within and between the DMN, SN, and DAN. In brain structure and function, sparse inverse covariance estimates of network coupling were used to characterize healthy participants and patients with schizophrenia, and to identify statistically significant group differences. Evidence did not confirm that the backbone of the DMN was the primary driver of brain dysfunction in schizophrenia. Instead, functional and structural aberrations were frequently located outside of the DMN core, such as in the anterior temporoparietal junction and precuneus. Additionally, functional covariation analyses highlighted dysfunctional DMN-DAN coupling, while structural covariation results highlighted aberrant DMN-SN coupling. Our findings reframe the role of the DMN core and its relation to canonical networks in schizophrenia. We thus underline the importance of large-scale neural interactions as effective biomarkers and indicators of how to tailor psychiatric care to single patients. |
doi_str_mv | 10.1002/hbm.23870 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5764781</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1986419200</sourcerecordid><originalsourceid>FETCH-LOGICAL-c437t-37f8d8892a42f0118a2dfb0104872909b3681b9c654eec6090fb9aea65786dfb3</originalsourceid><addsrcrecordid>eNpdkc1u1TAQhSMEoqWw4AWQJTawSDu2Y8dmgVSVliJdqQtgbTmOTVwl9sVOblWeHue2FOjKI883Z35OVb3GcIwByMnQTceEihaeVIcYZFsDlvTpGnNWy6bFB9WLnK8BMGaAn1cHRGJghMrD6uaTd84mG2aUB93bjKJDvXV6GWc0xd6i3ud5SZ0OxiIfUDaD_xW3Qynx-gP6unQh9npEJu508nvK5tlPevYx7AvmtJiiYJEOPXJLMGvmZfXM6THbV_fvUfX94vzb2WW9ufr85ex0U5uGtnNNWyd6ISTRDXFlfKFJ7zrA0IiWSJAd5QJ30nDWWGs4SHCd1FZz1gpeSHpUfbzT3S7dZHtTFk16VNtUJky3Kmqv_s8EP6gfcadYy5tW4CLw_k5geFR2ebpR6x-QhlLK2G5l3903S_HnUs6gJp-NHUcdbFyywpJjoJwwXtC3j9DruKRQTlEowRssCcDf5ibFnJN1DxNgUKv1qliv9tYX9s2_mz6Qf7ymvwFTBqr7</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1986419200</pqid></control><display><type>article</type><title>Different shades of default mode disturbance in schizophrenia: Subnodal covariance estimation in structure and function</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Lefort-Besnard, Jérémy ; Bassett, Danielle S ; Smallwood, Jonathan ; Margulies, Daniel S ; Derntl, Birgit ; Gruber, Oliver ; Aleman, Andre ; Jardri, Renaud ; Varoquaux, Gaël ; Thirion, Bertrand ; Eickhoff, Simon B ; Bzdok, Danilo</creator><creatorcontrib>Lefort-Besnard, Jérémy ; Bassett, Danielle S ; Smallwood, Jonathan ; Margulies, Daniel S ; Derntl, Birgit ; Gruber, Oliver ; Aleman, Andre ; Jardri, Renaud ; Varoquaux, Gaël ; Thirion, Bertrand ; Eickhoff, Simon B ; Bzdok, Danilo</creatorcontrib><description>Schizophrenia is a devastating mental disease with an apparent disruption in the highly associative default mode network (DMN). Interplay between this canonical network and others probably contributes to goal-directed behavior so its disturbance is a candidate neural fingerprint underlying schizophrenia psychopathology. Previous research has reported both hyperconnectivity and hypoconnectivity within the DMN, and both increased and decreased DMN coupling with the multimodal saliency network (SN) and dorsal attention network (DAN). This study systematically revisited network disruption in patients with schizophrenia using data-derived network atlases and multivariate pattern-learning algorithms in a multisite dataset (n = 325). Resting-state fluctuations in unconstrained brain states were used to estimate functional connectivity, and local volume differences between individuals were used to estimate structural co-occurrence within and between the DMN, SN, and DAN. In brain structure and function, sparse inverse covariance estimates of network coupling were used to characterize healthy participants and patients with schizophrenia, and to identify statistically significant group differences. Evidence did not confirm that the backbone of the DMN was the primary driver of brain dysfunction in schizophrenia. Instead, functional and structural aberrations were frequently located outside of the DMN core, such as in the anterior temporoparietal junction and precuneus. Additionally, functional covariation analyses highlighted dysfunctional DMN-DAN coupling, while structural covariation results highlighted aberrant DMN-SN coupling. Our findings reframe the role of the DMN core and its relation to canonical networks in schizophrenia. We thus underline the importance of large-scale neural interactions as effective biomarkers and indicators of how to tailor psychiatric care to single patients.</description><identifier>ISSN: 1065-9471</identifier><identifier>ISSN: 1097-0193</identifier><identifier>EISSN: 1097-0193</identifier><identifier>DOI: 10.1002/hbm.23870</identifier><identifier>PMID: 29105239</identifier><language>eng</language><publisher>United States: John Wiley & Sons, Inc</publisher><subject>Aberration ; Algorithms ; Attention ; Bioindicators ; Biomarkers ; Brain ; Brain - diagnostic imaging ; Brain - physiopathology ; Brain Mapping - methods ; Cognitive science ; Cortex (parietal) ; Coupling ; Covariance ; Disturbance ; Functional anatomy ; Humans ; Learning algorithms ; Machine learning ; Magnetic Resonance Imaging ; Mental disorders ; Neural networks ; Neural Pathways - diagnostic imaging ; Neural Pathways - physiopathology ; Patients ; Psychopathology ; Rest ; Schizophrenia ; Schizophrenia - diagnostic imaging ; Schizophrenia - physiopathology ; Shades ; Statistical analysis ; Structure-function relationships ; Variations</subject><ispartof>Human brain mapping, 2018-02, Vol.39 (2), p.644-661</ispartof><rights>2017 Wiley Periodicals, Inc.</rights><rights>2018 Wiley Periodicals, Inc.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c437t-37f8d8892a42f0118a2dfb0104872909b3681b9c654eec6090fb9aea65786dfb3</citedby><cites>FETCH-LOGICAL-c437t-37f8d8892a42f0118a2dfb0104872909b3681b9c654eec6090fb9aea65786dfb3</cites><orcidid>0000-0002-8033-4953 ; 0000-0002-6183-4493 ; 0000-0001-5018-7895 ; 0000-0003-4596-1502</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5764781/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5764781/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29105239$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.univ-lille.fr/hal-02433355$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Lefort-Besnard, Jérémy</creatorcontrib><creatorcontrib>Bassett, Danielle S</creatorcontrib><creatorcontrib>Smallwood, Jonathan</creatorcontrib><creatorcontrib>Margulies, Daniel S</creatorcontrib><creatorcontrib>Derntl, Birgit</creatorcontrib><creatorcontrib>Gruber, Oliver</creatorcontrib><creatorcontrib>Aleman, Andre</creatorcontrib><creatorcontrib>Jardri, Renaud</creatorcontrib><creatorcontrib>Varoquaux, Gaël</creatorcontrib><creatorcontrib>Thirion, Bertrand</creatorcontrib><creatorcontrib>Eickhoff, Simon B</creatorcontrib><creatorcontrib>Bzdok, Danilo</creatorcontrib><title>Different shades of default mode disturbance in schizophrenia: Subnodal covariance estimation in structure and function</title><title>Human brain mapping</title><addtitle>Hum Brain Mapp</addtitle><description>Schizophrenia is a devastating mental disease with an apparent disruption in the highly associative default mode network (DMN). Interplay between this canonical network and others probably contributes to goal-directed behavior so its disturbance is a candidate neural fingerprint underlying schizophrenia psychopathology. Previous research has reported both hyperconnectivity and hypoconnectivity within the DMN, and both increased and decreased DMN coupling with the multimodal saliency network (SN) and dorsal attention network (DAN). This study systematically revisited network disruption in patients with schizophrenia using data-derived network atlases and multivariate pattern-learning algorithms in a multisite dataset (n = 325). Resting-state fluctuations in unconstrained brain states were used to estimate functional connectivity, and local volume differences between individuals were used to estimate structural co-occurrence within and between the DMN, SN, and DAN. In brain structure and function, sparse inverse covariance estimates of network coupling were used to characterize healthy participants and patients with schizophrenia, and to identify statistically significant group differences. Evidence did not confirm that the backbone of the DMN was the primary driver of brain dysfunction in schizophrenia. Instead, functional and structural aberrations were frequently located outside of the DMN core, such as in the anterior temporoparietal junction and precuneus. Additionally, functional covariation analyses highlighted dysfunctional DMN-DAN coupling, while structural covariation results highlighted aberrant DMN-SN coupling. Our findings reframe the role of the DMN core and its relation to canonical networks in schizophrenia. We thus underline the importance of large-scale neural interactions as effective biomarkers and indicators of how to tailor psychiatric care to single patients.</description><subject>Aberration</subject><subject>Algorithms</subject><subject>Attention</subject><subject>Bioindicators</subject><subject>Biomarkers</subject><subject>Brain</subject><subject>Brain - diagnostic imaging</subject><subject>Brain - physiopathology</subject><subject>Brain Mapping - methods</subject><subject>Cognitive science</subject><subject>Cortex (parietal)</subject><subject>Coupling</subject><subject>Covariance</subject><subject>Disturbance</subject><subject>Functional anatomy</subject><subject>Humans</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Magnetic Resonance Imaging</subject><subject>Mental disorders</subject><subject>Neural networks</subject><subject>Neural Pathways - diagnostic imaging</subject><subject>Neural Pathways - physiopathology</subject><subject>Patients</subject><subject>Psychopathology</subject><subject>Rest</subject><subject>Schizophrenia</subject><subject>Schizophrenia - diagnostic imaging</subject><subject>Schizophrenia - physiopathology</subject><subject>Shades</subject><subject>Statistical analysis</subject><subject>Structure-function relationships</subject><subject>Variations</subject><issn>1065-9471</issn><issn>1097-0193</issn><issn>1097-0193</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1u1TAQhSMEoqWw4AWQJTawSDu2Y8dmgVSVliJdqQtgbTmOTVwl9sVOblWeHue2FOjKI883Z35OVb3GcIwByMnQTceEihaeVIcYZFsDlvTpGnNWy6bFB9WLnK8BMGaAn1cHRGJghMrD6uaTd84mG2aUB93bjKJDvXV6GWc0xd6i3ud5SZ0OxiIfUDaD_xW3Qynx-gP6unQh9npEJu508nvK5tlPevYx7AvmtJiiYJEOPXJLMGvmZfXM6THbV_fvUfX94vzb2WW9ufr85ex0U5uGtnNNWyd6ISTRDXFlfKFJ7zrA0IiWSJAd5QJ30nDWWGs4SHCd1FZz1gpeSHpUfbzT3S7dZHtTFk16VNtUJky3Kmqv_s8EP6gfcadYy5tW4CLw_k5geFR2ebpR6x-QhlLK2G5l3903S_HnUs6gJp-NHUcdbFyywpJjoJwwXtC3j9DruKRQTlEowRssCcDf5ibFnJN1DxNgUKv1qliv9tYX9s2_mz6Qf7ymvwFTBqr7</recordid><startdate>20180201</startdate><enddate>20180201</enddate><creator>Lefort-Besnard, Jérémy</creator><creator>Bassett, Danielle S</creator><creator>Smallwood, Jonathan</creator><creator>Margulies, Daniel S</creator><creator>Derntl, Birgit</creator><creator>Gruber, Oliver</creator><creator>Aleman, Andre</creator><creator>Jardri, Renaud</creator><creator>Varoquaux, Gaël</creator><creator>Thirion, Bertrand</creator><creator>Eickhoff, Simon B</creator><creator>Bzdok, Danilo</creator><general>John Wiley & Sons, Inc</general><general>Wiley</general><general>John Wiley and Sons Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8033-4953</orcidid><orcidid>https://orcid.org/0000-0002-6183-4493</orcidid><orcidid>https://orcid.org/0000-0001-5018-7895</orcidid><orcidid>https://orcid.org/0000-0003-4596-1502</orcidid></search><sort><creationdate>20180201</creationdate><title>Different shades of default mode disturbance in schizophrenia: Subnodal covariance estimation in structure and function</title><author>Lefort-Besnard, Jérémy ; Bassett, Danielle S ; Smallwood, Jonathan ; Margulies, Daniel S ; Derntl, Birgit ; Gruber, Oliver ; Aleman, Andre ; Jardri, Renaud ; Varoquaux, Gaël ; Thirion, Bertrand ; Eickhoff, Simon B ; Bzdok, Danilo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c437t-37f8d8892a42f0118a2dfb0104872909b3681b9c654eec6090fb9aea65786dfb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aberration</topic><topic>Algorithms</topic><topic>Attention</topic><topic>Bioindicators</topic><topic>Biomarkers</topic><topic>Brain</topic><topic>Brain - diagnostic imaging</topic><topic>Brain - physiopathology</topic><topic>Brain Mapping - methods</topic><topic>Cognitive science</topic><topic>Cortex (parietal)</topic><topic>Coupling</topic><topic>Covariance</topic><topic>Disturbance</topic><topic>Functional anatomy</topic><topic>Humans</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Magnetic Resonance Imaging</topic><topic>Mental disorders</topic><topic>Neural networks</topic><topic>Neural Pathways - diagnostic imaging</topic><topic>Neural Pathways - physiopathology</topic><topic>Patients</topic><topic>Psychopathology</topic><topic>Rest</topic><topic>Schizophrenia</topic><topic>Schizophrenia - diagnostic imaging</topic><topic>Schizophrenia - physiopathology</topic><topic>Shades</topic><topic>Statistical analysis</topic><topic>Structure-function relationships</topic><topic>Variations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lefort-Besnard, Jérémy</creatorcontrib><creatorcontrib>Bassett, Danielle S</creatorcontrib><creatorcontrib>Smallwood, Jonathan</creatorcontrib><creatorcontrib>Margulies, Daniel S</creatorcontrib><creatorcontrib>Derntl, Birgit</creatorcontrib><creatorcontrib>Gruber, Oliver</creatorcontrib><creatorcontrib>Aleman, Andre</creatorcontrib><creatorcontrib>Jardri, Renaud</creatorcontrib><creatorcontrib>Varoquaux, Gaël</creatorcontrib><creatorcontrib>Thirion, Bertrand</creatorcontrib><creatorcontrib>Eickhoff, Simon B</creatorcontrib><creatorcontrib>Bzdok, Danilo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Human brain mapping</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lefort-Besnard, Jérémy</au><au>Bassett, Danielle S</au><au>Smallwood, Jonathan</au><au>Margulies, Daniel S</au><au>Derntl, Birgit</au><au>Gruber, Oliver</au><au>Aleman, Andre</au><au>Jardri, Renaud</au><au>Varoquaux, Gaël</au><au>Thirion, Bertrand</au><au>Eickhoff, Simon B</au><au>Bzdok, Danilo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Different shades of default mode disturbance in schizophrenia: Subnodal covariance estimation in structure and function</atitle><jtitle>Human brain mapping</jtitle><addtitle>Hum Brain Mapp</addtitle><date>2018-02-01</date><risdate>2018</risdate><volume>39</volume><issue>2</issue><spage>644</spage><epage>661</epage><pages>644-661</pages><issn>1065-9471</issn><issn>1097-0193</issn><eissn>1097-0193</eissn><abstract>Schizophrenia is a devastating mental disease with an apparent disruption in the highly associative default mode network (DMN). Interplay between this canonical network and others probably contributes to goal-directed behavior so its disturbance is a candidate neural fingerprint underlying schizophrenia psychopathology. Previous research has reported both hyperconnectivity and hypoconnectivity within the DMN, and both increased and decreased DMN coupling with the multimodal saliency network (SN) and dorsal attention network (DAN). This study systematically revisited network disruption in patients with schizophrenia using data-derived network atlases and multivariate pattern-learning algorithms in a multisite dataset (n = 325). Resting-state fluctuations in unconstrained brain states were used to estimate functional connectivity, and local volume differences between individuals were used to estimate structural co-occurrence within and between the DMN, SN, and DAN. In brain structure and function, sparse inverse covariance estimates of network coupling were used to characterize healthy participants and patients with schizophrenia, and to identify statistically significant group differences. Evidence did not confirm that the backbone of the DMN was the primary driver of brain dysfunction in schizophrenia. Instead, functional and structural aberrations were frequently located outside of the DMN core, such as in the anterior temporoparietal junction and precuneus. Additionally, functional covariation analyses highlighted dysfunctional DMN-DAN coupling, while structural covariation results highlighted aberrant DMN-SN coupling. Our findings reframe the role of the DMN core and its relation to canonical networks in schizophrenia. We thus underline the importance of large-scale neural interactions as effective biomarkers and indicators of how to tailor psychiatric care to single patients.</abstract><cop>United States</cop><pub>John Wiley & Sons, Inc</pub><pmid>29105239</pmid><doi>10.1002/hbm.23870</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-8033-4953</orcidid><orcidid>https://orcid.org/0000-0002-6183-4493</orcidid><orcidid>https://orcid.org/0000-0001-5018-7895</orcidid><orcidid>https://orcid.org/0000-0003-4596-1502</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1065-9471 |
ispartof | Human brain mapping, 2018-02, Vol.39 (2), p.644-661 |
issn | 1065-9471 1097-0193 1097-0193 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5764781 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Aberration Algorithms Attention Bioindicators Biomarkers Brain Brain - diagnostic imaging Brain - physiopathology Brain Mapping - methods Cognitive science Cortex (parietal) Coupling Covariance Disturbance Functional anatomy Humans Learning algorithms Machine learning Magnetic Resonance Imaging Mental disorders Neural networks Neural Pathways - diagnostic imaging Neural Pathways - physiopathology Patients Psychopathology Rest Schizophrenia Schizophrenia - diagnostic imaging Schizophrenia - physiopathology Shades Statistical analysis Structure-function relationships Variations |
title | Different shades of default mode disturbance in schizophrenia: Subnodal covariance estimation in structure and function |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T07%3A43%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Different%20shades%20of%20default%20mode%20disturbance%20in%20schizophrenia:%20Subnodal%20covariance%20estimation%20in%20structure%20and%20function&rft.jtitle=Human%20brain%20mapping&rft.au=Lefort-Besnard,%20J%C3%A9r%C3%A9my&rft.date=2018-02-01&rft.volume=39&rft.issue=2&rft.spage=644&rft.epage=661&rft.pages=644-661&rft.issn=1065-9471&rft.eissn=1097-0193&rft_id=info:doi/10.1002/hbm.23870&rft_dat=%3Cproquest_pubme%3E1986419200%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1986419200&rft_id=info:pmid/29105239&rfr_iscdi=true |