Cyclic Peptides to Improve Delivery and Exon Skipping of Antisense Oligonucleotides in a Mouse Model for Duchenne Muscular Dystrophy
Duchenne muscular dystrophy (DMD) is a severe, progressive muscle wasting disorder caused by reading frame disrupting mutations in the DMD gene. Exon skipping is a therapeutic approach for DMD. It employs antisense oligonucleotides (AONs) to restore the disrupted open reading frame, allowing the pro...
Gespeichert in:
Veröffentlicht in: | Molecular therapy 2018-01, Vol.26 (1), p.132-147 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 147 |
---|---|
container_issue | 1 |
container_start_page | 132 |
container_title | Molecular therapy |
container_volume | 26 |
creator | Jirka, Silvana M.G. ’t Hoen, Peter A.C. Diaz Parillas, Valeriano Tanganyika-de Winter, Christa L. Verheul, Ruurd C. Aguilera, Begona de Visser, Peter C. Aartsma-Rus, Annemieke M. |
description | Duchenne muscular dystrophy (DMD) is a severe, progressive muscle wasting disorder caused by reading frame disrupting mutations in the DMD gene. Exon skipping is a therapeutic approach for DMD. It employs antisense oligonucleotides (AONs) to restore the disrupted open reading frame, allowing the production of shorter, but partly functional dystrophin protein as seen in less severely affected Becker muscular dystrophy patients. To be effective, AONs need to be delivered and effectively taken up by the target cells, which can be accomplished by the conjugation of tissue-homing peptides. We performed phage display screens using a cyclic peptide library combined with next generation sequencing analyses to identify candidate muscle-homing peptides. Conjugation of the lead peptide to 2′-O-methyl phosphorothioate AONs enabled a significant, 2-fold increase in delivery and exon skipping in all analyzed skeletal and cardiac muscle of mdx mice and appeared well tolerated. While selected as a muscle-homing peptide, uptake was increased in liver and kidney as well. The homing capacity of the peptide may have been overruled by the natural biodistribution of the AON. Nonetheless, our results suggest that the identified peptide has the potential to facilitate delivery of AONs and perhaps other compounds to skeletal and cardiac muscle.
Upon systemic administration of antisense oligonucleotides (AONs), most AONs end up in liver and/or kidney and are lost for targeting other organs. Jirka et al. (2017) show a valuable approach to identify muscle-homing peptides that leads to 2-fold improvement of delivery and bioactivity of systemically administrated AONs in muscle. |
doi_str_mv | 10.1016/j.ymthe.2017.10.004 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5763161</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1525001617305208</els_id><sourcerecordid>2198016996</sourcerecordid><originalsourceid>FETCH-LOGICAL-c553t-9bc4fbf1ffd78c93de3e1652f7ef235a4a84c07d5ab2c8466010f0624b15dba03</originalsourceid><addsrcrecordid>eNp9UcFu1DAQjRCIlsIXICFLXLjsYiexEx9AqrYFKrUqEnC2HHu868Wxg52syL0fXi9bVsCBk0dv3rzxm1cULwleEkzY2-1y7scNLEtMmowsMa4fFaeElnSBcVk_PtaEnRTPUtrmilDOnhYnJSe44oScFnerWTmr0GcYRqshoTGgq36IYQfoApzdQZyR9Bpd_gweffluh8H6NQoGnfvRJvAJ0K2z6-An5SAcNKxHEt2EKfduggaHTIjoYlIb8D5DU1KTkxmZ0xjDsJmfF0-MdAlePLxnxbcPl19XnxbXtx-vVufXC0VpNS54p2rTGWKMblrFKw0VEEZL04ApKypr2dYKN5rKrlRtzRgm2GBW1h2hupO4OiveH3SHqetBK_BjlE4M0fYyziJIK_7ueLsR67ATtGEVYSQLvHkQiOHHBGkUvU0KnJMesl1BOMuHZZi3mfr6H-o2TNFne6IkvM2hcM4yqzqwVAwpRTDHzxAs9imLrfiVstinvAdzynnq1Z8-jjO_Y82EdwcC5GvuLESRlAWvQNsIahQ62P8uuAcd-LyI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2198016996</pqid></control><display><type>article</type><title>Cyclic Peptides to Improve Delivery and Exon Skipping of Antisense Oligonucleotides in a Mouse Model for Duchenne Muscular Dystrophy</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Jirka, Silvana M.G. ; ’t Hoen, Peter A.C. ; Diaz Parillas, Valeriano ; Tanganyika-de Winter, Christa L. ; Verheul, Ruurd C. ; Aguilera, Begona ; de Visser, Peter C. ; Aartsma-Rus, Annemieke M.</creator><creatorcontrib>Jirka, Silvana M.G. ; ’t Hoen, Peter A.C. ; Diaz Parillas, Valeriano ; Tanganyika-de Winter, Christa L. ; Verheul, Ruurd C. ; Aguilera, Begona ; de Visser, Peter C. ; Aartsma-Rus, Annemieke M.</creatorcontrib><description>Duchenne muscular dystrophy (DMD) is a severe, progressive muscle wasting disorder caused by reading frame disrupting mutations in the DMD gene. Exon skipping is a therapeutic approach for DMD. It employs antisense oligonucleotides (AONs) to restore the disrupted open reading frame, allowing the production of shorter, but partly functional dystrophin protein as seen in less severely affected Becker muscular dystrophy patients. To be effective, AONs need to be delivered and effectively taken up by the target cells, which can be accomplished by the conjugation of tissue-homing peptides. We performed phage display screens using a cyclic peptide library combined with next generation sequencing analyses to identify candidate muscle-homing peptides. Conjugation of the lead peptide to 2′-O-methyl phosphorothioate AONs enabled a significant, 2-fold increase in delivery and exon skipping in all analyzed skeletal and cardiac muscle of mdx mice and appeared well tolerated. While selected as a muscle-homing peptide, uptake was increased in liver and kidney as well. The homing capacity of the peptide may have been overruled by the natural biodistribution of the AON. Nonetheless, our results suggest that the identified peptide has the potential to facilitate delivery of AONs and perhaps other compounds to skeletal and cardiac muscle.
Upon systemic administration of antisense oligonucleotides (AONs), most AONs end up in liver and/or kidney and are lost for targeting other organs. Jirka et al. (2017) show a valuable approach to identify muscle-homing peptides that leads to 2-fold improvement of delivery and bioactivity of systemically administrated AONs in muscle.</description><identifier>ISSN: 1525-0016</identifier><identifier>EISSN: 1525-0024</identifier><identifier>DOI: 10.1016/j.ymthe.2017.10.004</identifier><identifier>PMID: 29103911</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>2′-O-methyl phosphorothioate ; 7-mer ; Alternative Splicing ; Amino Acid Sequence ; Animals ; Antisense oligonucleotides ; Becker's muscular dystrophy ; Cardiac muscle ; cyclic peptide ; Disease Models, Animal ; Duchenne's muscular dystrophy ; Dystrophin ; Dystrophin - genetics ; Exon skipping ; Exons ; Gene Transfer Techniques ; Genetic Therapy ; Heart ; Humans ; Inventors ; Investigations ; Kidneys ; Liver ; Mice ; Mice, Inbred mdx ; Muscular dystrophy ; Muscular Dystrophy, Duchenne - genetics ; Muscular Dystrophy, Duchenne - therapy ; Mutation ; Nanoparticles ; Next-generation sequencing ; Oligonucleotides, Antisense - administration & dosage ; Oligonucleotides, Antisense - chemistry ; Oligonucleotides, Antisense - genetics ; Original ; Peptide Library ; Peptides ; Peptides, Cyclic - chemistry ; Phage display ; Phosphorothioate ; Proteins ; Rodents ; Skeletal muscle</subject><ispartof>Molecular therapy, 2018-01, Vol.26 (1), p.132-147</ispartof><rights>2017 The Authors</rights><rights>Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.</rights><rights>2017. The Authors</rights><rights>2017 The Authors 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c553t-9bc4fbf1ffd78c93de3e1652f7ef235a4a84c07d5ab2c8466010f0624b15dba03</citedby><cites>FETCH-LOGICAL-c553t-9bc4fbf1ffd78c93de3e1652f7ef235a4a84c07d5ab2c8466010f0624b15dba03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5763161/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5763161/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,886,27929,27930,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29103911$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jirka, Silvana M.G.</creatorcontrib><creatorcontrib>’t Hoen, Peter A.C.</creatorcontrib><creatorcontrib>Diaz Parillas, Valeriano</creatorcontrib><creatorcontrib>Tanganyika-de Winter, Christa L.</creatorcontrib><creatorcontrib>Verheul, Ruurd C.</creatorcontrib><creatorcontrib>Aguilera, Begona</creatorcontrib><creatorcontrib>de Visser, Peter C.</creatorcontrib><creatorcontrib>Aartsma-Rus, Annemieke M.</creatorcontrib><title>Cyclic Peptides to Improve Delivery and Exon Skipping of Antisense Oligonucleotides in a Mouse Model for Duchenne Muscular Dystrophy</title><title>Molecular therapy</title><addtitle>Mol Ther</addtitle><description>Duchenne muscular dystrophy (DMD) is a severe, progressive muscle wasting disorder caused by reading frame disrupting mutations in the DMD gene. Exon skipping is a therapeutic approach for DMD. It employs antisense oligonucleotides (AONs) to restore the disrupted open reading frame, allowing the production of shorter, but partly functional dystrophin protein as seen in less severely affected Becker muscular dystrophy patients. To be effective, AONs need to be delivered and effectively taken up by the target cells, which can be accomplished by the conjugation of tissue-homing peptides. We performed phage display screens using a cyclic peptide library combined with next generation sequencing analyses to identify candidate muscle-homing peptides. Conjugation of the lead peptide to 2′-O-methyl phosphorothioate AONs enabled a significant, 2-fold increase in delivery and exon skipping in all analyzed skeletal and cardiac muscle of mdx mice and appeared well tolerated. While selected as a muscle-homing peptide, uptake was increased in liver and kidney as well. The homing capacity of the peptide may have been overruled by the natural biodistribution of the AON. Nonetheless, our results suggest that the identified peptide has the potential to facilitate delivery of AONs and perhaps other compounds to skeletal and cardiac muscle.
Upon systemic administration of antisense oligonucleotides (AONs), most AONs end up in liver and/or kidney and are lost for targeting other organs. Jirka et al. (2017) show a valuable approach to identify muscle-homing peptides that leads to 2-fold improvement of delivery and bioactivity of systemically administrated AONs in muscle.</description><subject>2′-O-methyl phosphorothioate</subject><subject>7-mer</subject><subject>Alternative Splicing</subject><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Antisense oligonucleotides</subject><subject>Becker's muscular dystrophy</subject><subject>Cardiac muscle</subject><subject>cyclic peptide</subject><subject>Disease Models, Animal</subject><subject>Duchenne's muscular dystrophy</subject><subject>Dystrophin</subject><subject>Dystrophin - genetics</subject><subject>Exon skipping</subject><subject>Exons</subject><subject>Gene Transfer Techniques</subject><subject>Genetic Therapy</subject><subject>Heart</subject><subject>Humans</subject><subject>Inventors</subject><subject>Investigations</subject><subject>Kidneys</subject><subject>Liver</subject><subject>Mice</subject><subject>Mice, Inbred mdx</subject><subject>Muscular dystrophy</subject><subject>Muscular Dystrophy, Duchenne - genetics</subject><subject>Muscular Dystrophy, Duchenne - therapy</subject><subject>Mutation</subject><subject>Nanoparticles</subject><subject>Next-generation sequencing</subject><subject>Oligonucleotides, Antisense - administration & dosage</subject><subject>Oligonucleotides, Antisense - chemistry</subject><subject>Oligonucleotides, Antisense - genetics</subject><subject>Original</subject><subject>Peptide Library</subject><subject>Peptides</subject><subject>Peptides, Cyclic - chemistry</subject><subject>Phage display</subject><subject>Phosphorothioate</subject><subject>Proteins</subject><subject>Rodents</subject><subject>Skeletal muscle</subject><issn>1525-0016</issn><issn>1525-0024</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UcFu1DAQjRCIlsIXICFLXLjsYiexEx9AqrYFKrUqEnC2HHu868Wxg52syL0fXi9bVsCBk0dv3rzxm1cULwleEkzY2-1y7scNLEtMmowsMa4fFaeElnSBcVk_PtaEnRTPUtrmilDOnhYnJSe44oScFnerWTmr0GcYRqshoTGgq36IYQfoApzdQZyR9Bpd_gweffluh8H6NQoGnfvRJvAJ0K2z6-An5SAcNKxHEt2EKfduggaHTIjoYlIb8D5DU1KTkxmZ0xjDsJmfF0-MdAlePLxnxbcPl19XnxbXtx-vVufXC0VpNS54p2rTGWKMblrFKw0VEEZL04ApKypr2dYKN5rKrlRtzRgm2GBW1h2hupO4OiveH3SHqetBK_BjlE4M0fYyziJIK_7ueLsR67ATtGEVYSQLvHkQiOHHBGkUvU0KnJMesl1BOMuHZZi3mfr6H-o2TNFne6IkvM2hcM4yqzqwVAwpRTDHzxAs9imLrfiVstinvAdzynnq1Z8-jjO_Y82EdwcC5GvuLESRlAWvQNsIahQ62P8uuAcd-LyI</recordid><startdate>20180103</startdate><enddate>20180103</enddate><creator>Jirka, Silvana M.G.</creator><creator>’t Hoen, Peter A.C.</creator><creator>Diaz Parillas, Valeriano</creator><creator>Tanganyika-de Winter, Christa L.</creator><creator>Verheul, Ruurd C.</creator><creator>Aguilera, Begona</creator><creator>de Visser, Peter C.</creator><creator>Aartsma-Rus, Annemieke M.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><general>American Society of Gene & Cell Therapy</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20180103</creationdate><title>Cyclic Peptides to Improve Delivery and Exon Skipping of Antisense Oligonucleotides in a Mouse Model for Duchenne Muscular Dystrophy</title><author>Jirka, Silvana M.G. ; ’t Hoen, Peter A.C. ; Diaz Parillas, Valeriano ; Tanganyika-de Winter, Christa L. ; Verheul, Ruurd C. ; Aguilera, Begona ; de Visser, Peter C. ; Aartsma-Rus, Annemieke M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c553t-9bc4fbf1ffd78c93de3e1652f7ef235a4a84c07d5ab2c8466010f0624b15dba03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>2′-O-methyl phosphorothioate</topic><topic>7-mer</topic><topic>Alternative Splicing</topic><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Antisense oligonucleotides</topic><topic>Becker's muscular dystrophy</topic><topic>Cardiac muscle</topic><topic>cyclic peptide</topic><topic>Disease Models, Animal</topic><topic>Duchenne's muscular dystrophy</topic><topic>Dystrophin</topic><topic>Dystrophin - genetics</topic><topic>Exon skipping</topic><topic>Exons</topic><topic>Gene Transfer Techniques</topic><topic>Genetic Therapy</topic><topic>Heart</topic><topic>Humans</topic><topic>Inventors</topic><topic>Investigations</topic><topic>Kidneys</topic><topic>Liver</topic><topic>Mice</topic><topic>Mice, Inbred mdx</topic><topic>Muscular dystrophy</topic><topic>Muscular Dystrophy, Duchenne - genetics</topic><topic>Muscular Dystrophy, Duchenne - therapy</topic><topic>Mutation</topic><topic>Nanoparticles</topic><topic>Next-generation sequencing</topic><topic>Oligonucleotides, Antisense - administration & dosage</topic><topic>Oligonucleotides, Antisense - chemistry</topic><topic>Oligonucleotides, Antisense - genetics</topic><topic>Original</topic><topic>Peptide Library</topic><topic>Peptides</topic><topic>Peptides, Cyclic - chemistry</topic><topic>Phage display</topic><topic>Phosphorothioate</topic><topic>Proteins</topic><topic>Rodents</topic><topic>Skeletal muscle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jirka, Silvana M.G.</creatorcontrib><creatorcontrib>’t Hoen, Peter A.C.</creatorcontrib><creatorcontrib>Diaz Parillas, Valeriano</creatorcontrib><creatorcontrib>Tanganyika-de Winter, Christa L.</creatorcontrib><creatorcontrib>Verheul, Ruurd C.</creatorcontrib><creatorcontrib>Aguilera, Begona</creatorcontrib><creatorcontrib>de Visser, Peter C.</creatorcontrib><creatorcontrib>Aartsma-Rus, Annemieke M.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular therapy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jirka, Silvana M.G.</au><au>’t Hoen, Peter A.C.</au><au>Diaz Parillas, Valeriano</au><au>Tanganyika-de Winter, Christa L.</au><au>Verheul, Ruurd C.</au><au>Aguilera, Begona</au><au>de Visser, Peter C.</au><au>Aartsma-Rus, Annemieke M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cyclic Peptides to Improve Delivery and Exon Skipping of Antisense Oligonucleotides in a Mouse Model for Duchenne Muscular Dystrophy</atitle><jtitle>Molecular therapy</jtitle><addtitle>Mol Ther</addtitle><date>2018-01-03</date><risdate>2018</risdate><volume>26</volume><issue>1</issue><spage>132</spage><epage>147</epage><pages>132-147</pages><issn>1525-0016</issn><eissn>1525-0024</eissn><abstract>Duchenne muscular dystrophy (DMD) is a severe, progressive muscle wasting disorder caused by reading frame disrupting mutations in the DMD gene. Exon skipping is a therapeutic approach for DMD. It employs antisense oligonucleotides (AONs) to restore the disrupted open reading frame, allowing the production of shorter, but partly functional dystrophin protein as seen in less severely affected Becker muscular dystrophy patients. To be effective, AONs need to be delivered and effectively taken up by the target cells, which can be accomplished by the conjugation of tissue-homing peptides. We performed phage display screens using a cyclic peptide library combined with next generation sequencing analyses to identify candidate muscle-homing peptides. Conjugation of the lead peptide to 2′-O-methyl phosphorothioate AONs enabled a significant, 2-fold increase in delivery and exon skipping in all analyzed skeletal and cardiac muscle of mdx mice and appeared well tolerated. While selected as a muscle-homing peptide, uptake was increased in liver and kidney as well. The homing capacity of the peptide may have been overruled by the natural biodistribution of the AON. Nonetheless, our results suggest that the identified peptide has the potential to facilitate delivery of AONs and perhaps other compounds to skeletal and cardiac muscle.
Upon systemic administration of antisense oligonucleotides (AONs), most AONs end up in liver and/or kidney and are lost for targeting other organs. Jirka et al. (2017) show a valuable approach to identify muscle-homing peptides that leads to 2-fold improvement of delivery and bioactivity of systemically administrated AONs in muscle.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>29103911</pmid><doi>10.1016/j.ymthe.2017.10.004</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1525-0016 |
ispartof | Molecular therapy, 2018-01, Vol.26 (1), p.132-147 |
issn | 1525-0016 1525-0024 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5763161 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection |
subjects | 2′-O-methyl phosphorothioate 7-mer Alternative Splicing Amino Acid Sequence Animals Antisense oligonucleotides Becker's muscular dystrophy Cardiac muscle cyclic peptide Disease Models, Animal Duchenne's muscular dystrophy Dystrophin Dystrophin - genetics Exon skipping Exons Gene Transfer Techniques Genetic Therapy Heart Humans Inventors Investigations Kidneys Liver Mice Mice, Inbred mdx Muscular dystrophy Muscular Dystrophy, Duchenne - genetics Muscular Dystrophy, Duchenne - therapy Mutation Nanoparticles Next-generation sequencing Oligonucleotides, Antisense - administration & dosage Oligonucleotides, Antisense - chemistry Oligonucleotides, Antisense - genetics Original Peptide Library Peptides Peptides, Cyclic - chemistry Phage display Phosphorothioate Proteins Rodents Skeletal muscle |
title | Cyclic Peptides to Improve Delivery and Exon Skipping of Antisense Oligonucleotides in a Mouse Model for Duchenne Muscular Dystrophy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T15%3A57%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cyclic%20Peptides%20to%20Improve%20Delivery%20and%20Exon%20Skipping%20of%20Antisense%20Oligonucleotides%20in%20a%20Mouse%20Model%20for%20Duchenne%20Muscular%20Dystrophy&rft.jtitle=Molecular%20therapy&rft.au=Jirka,%20Silvana%20M.G.&rft.date=2018-01-03&rft.volume=26&rft.issue=1&rft.spage=132&rft.epage=147&rft.pages=132-147&rft.issn=1525-0016&rft.eissn=1525-0024&rft_id=info:doi/10.1016/j.ymthe.2017.10.004&rft_dat=%3Cproquest_pubme%3E2198016996%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2198016996&rft_id=info:pmid/29103911&rft_els_id=S1525001617305208&rfr_iscdi=true |