Cyclic Peptides to Improve Delivery and Exon Skipping of Antisense Oligonucleotides in a Mouse Model for Duchenne Muscular Dystrophy

Duchenne muscular dystrophy (DMD) is a severe, progressive muscle wasting disorder caused by reading frame disrupting mutations in the DMD gene. Exon skipping is a therapeutic approach for DMD. It employs antisense oligonucleotides (AONs) to restore the disrupted open reading frame, allowing the pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular therapy 2018-01, Vol.26 (1), p.132-147
Hauptverfasser: Jirka, Silvana M.G., ’t Hoen, Peter A.C., Diaz Parillas, Valeriano, Tanganyika-de Winter, Christa L., Verheul, Ruurd C., Aguilera, Begona, de Visser, Peter C., Aartsma-Rus, Annemieke M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 147
container_issue 1
container_start_page 132
container_title Molecular therapy
container_volume 26
creator Jirka, Silvana M.G.
’t Hoen, Peter A.C.
Diaz Parillas, Valeriano
Tanganyika-de Winter, Christa L.
Verheul, Ruurd C.
Aguilera, Begona
de Visser, Peter C.
Aartsma-Rus, Annemieke M.
description Duchenne muscular dystrophy (DMD) is a severe, progressive muscle wasting disorder caused by reading frame disrupting mutations in the DMD gene. Exon skipping is a therapeutic approach for DMD. It employs antisense oligonucleotides (AONs) to restore the disrupted open reading frame, allowing the production of shorter, but partly functional dystrophin protein as seen in less severely affected Becker muscular dystrophy patients. To be effective, AONs need to be delivered and effectively taken up by the target cells, which can be accomplished by the conjugation of tissue-homing peptides. We performed phage display screens using a cyclic peptide library combined with next generation sequencing analyses to identify candidate muscle-homing peptides. Conjugation of the lead peptide to 2′-O-methyl phosphorothioate AONs enabled a significant, 2-fold increase in delivery and exon skipping in all analyzed skeletal and cardiac muscle of mdx mice and appeared well tolerated. While selected as a muscle-homing peptide, uptake was increased in liver and kidney as well. The homing capacity of the peptide may have been overruled by the natural biodistribution of the AON. Nonetheless, our results suggest that the identified peptide has the potential to facilitate delivery of AONs and perhaps other compounds to skeletal and cardiac muscle. Upon systemic administration of antisense oligonucleotides (AONs), most AONs end up in liver and/or kidney and are lost for targeting other organs. Jirka et al. (2017) show a valuable approach to identify muscle-homing peptides that leads to 2-fold improvement of delivery and bioactivity of systemically administrated AONs in muscle.
doi_str_mv 10.1016/j.ymthe.2017.10.004
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5763161</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1525001617305208</els_id><sourcerecordid>2198016996</sourcerecordid><originalsourceid>FETCH-LOGICAL-c553t-9bc4fbf1ffd78c93de3e1652f7ef235a4a84c07d5ab2c8466010f0624b15dba03</originalsourceid><addsrcrecordid>eNp9UcFu1DAQjRCIlsIXICFLXLjsYiexEx9AqrYFKrUqEnC2HHu868Wxg52syL0fXi9bVsCBk0dv3rzxm1cULwleEkzY2-1y7scNLEtMmowsMa4fFaeElnSBcVk_PtaEnRTPUtrmilDOnhYnJSe44oScFnerWTmr0GcYRqshoTGgq36IYQfoApzdQZyR9Bpd_gweffluh8H6NQoGnfvRJvAJ0K2z6-An5SAcNKxHEt2EKfduggaHTIjoYlIb8D5DU1KTkxmZ0xjDsJmfF0-MdAlePLxnxbcPl19XnxbXtx-vVufXC0VpNS54p2rTGWKMblrFKw0VEEZL04ApKypr2dYKN5rKrlRtzRgm2GBW1h2hupO4OiveH3SHqetBK_BjlE4M0fYyziJIK_7ueLsR67ATtGEVYSQLvHkQiOHHBGkUvU0KnJMesl1BOMuHZZi3mfr6H-o2TNFne6IkvM2hcM4yqzqwVAwpRTDHzxAs9imLrfiVstinvAdzynnq1Z8-jjO_Y82EdwcC5GvuLESRlAWvQNsIahQ62P8uuAcd-LyI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2198016996</pqid></control><display><type>article</type><title>Cyclic Peptides to Improve Delivery and Exon Skipping of Antisense Oligonucleotides in a Mouse Model for Duchenne Muscular Dystrophy</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Jirka, Silvana M.G. ; ’t Hoen, Peter A.C. ; Diaz Parillas, Valeriano ; Tanganyika-de Winter, Christa L. ; Verheul, Ruurd C. ; Aguilera, Begona ; de Visser, Peter C. ; Aartsma-Rus, Annemieke M.</creator><creatorcontrib>Jirka, Silvana M.G. ; ’t Hoen, Peter A.C. ; Diaz Parillas, Valeriano ; Tanganyika-de Winter, Christa L. ; Verheul, Ruurd C. ; Aguilera, Begona ; de Visser, Peter C. ; Aartsma-Rus, Annemieke M.</creatorcontrib><description>Duchenne muscular dystrophy (DMD) is a severe, progressive muscle wasting disorder caused by reading frame disrupting mutations in the DMD gene. Exon skipping is a therapeutic approach for DMD. It employs antisense oligonucleotides (AONs) to restore the disrupted open reading frame, allowing the production of shorter, but partly functional dystrophin protein as seen in less severely affected Becker muscular dystrophy patients. To be effective, AONs need to be delivered and effectively taken up by the target cells, which can be accomplished by the conjugation of tissue-homing peptides. We performed phage display screens using a cyclic peptide library combined with next generation sequencing analyses to identify candidate muscle-homing peptides. Conjugation of the lead peptide to 2′-O-methyl phosphorothioate AONs enabled a significant, 2-fold increase in delivery and exon skipping in all analyzed skeletal and cardiac muscle of mdx mice and appeared well tolerated. While selected as a muscle-homing peptide, uptake was increased in liver and kidney as well. The homing capacity of the peptide may have been overruled by the natural biodistribution of the AON. Nonetheless, our results suggest that the identified peptide has the potential to facilitate delivery of AONs and perhaps other compounds to skeletal and cardiac muscle. Upon systemic administration of antisense oligonucleotides (AONs), most AONs end up in liver and/or kidney and are lost for targeting other organs. Jirka et al. (2017) show a valuable approach to identify muscle-homing peptides that leads to 2-fold improvement of delivery and bioactivity of systemically administrated AONs in muscle.</description><identifier>ISSN: 1525-0016</identifier><identifier>EISSN: 1525-0024</identifier><identifier>DOI: 10.1016/j.ymthe.2017.10.004</identifier><identifier>PMID: 29103911</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>2′-O-methyl phosphorothioate ; 7-mer ; Alternative Splicing ; Amino Acid Sequence ; Animals ; Antisense oligonucleotides ; Becker's muscular dystrophy ; Cardiac muscle ; cyclic peptide ; Disease Models, Animal ; Duchenne's muscular dystrophy ; Dystrophin ; Dystrophin - genetics ; Exon skipping ; Exons ; Gene Transfer Techniques ; Genetic Therapy ; Heart ; Humans ; Inventors ; Investigations ; Kidneys ; Liver ; Mice ; Mice, Inbred mdx ; Muscular dystrophy ; Muscular Dystrophy, Duchenne - genetics ; Muscular Dystrophy, Duchenne - therapy ; Mutation ; Nanoparticles ; Next-generation sequencing ; Oligonucleotides, Antisense - administration &amp; dosage ; Oligonucleotides, Antisense - chemistry ; Oligonucleotides, Antisense - genetics ; Original ; Peptide Library ; Peptides ; Peptides, Cyclic - chemistry ; Phage display ; Phosphorothioate ; Proteins ; Rodents ; Skeletal muscle</subject><ispartof>Molecular therapy, 2018-01, Vol.26 (1), p.132-147</ispartof><rights>2017 The Authors</rights><rights>Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.</rights><rights>2017. The Authors</rights><rights>2017 The Authors 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c553t-9bc4fbf1ffd78c93de3e1652f7ef235a4a84c07d5ab2c8466010f0624b15dba03</citedby><cites>FETCH-LOGICAL-c553t-9bc4fbf1ffd78c93de3e1652f7ef235a4a84c07d5ab2c8466010f0624b15dba03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5763161/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5763161/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,886,27929,27930,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29103911$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jirka, Silvana M.G.</creatorcontrib><creatorcontrib>’t Hoen, Peter A.C.</creatorcontrib><creatorcontrib>Diaz Parillas, Valeriano</creatorcontrib><creatorcontrib>Tanganyika-de Winter, Christa L.</creatorcontrib><creatorcontrib>Verheul, Ruurd C.</creatorcontrib><creatorcontrib>Aguilera, Begona</creatorcontrib><creatorcontrib>de Visser, Peter C.</creatorcontrib><creatorcontrib>Aartsma-Rus, Annemieke M.</creatorcontrib><title>Cyclic Peptides to Improve Delivery and Exon Skipping of Antisense Oligonucleotides in a Mouse Model for Duchenne Muscular Dystrophy</title><title>Molecular therapy</title><addtitle>Mol Ther</addtitle><description>Duchenne muscular dystrophy (DMD) is a severe, progressive muscle wasting disorder caused by reading frame disrupting mutations in the DMD gene. Exon skipping is a therapeutic approach for DMD. It employs antisense oligonucleotides (AONs) to restore the disrupted open reading frame, allowing the production of shorter, but partly functional dystrophin protein as seen in less severely affected Becker muscular dystrophy patients. To be effective, AONs need to be delivered and effectively taken up by the target cells, which can be accomplished by the conjugation of tissue-homing peptides. We performed phage display screens using a cyclic peptide library combined with next generation sequencing analyses to identify candidate muscle-homing peptides. Conjugation of the lead peptide to 2′-O-methyl phosphorothioate AONs enabled a significant, 2-fold increase in delivery and exon skipping in all analyzed skeletal and cardiac muscle of mdx mice and appeared well tolerated. While selected as a muscle-homing peptide, uptake was increased in liver and kidney as well. The homing capacity of the peptide may have been overruled by the natural biodistribution of the AON. Nonetheless, our results suggest that the identified peptide has the potential to facilitate delivery of AONs and perhaps other compounds to skeletal and cardiac muscle. Upon systemic administration of antisense oligonucleotides (AONs), most AONs end up in liver and/or kidney and are lost for targeting other organs. Jirka et al. (2017) show a valuable approach to identify muscle-homing peptides that leads to 2-fold improvement of delivery and bioactivity of systemically administrated AONs in muscle.</description><subject>2′-O-methyl phosphorothioate</subject><subject>7-mer</subject><subject>Alternative Splicing</subject><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Antisense oligonucleotides</subject><subject>Becker's muscular dystrophy</subject><subject>Cardiac muscle</subject><subject>cyclic peptide</subject><subject>Disease Models, Animal</subject><subject>Duchenne's muscular dystrophy</subject><subject>Dystrophin</subject><subject>Dystrophin - genetics</subject><subject>Exon skipping</subject><subject>Exons</subject><subject>Gene Transfer Techniques</subject><subject>Genetic Therapy</subject><subject>Heart</subject><subject>Humans</subject><subject>Inventors</subject><subject>Investigations</subject><subject>Kidneys</subject><subject>Liver</subject><subject>Mice</subject><subject>Mice, Inbred mdx</subject><subject>Muscular dystrophy</subject><subject>Muscular Dystrophy, Duchenne - genetics</subject><subject>Muscular Dystrophy, Duchenne - therapy</subject><subject>Mutation</subject><subject>Nanoparticles</subject><subject>Next-generation sequencing</subject><subject>Oligonucleotides, Antisense - administration &amp; dosage</subject><subject>Oligonucleotides, Antisense - chemistry</subject><subject>Oligonucleotides, Antisense - genetics</subject><subject>Original</subject><subject>Peptide Library</subject><subject>Peptides</subject><subject>Peptides, Cyclic - chemistry</subject><subject>Phage display</subject><subject>Phosphorothioate</subject><subject>Proteins</subject><subject>Rodents</subject><subject>Skeletal muscle</subject><issn>1525-0016</issn><issn>1525-0024</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UcFu1DAQjRCIlsIXICFLXLjsYiexEx9AqrYFKrUqEnC2HHu868Wxg52syL0fXi9bVsCBk0dv3rzxm1cULwleEkzY2-1y7scNLEtMmowsMa4fFaeElnSBcVk_PtaEnRTPUtrmilDOnhYnJSe44oScFnerWTmr0GcYRqshoTGgq36IYQfoApzdQZyR9Bpd_gweffluh8H6NQoGnfvRJvAJ0K2z6-An5SAcNKxHEt2EKfduggaHTIjoYlIb8D5DU1KTkxmZ0xjDsJmfF0-MdAlePLxnxbcPl19XnxbXtx-vVufXC0VpNS54p2rTGWKMblrFKw0VEEZL04ApKypr2dYKN5rKrlRtzRgm2GBW1h2hupO4OiveH3SHqetBK_BjlE4M0fYyziJIK_7ueLsR67ATtGEVYSQLvHkQiOHHBGkUvU0KnJMesl1BOMuHZZi3mfr6H-o2TNFne6IkvM2hcM4yqzqwVAwpRTDHzxAs9imLrfiVstinvAdzynnq1Z8-jjO_Y82EdwcC5GvuLESRlAWvQNsIahQ62P8uuAcd-LyI</recordid><startdate>20180103</startdate><enddate>20180103</enddate><creator>Jirka, Silvana M.G.</creator><creator>’t Hoen, Peter A.C.</creator><creator>Diaz Parillas, Valeriano</creator><creator>Tanganyika-de Winter, Christa L.</creator><creator>Verheul, Ruurd C.</creator><creator>Aguilera, Begona</creator><creator>de Visser, Peter C.</creator><creator>Aartsma-Rus, Annemieke M.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><general>American Society of Gene &amp; Cell Therapy</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20180103</creationdate><title>Cyclic Peptides to Improve Delivery and Exon Skipping of Antisense Oligonucleotides in a Mouse Model for Duchenne Muscular Dystrophy</title><author>Jirka, Silvana M.G. ; ’t Hoen, Peter A.C. ; Diaz Parillas, Valeriano ; Tanganyika-de Winter, Christa L. ; Verheul, Ruurd C. ; Aguilera, Begona ; de Visser, Peter C. ; Aartsma-Rus, Annemieke M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c553t-9bc4fbf1ffd78c93de3e1652f7ef235a4a84c07d5ab2c8466010f0624b15dba03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>2′-O-methyl phosphorothioate</topic><topic>7-mer</topic><topic>Alternative Splicing</topic><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Antisense oligonucleotides</topic><topic>Becker's muscular dystrophy</topic><topic>Cardiac muscle</topic><topic>cyclic peptide</topic><topic>Disease Models, Animal</topic><topic>Duchenne's muscular dystrophy</topic><topic>Dystrophin</topic><topic>Dystrophin - genetics</topic><topic>Exon skipping</topic><topic>Exons</topic><topic>Gene Transfer Techniques</topic><topic>Genetic Therapy</topic><topic>Heart</topic><topic>Humans</topic><topic>Inventors</topic><topic>Investigations</topic><topic>Kidneys</topic><topic>Liver</topic><topic>Mice</topic><topic>Mice, Inbred mdx</topic><topic>Muscular dystrophy</topic><topic>Muscular Dystrophy, Duchenne - genetics</topic><topic>Muscular Dystrophy, Duchenne - therapy</topic><topic>Mutation</topic><topic>Nanoparticles</topic><topic>Next-generation sequencing</topic><topic>Oligonucleotides, Antisense - administration &amp; dosage</topic><topic>Oligonucleotides, Antisense - chemistry</topic><topic>Oligonucleotides, Antisense - genetics</topic><topic>Original</topic><topic>Peptide Library</topic><topic>Peptides</topic><topic>Peptides, Cyclic - chemistry</topic><topic>Phage display</topic><topic>Phosphorothioate</topic><topic>Proteins</topic><topic>Rodents</topic><topic>Skeletal muscle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jirka, Silvana M.G.</creatorcontrib><creatorcontrib>’t Hoen, Peter A.C.</creatorcontrib><creatorcontrib>Diaz Parillas, Valeriano</creatorcontrib><creatorcontrib>Tanganyika-de Winter, Christa L.</creatorcontrib><creatorcontrib>Verheul, Ruurd C.</creatorcontrib><creatorcontrib>Aguilera, Begona</creatorcontrib><creatorcontrib>de Visser, Peter C.</creatorcontrib><creatorcontrib>Aartsma-Rus, Annemieke M.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular therapy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jirka, Silvana M.G.</au><au>’t Hoen, Peter A.C.</au><au>Diaz Parillas, Valeriano</au><au>Tanganyika-de Winter, Christa L.</au><au>Verheul, Ruurd C.</au><au>Aguilera, Begona</au><au>de Visser, Peter C.</au><au>Aartsma-Rus, Annemieke M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cyclic Peptides to Improve Delivery and Exon Skipping of Antisense Oligonucleotides in a Mouse Model for Duchenne Muscular Dystrophy</atitle><jtitle>Molecular therapy</jtitle><addtitle>Mol Ther</addtitle><date>2018-01-03</date><risdate>2018</risdate><volume>26</volume><issue>1</issue><spage>132</spage><epage>147</epage><pages>132-147</pages><issn>1525-0016</issn><eissn>1525-0024</eissn><abstract>Duchenne muscular dystrophy (DMD) is a severe, progressive muscle wasting disorder caused by reading frame disrupting mutations in the DMD gene. Exon skipping is a therapeutic approach for DMD. It employs antisense oligonucleotides (AONs) to restore the disrupted open reading frame, allowing the production of shorter, but partly functional dystrophin protein as seen in less severely affected Becker muscular dystrophy patients. To be effective, AONs need to be delivered and effectively taken up by the target cells, which can be accomplished by the conjugation of tissue-homing peptides. We performed phage display screens using a cyclic peptide library combined with next generation sequencing analyses to identify candidate muscle-homing peptides. Conjugation of the lead peptide to 2′-O-methyl phosphorothioate AONs enabled a significant, 2-fold increase in delivery and exon skipping in all analyzed skeletal and cardiac muscle of mdx mice and appeared well tolerated. While selected as a muscle-homing peptide, uptake was increased in liver and kidney as well. The homing capacity of the peptide may have been overruled by the natural biodistribution of the AON. Nonetheless, our results suggest that the identified peptide has the potential to facilitate delivery of AONs and perhaps other compounds to skeletal and cardiac muscle. Upon systemic administration of antisense oligonucleotides (AONs), most AONs end up in liver and/or kidney and are lost for targeting other organs. Jirka et al. (2017) show a valuable approach to identify muscle-homing peptides that leads to 2-fold improvement of delivery and bioactivity of systemically administrated AONs in muscle.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>29103911</pmid><doi>10.1016/j.ymthe.2017.10.004</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1525-0016
ispartof Molecular therapy, 2018-01, Vol.26 (1), p.132-147
issn 1525-0016
1525-0024
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5763161
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects 2′-O-methyl phosphorothioate
7-mer
Alternative Splicing
Amino Acid Sequence
Animals
Antisense oligonucleotides
Becker's muscular dystrophy
Cardiac muscle
cyclic peptide
Disease Models, Animal
Duchenne's muscular dystrophy
Dystrophin
Dystrophin - genetics
Exon skipping
Exons
Gene Transfer Techniques
Genetic Therapy
Heart
Humans
Inventors
Investigations
Kidneys
Liver
Mice
Mice, Inbred mdx
Muscular dystrophy
Muscular Dystrophy, Duchenne - genetics
Muscular Dystrophy, Duchenne - therapy
Mutation
Nanoparticles
Next-generation sequencing
Oligonucleotides, Antisense - administration & dosage
Oligonucleotides, Antisense - chemistry
Oligonucleotides, Antisense - genetics
Original
Peptide Library
Peptides
Peptides, Cyclic - chemistry
Phage display
Phosphorothioate
Proteins
Rodents
Skeletal muscle
title Cyclic Peptides to Improve Delivery and Exon Skipping of Antisense Oligonucleotides in a Mouse Model for Duchenne Muscular Dystrophy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T15%3A57%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cyclic%20Peptides%20to%20Improve%20Delivery%20and%20Exon%20Skipping%20of%20Antisense%20Oligonucleotides%20in%20a%20Mouse%20Model%20for%20Duchenne%20Muscular%20Dystrophy&rft.jtitle=Molecular%20therapy&rft.au=Jirka,%20Silvana%20M.G.&rft.date=2018-01-03&rft.volume=26&rft.issue=1&rft.spage=132&rft.epage=147&rft.pages=132-147&rft.issn=1525-0016&rft.eissn=1525-0024&rft_id=info:doi/10.1016/j.ymthe.2017.10.004&rft_dat=%3Cproquest_pubme%3E2198016996%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2198016996&rft_id=info:pmid/29103911&rft_els_id=S1525001617305208&rfr_iscdi=true