Icariin Regulates the Bidirectional Differentiation of Bone Marrow Mesenchymal Stem Cells through Canonical Wnt Signaling Pathway
Fat infiltration within the bone marrow is easily observed in some postmenopausal women. Those fats are mainly derived from bone marrow mesenchymal stem cells (BMMSCs). The increment of adipocytes derived from BMMSCs leads to decreased osteoblasts derived from BMMSCs, so the bidirectional differenti...
Gespeichert in:
Veröffentlicht in: | Evidence-based complementary and alternative medicine 2017-01, Vol.2017 (2017), p.1-12 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12 |
---|---|
container_issue | 2017 |
container_start_page | 1 |
container_title | Evidence-based complementary and alternative medicine |
container_volume | 2017 |
creator | Guo, Jin-feng Yao, Xu-dong Guo, Jia-chao Jing, Xing-zhi Xiang, Wei Bao, Yuan Huang, Jun-ming Wang, Rui |
description | Fat infiltration within the bone marrow is easily observed in some postmenopausal women. Those fats are mainly derived from bone marrow mesenchymal stem cells (BMMSCs). The increment of adipocytes derived from BMMSCs leads to decreased osteoblasts derived from BMMSCs, so the bidirectional differentiation of BMMSCs significantly contributes to osteoporosis. Icariin is the main extractive of Herba Epimedii which is widely used in traditional Chinese medicine. In this experiment, we investigated the effect of icariin on the bidirectional differentiation of BMMSCs through quantitative real-time PCR, immunofluorescence, western blot, and tissue sections in vitro and in vivo. We found that icariin obviously promotes osteogenesis and inhibits adipogenesis through detecting staining and gene expression. Micro-CT analysis showed that icariin treatment alleviated the loss of cancellous bone of the distal femur in ovariectomized (OVX) mice. H&E staining analysis showed that icariin-treated OVX mice obtained higher bone mass and fewer bone marrow lipid droplets than OVX mice. Western blot and immunofluorescence showed that icariin regulates the bidirectional differentiation of BMMSCs via canonical Wnt signaling. This study demonstrates that icariin exerts its antiosteoporotic effect by regulating the bidirectional differentiation of BMMSCs through the canonical Wnt signaling pathway. |
doi_str_mv | 10.1155/2017/8085325 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5763109</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A604314064</galeid><sourcerecordid>A604314064</sourcerecordid><originalsourceid>FETCH-LOGICAL-c499t-28b5661f665c372441887ef0b03172a91636678229c1123031d2617266ae908b3</originalsourceid><addsrcrecordid>eNqNks9rFDEUxwdRbK3ePEvAi6Br8zuZi9BuqxZaFKvoLWSzb2ZSZpKazLjs0f_cLLtu1ZOnhPc-fJJv8qrqKcGvCRHimGKijjXWglFxrzokipMZp1rf3-_Vt4PqUc43GNNaKfWwOqA154ITdlj9vHA2eR_QJ2in3o6Q0dgBOvVLn8CNPgbbozPfNJAgjN5uKig26DQGQFc2pbhCV5AhuG49FPR6hAHNoe83nhSntkNzG2LwrjS_hhFd-7YofWjRRzt2K7t-XD1obJ_hyW49qr68Pf88fz-7_PDuYn5yOXO8rscZ1QshJWmkFI4pyjnRWkGDF5gRRW1NJJNSaUprRwhlpbqksnSktFBjvWBH1Zut93ZaDLB0JU6yvblNfrBpbaL15u9O8J1p4w8jlGQE10XwYidI8fsEeTSDz65EtQHilA0t78s14xwX9Pk_6E2cUsmdDam1JDXFQt9Rre3B-NDEcq7bSM2JxJwRjiUv1Kst5VLMOUGzvzLBZjMBZjMBZjcBBX_2Z8w9_PvLC_ByC3Q-LO3K_6cOCgONvaOJ4FJI9guy9MD9</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1986192058</pqid></control><display><type>article</type><title>Icariin Regulates the Bidirectional Differentiation of Bone Marrow Mesenchymal Stem Cells through Canonical Wnt Signaling Pathway</title><source>Wiley Online Library Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>PubMed Central Open Access</source><creator>Guo, Jin-feng ; Yao, Xu-dong ; Guo, Jia-chao ; Jing, Xing-zhi ; Xiang, Wei ; Bao, Yuan ; Huang, Jun-ming ; Wang, Rui</creator><contributor>Somasundaram, Indumathi</contributor><creatorcontrib>Guo, Jin-feng ; Yao, Xu-dong ; Guo, Jia-chao ; Jing, Xing-zhi ; Xiang, Wei ; Bao, Yuan ; Huang, Jun-ming ; Wang, Rui ; Somasundaram, Indumathi</creatorcontrib><description>Fat infiltration within the bone marrow is easily observed in some postmenopausal women. Those fats are mainly derived from bone marrow mesenchymal stem cells (BMMSCs). The increment of adipocytes derived from BMMSCs leads to decreased osteoblasts derived from BMMSCs, so the bidirectional differentiation of BMMSCs significantly contributes to osteoporosis. Icariin is the main extractive of Herba Epimedii which is widely used in traditional Chinese medicine. In this experiment, we investigated the effect of icariin on the bidirectional differentiation of BMMSCs through quantitative real-time PCR, immunofluorescence, western blot, and tissue sections in vitro and in vivo. We found that icariin obviously promotes osteogenesis and inhibits adipogenesis through detecting staining and gene expression. Micro-CT analysis showed that icariin treatment alleviated the loss of cancellous bone of the distal femur in ovariectomized (OVX) mice. H&E staining analysis showed that icariin-treated OVX mice obtained higher bone mass and fewer bone marrow lipid droplets than OVX mice. Western blot and immunofluorescence showed that icariin regulates the bidirectional differentiation of BMMSCs via canonical Wnt signaling. This study demonstrates that icariin exerts its antiosteoporotic effect by regulating the bidirectional differentiation of BMMSCs through the canonical Wnt signaling pathway.</description><identifier>ISSN: 1741-427X</identifier><identifier>EISSN: 1741-4288</identifier><identifier>DOI: 10.1155/2017/8085325</identifier><identifier>PMID: 29445413</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Adipocytes ; Adipogenesis ; Bone density ; Bone marrow ; Bone mass ; Bones ; Cancellous bone ; Computed tomography ; Density ; Ethylenediaminetetraacetic acid ; Fats ; Femur ; Gene expression ; Immunofluorescence ; Kinases ; Menopause ; Mesenchymal stem cells ; Mesenchyme ; Mice ; Mutation ; Osteoblastogenesis ; Osteoblasts ; Osteogenesis ; Osteoporosis ; Ovariectomy ; Post-menopause ; Postmenopausal women ; Rodents ; Signal transduction ; Staining ; Stem cell transplantation ; Stem cells ; Traditional Chinese medicine ; Wnt protein</subject><ispartof>Evidence-based complementary and alternative medicine, 2017-01, Vol.2017 (2017), p.1-12</ispartof><rights>Copyright © 2017 Jun-ming Huang et al.</rights><rights>COPYRIGHT 2018 John Wiley & Sons, Inc.</rights><rights>Copyright © 2017 Jun-ming Huang et al.; This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><rights>Copyright © 2017 Jun-ming Huang et al. 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c499t-28b5661f665c372441887ef0b03172a91636678229c1123031d2617266ae908b3</citedby><cites>FETCH-LOGICAL-c499t-28b5661f665c372441887ef0b03172a91636678229c1123031d2617266ae908b3</cites><orcidid>0000-0002-5968-4836 ; 0000-0002-6800-2788</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5763109/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5763109/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29445413$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Somasundaram, Indumathi</contributor><creatorcontrib>Guo, Jin-feng</creatorcontrib><creatorcontrib>Yao, Xu-dong</creatorcontrib><creatorcontrib>Guo, Jia-chao</creatorcontrib><creatorcontrib>Jing, Xing-zhi</creatorcontrib><creatorcontrib>Xiang, Wei</creatorcontrib><creatorcontrib>Bao, Yuan</creatorcontrib><creatorcontrib>Huang, Jun-ming</creatorcontrib><creatorcontrib>Wang, Rui</creatorcontrib><title>Icariin Regulates the Bidirectional Differentiation of Bone Marrow Mesenchymal Stem Cells through Canonical Wnt Signaling Pathway</title><title>Evidence-based complementary and alternative medicine</title><addtitle>Evid Based Complement Alternat Med</addtitle><description>Fat infiltration within the bone marrow is easily observed in some postmenopausal women. Those fats are mainly derived from bone marrow mesenchymal stem cells (BMMSCs). The increment of adipocytes derived from BMMSCs leads to decreased osteoblasts derived from BMMSCs, so the bidirectional differentiation of BMMSCs significantly contributes to osteoporosis. Icariin is the main extractive of Herba Epimedii which is widely used in traditional Chinese medicine. In this experiment, we investigated the effect of icariin on the bidirectional differentiation of BMMSCs through quantitative real-time PCR, immunofluorescence, western blot, and tissue sections in vitro and in vivo. We found that icariin obviously promotes osteogenesis and inhibits adipogenesis through detecting staining and gene expression. Micro-CT analysis showed that icariin treatment alleviated the loss of cancellous bone of the distal femur in ovariectomized (OVX) mice. H&E staining analysis showed that icariin-treated OVX mice obtained higher bone mass and fewer bone marrow lipid droplets than OVX mice. Western blot and immunofluorescence showed that icariin regulates the bidirectional differentiation of BMMSCs via canonical Wnt signaling. This study demonstrates that icariin exerts its antiosteoporotic effect by regulating the bidirectional differentiation of BMMSCs through the canonical Wnt signaling pathway.</description><subject>Adipocytes</subject><subject>Adipogenesis</subject><subject>Bone density</subject><subject>Bone marrow</subject><subject>Bone mass</subject><subject>Bones</subject><subject>Cancellous bone</subject><subject>Computed tomography</subject><subject>Density</subject><subject>Ethylenediaminetetraacetic acid</subject><subject>Fats</subject><subject>Femur</subject><subject>Gene expression</subject><subject>Immunofluorescence</subject><subject>Kinases</subject><subject>Menopause</subject><subject>Mesenchymal stem cells</subject><subject>Mesenchyme</subject><subject>Mice</subject><subject>Mutation</subject><subject>Osteoblastogenesis</subject><subject>Osteoblasts</subject><subject>Osteogenesis</subject><subject>Osteoporosis</subject><subject>Ovariectomy</subject><subject>Post-menopause</subject><subject>Postmenopausal women</subject><subject>Rodents</subject><subject>Signal transduction</subject><subject>Staining</subject><subject>Stem cell transplantation</subject><subject>Stem cells</subject><subject>Traditional Chinese medicine</subject><subject>Wnt protein</subject><issn>1741-427X</issn><issn>1741-4288</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNks9rFDEUxwdRbK3ePEvAi6Br8zuZi9BuqxZaFKvoLWSzb2ZSZpKazLjs0f_cLLtu1ZOnhPc-fJJv8qrqKcGvCRHimGKijjXWglFxrzokipMZp1rf3-_Vt4PqUc43GNNaKfWwOqA154ITdlj9vHA2eR_QJ2in3o6Q0dgBOvVLn8CNPgbbozPfNJAgjN5uKig26DQGQFc2pbhCV5AhuG49FPR6hAHNoe83nhSntkNzG2LwrjS_hhFd-7YofWjRRzt2K7t-XD1obJ_hyW49qr68Pf88fz-7_PDuYn5yOXO8rscZ1QshJWmkFI4pyjnRWkGDF5gRRW1NJJNSaUprRwhlpbqksnSktFBjvWBH1Zut93ZaDLB0JU6yvblNfrBpbaL15u9O8J1p4w8jlGQE10XwYidI8fsEeTSDz65EtQHilA0t78s14xwX9Pk_6E2cUsmdDam1JDXFQt9Rre3B-NDEcq7bSM2JxJwRjiUv1Kst5VLMOUGzvzLBZjMBZjMBZjcBBX_2Z8w9_PvLC_ByC3Q-LO3K_6cOCgONvaOJ4FJI9guy9MD9</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Guo, Jin-feng</creator><creator>Yao, Xu-dong</creator><creator>Guo, Jia-chao</creator><creator>Jing, Xing-zhi</creator><creator>Xiang, Wei</creator><creator>Bao, Yuan</creator><creator>Huang, Jun-ming</creator><creator>Wang, Rui</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>John Wiley & Sons, Inc</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7T5</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88G</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>M2M</scope><scope>M2O</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5968-4836</orcidid><orcidid>https://orcid.org/0000-0002-6800-2788</orcidid></search><sort><creationdate>20170101</creationdate><title>Icariin Regulates the Bidirectional Differentiation of Bone Marrow Mesenchymal Stem Cells through Canonical Wnt Signaling Pathway</title><author>Guo, Jin-feng ; Yao, Xu-dong ; Guo, Jia-chao ; Jing, Xing-zhi ; Xiang, Wei ; Bao, Yuan ; Huang, Jun-ming ; Wang, Rui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c499t-28b5661f665c372441887ef0b03172a91636678229c1123031d2617266ae908b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adipocytes</topic><topic>Adipogenesis</topic><topic>Bone density</topic><topic>Bone marrow</topic><topic>Bone mass</topic><topic>Bones</topic><topic>Cancellous bone</topic><topic>Computed tomography</topic><topic>Density</topic><topic>Ethylenediaminetetraacetic acid</topic><topic>Fats</topic><topic>Femur</topic><topic>Gene expression</topic><topic>Immunofluorescence</topic><topic>Kinases</topic><topic>Menopause</topic><topic>Mesenchymal stem cells</topic><topic>Mesenchyme</topic><topic>Mice</topic><topic>Mutation</topic><topic>Osteoblastogenesis</topic><topic>Osteoblasts</topic><topic>Osteogenesis</topic><topic>Osteoporosis</topic><topic>Ovariectomy</topic><topic>Post-menopause</topic><topic>Postmenopausal women</topic><topic>Rodents</topic><topic>Signal transduction</topic><topic>Staining</topic><topic>Stem cell transplantation</topic><topic>Stem cells</topic><topic>Traditional Chinese medicine</topic><topic>Wnt protein</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Jin-feng</creatorcontrib><creatorcontrib>Yao, Xu-dong</creatorcontrib><creatorcontrib>Guo, Jia-chao</creatorcontrib><creatorcontrib>Jing, Xing-zhi</creatorcontrib><creatorcontrib>Xiang, Wei</creatorcontrib><creatorcontrib>Bao, Yuan</creatorcontrib><creatorcontrib>Huang, Jun-ming</creatorcontrib><creatorcontrib>Wang, Rui</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing & Allied Health Database</collection><collection>Immunology Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Psychology Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Evidence-based complementary and alternative medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Jin-feng</au><au>Yao, Xu-dong</au><au>Guo, Jia-chao</au><au>Jing, Xing-zhi</au><au>Xiang, Wei</au><au>Bao, Yuan</au><au>Huang, Jun-ming</au><au>Wang, Rui</au><au>Somasundaram, Indumathi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Icariin Regulates the Bidirectional Differentiation of Bone Marrow Mesenchymal Stem Cells through Canonical Wnt Signaling Pathway</atitle><jtitle>Evidence-based complementary and alternative medicine</jtitle><addtitle>Evid Based Complement Alternat Med</addtitle><date>2017-01-01</date><risdate>2017</risdate><volume>2017</volume><issue>2017</issue><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>1741-427X</issn><eissn>1741-4288</eissn><abstract>Fat infiltration within the bone marrow is easily observed in some postmenopausal women. Those fats are mainly derived from bone marrow mesenchymal stem cells (BMMSCs). The increment of adipocytes derived from BMMSCs leads to decreased osteoblasts derived from BMMSCs, so the bidirectional differentiation of BMMSCs significantly contributes to osteoporosis. Icariin is the main extractive of Herba Epimedii which is widely used in traditional Chinese medicine. In this experiment, we investigated the effect of icariin on the bidirectional differentiation of BMMSCs through quantitative real-time PCR, immunofluorescence, western blot, and tissue sections in vitro and in vivo. We found that icariin obviously promotes osteogenesis and inhibits adipogenesis through detecting staining and gene expression. Micro-CT analysis showed that icariin treatment alleviated the loss of cancellous bone of the distal femur in ovariectomized (OVX) mice. H&E staining analysis showed that icariin-treated OVX mice obtained higher bone mass and fewer bone marrow lipid droplets than OVX mice. Western blot and immunofluorescence showed that icariin regulates the bidirectional differentiation of BMMSCs via canonical Wnt signaling. This study demonstrates that icariin exerts its antiosteoporotic effect by regulating the bidirectional differentiation of BMMSCs through the canonical Wnt signaling pathway.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><pmid>29445413</pmid><doi>10.1155/2017/8085325</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-5968-4836</orcidid><orcidid>https://orcid.org/0000-0002-6800-2788</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1741-427X |
ispartof | Evidence-based complementary and alternative medicine, 2017-01, Vol.2017 (2017), p.1-12 |
issn | 1741-427X 1741-4288 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5763109 |
source | Wiley Online Library Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection; PubMed Central Open Access |
subjects | Adipocytes Adipogenesis Bone density Bone marrow Bone mass Bones Cancellous bone Computed tomography Density Ethylenediaminetetraacetic acid Fats Femur Gene expression Immunofluorescence Kinases Menopause Mesenchymal stem cells Mesenchyme Mice Mutation Osteoblastogenesis Osteoblasts Osteogenesis Osteoporosis Ovariectomy Post-menopause Postmenopausal women Rodents Signal transduction Staining Stem cell transplantation Stem cells Traditional Chinese medicine Wnt protein |
title | Icariin Regulates the Bidirectional Differentiation of Bone Marrow Mesenchymal Stem Cells through Canonical Wnt Signaling Pathway |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T09%3A03%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Icariin%20Regulates%20the%20Bidirectional%20Differentiation%20of%20Bone%20Marrow%20Mesenchymal%20Stem%20Cells%20through%20Canonical%20Wnt%20Signaling%20Pathway&rft.jtitle=Evidence-based%20complementary%20and%20alternative%20medicine&rft.au=Guo,%20Jin-feng&rft.date=2017-01-01&rft.volume=2017&rft.issue=2017&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=1741-427X&rft.eissn=1741-4288&rft_id=info:doi/10.1155/2017/8085325&rft_dat=%3Cgale_pubme%3EA604314064%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1986192058&rft_id=info:pmid/29445413&rft_galeid=A604314064&rfr_iscdi=true |