Icariin Regulates the Bidirectional Differentiation of Bone Marrow Mesenchymal Stem Cells through Canonical Wnt Signaling Pathway

Fat infiltration within the bone marrow is easily observed in some postmenopausal women. Those fats are mainly derived from bone marrow mesenchymal stem cells (BMMSCs). The increment of adipocytes derived from BMMSCs leads to decreased osteoblasts derived from BMMSCs, so the bidirectional differenti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Evidence-based complementary and alternative medicine 2017-01, Vol.2017 (2017), p.1-12
Hauptverfasser: Guo, Jin-feng, Yao, Xu-dong, Guo, Jia-chao, Jing, Xing-zhi, Xiang, Wei, Bao, Yuan, Huang, Jun-ming, Wang, Rui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue 2017
container_start_page 1
container_title Evidence-based complementary and alternative medicine
container_volume 2017
creator Guo, Jin-feng
Yao, Xu-dong
Guo, Jia-chao
Jing, Xing-zhi
Xiang, Wei
Bao, Yuan
Huang, Jun-ming
Wang, Rui
description Fat infiltration within the bone marrow is easily observed in some postmenopausal women. Those fats are mainly derived from bone marrow mesenchymal stem cells (BMMSCs). The increment of adipocytes derived from BMMSCs leads to decreased osteoblasts derived from BMMSCs, so the bidirectional differentiation of BMMSCs significantly contributes to osteoporosis. Icariin is the main extractive of Herba Epimedii which is widely used in traditional Chinese medicine. In this experiment, we investigated the effect of icariin on the bidirectional differentiation of BMMSCs through quantitative real-time PCR, immunofluorescence, western blot, and tissue sections in vitro and in vivo. We found that icariin obviously promotes osteogenesis and inhibits adipogenesis through detecting staining and gene expression. Micro-CT analysis showed that icariin treatment alleviated the loss of cancellous bone of the distal femur in ovariectomized (OVX) mice. H&E staining analysis showed that icariin-treated OVX mice obtained higher bone mass and fewer bone marrow lipid droplets than OVX mice. Western blot and immunofluorescence showed that icariin regulates the bidirectional differentiation of BMMSCs via canonical Wnt signaling. This study demonstrates that icariin exerts its antiosteoporotic effect by regulating the bidirectional differentiation of BMMSCs through the canonical Wnt signaling pathway.
doi_str_mv 10.1155/2017/8085325
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5763109</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A604314064</galeid><sourcerecordid>A604314064</sourcerecordid><originalsourceid>FETCH-LOGICAL-c499t-28b5661f665c372441887ef0b03172a91636678229c1123031d2617266ae908b3</originalsourceid><addsrcrecordid>eNqNks9rFDEUxwdRbK3ePEvAi6Br8zuZi9BuqxZaFKvoLWSzb2ZSZpKazLjs0f_cLLtu1ZOnhPc-fJJv8qrqKcGvCRHimGKijjXWglFxrzokipMZp1rf3-_Vt4PqUc43GNNaKfWwOqA154ITdlj9vHA2eR_QJ2in3o6Q0dgBOvVLn8CNPgbbozPfNJAgjN5uKig26DQGQFc2pbhCV5AhuG49FPR6hAHNoe83nhSntkNzG2LwrjS_hhFd-7YofWjRRzt2K7t-XD1obJ_hyW49qr68Pf88fz-7_PDuYn5yOXO8rscZ1QshJWmkFI4pyjnRWkGDF5gRRW1NJJNSaUprRwhlpbqksnSktFBjvWBH1Zut93ZaDLB0JU6yvblNfrBpbaL15u9O8J1p4w8jlGQE10XwYidI8fsEeTSDz65EtQHilA0t78s14xwX9Pk_6E2cUsmdDam1JDXFQt9Rre3B-NDEcq7bSM2JxJwRjiUv1Kst5VLMOUGzvzLBZjMBZjMBZjcBBX_2Z8w9_PvLC_ByC3Q-LO3K_6cOCgONvaOJ4FJI9guy9MD9</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1986192058</pqid></control><display><type>article</type><title>Icariin Regulates the Bidirectional Differentiation of Bone Marrow Mesenchymal Stem Cells through Canonical Wnt Signaling Pathway</title><source>Wiley Online Library Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>PubMed Central Open Access</source><creator>Guo, Jin-feng ; Yao, Xu-dong ; Guo, Jia-chao ; Jing, Xing-zhi ; Xiang, Wei ; Bao, Yuan ; Huang, Jun-ming ; Wang, Rui</creator><contributor>Somasundaram, Indumathi</contributor><creatorcontrib>Guo, Jin-feng ; Yao, Xu-dong ; Guo, Jia-chao ; Jing, Xing-zhi ; Xiang, Wei ; Bao, Yuan ; Huang, Jun-ming ; Wang, Rui ; Somasundaram, Indumathi</creatorcontrib><description>Fat infiltration within the bone marrow is easily observed in some postmenopausal women. Those fats are mainly derived from bone marrow mesenchymal stem cells (BMMSCs). The increment of adipocytes derived from BMMSCs leads to decreased osteoblasts derived from BMMSCs, so the bidirectional differentiation of BMMSCs significantly contributes to osteoporosis. Icariin is the main extractive of Herba Epimedii which is widely used in traditional Chinese medicine. In this experiment, we investigated the effect of icariin on the bidirectional differentiation of BMMSCs through quantitative real-time PCR, immunofluorescence, western blot, and tissue sections in vitro and in vivo. We found that icariin obviously promotes osteogenesis and inhibits adipogenesis through detecting staining and gene expression. Micro-CT analysis showed that icariin treatment alleviated the loss of cancellous bone of the distal femur in ovariectomized (OVX) mice. H&amp;E staining analysis showed that icariin-treated OVX mice obtained higher bone mass and fewer bone marrow lipid droplets than OVX mice. Western blot and immunofluorescence showed that icariin regulates the bidirectional differentiation of BMMSCs via canonical Wnt signaling. This study demonstrates that icariin exerts its antiosteoporotic effect by regulating the bidirectional differentiation of BMMSCs through the canonical Wnt signaling pathway.</description><identifier>ISSN: 1741-427X</identifier><identifier>EISSN: 1741-4288</identifier><identifier>DOI: 10.1155/2017/8085325</identifier><identifier>PMID: 29445413</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Adipocytes ; Adipogenesis ; Bone density ; Bone marrow ; Bone mass ; Bones ; Cancellous bone ; Computed tomography ; Density ; Ethylenediaminetetraacetic acid ; Fats ; Femur ; Gene expression ; Immunofluorescence ; Kinases ; Menopause ; Mesenchymal stem cells ; Mesenchyme ; Mice ; Mutation ; Osteoblastogenesis ; Osteoblasts ; Osteogenesis ; Osteoporosis ; Ovariectomy ; Post-menopause ; Postmenopausal women ; Rodents ; Signal transduction ; Staining ; Stem cell transplantation ; Stem cells ; Traditional Chinese medicine ; Wnt protein</subject><ispartof>Evidence-based complementary and alternative medicine, 2017-01, Vol.2017 (2017), p.1-12</ispartof><rights>Copyright © 2017 Jun-ming Huang et al.</rights><rights>COPYRIGHT 2018 John Wiley &amp; Sons, Inc.</rights><rights>Copyright © 2017 Jun-ming Huang et al.; This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><rights>Copyright © 2017 Jun-ming Huang et al. 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c499t-28b5661f665c372441887ef0b03172a91636678229c1123031d2617266ae908b3</citedby><cites>FETCH-LOGICAL-c499t-28b5661f665c372441887ef0b03172a91636678229c1123031d2617266ae908b3</cites><orcidid>0000-0002-5968-4836 ; 0000-0002-6800-2788</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5763109/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5763109/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29445413$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Somasundaram, Indumathi</contributor><creatorcontrib>Guo, Jin-feng</creatorcontrib><creatorcontrib>Yao, Xu-dong</creatorcontrib><creatorcontrib>Guo, Jia-chao</creatorcontrib><creatorcontrib>Jing, Xing-zhi</creatorcontrib><creatorcontrib>Xiang, Wei</creatorcontrib><creatorcontrib>Bao, Yuan</creatorcontrib><creatorcontrib>Huang, Jun-ming</creatorcontrib><creatorcontrib>Wang, Rui</creatorcontrib><title>Icariin Regulates the Bidirectional Differentiation of Bone Marrow Mesenchymal Stem Cells through Canonical Wnt Signaling Pathway</title><title>Evidence-based complementary and alternative medicine</title><addtitle>Evid Based Complement Alternat Med</addtitle><description>Fat infiltration within the bone marrow is easily observed in some postmenopausal women. Those fats are mainly derived from bone marrow mesenchymal stem cells (BMMSCs). The increment of adipocytes derived from BMMSCs leads to decreased osteoblasts derived from BMMSCs, so the bidirectional differentiation of BMMSCs significantly contributes to osteoporosis. Icariin is the main extractive of Herba Epimedii which is widely used in traditional Chinese medicine. In this experiment, we investigated the effect of icariin on the bidirectional differentiation of BMMSCs through quantitative real-time PCR, immunofluorescence, western blot, and tissue sections in vitro and in vivo. We found that icariin obviously promotes osteogenesis and inhibits adipogenesis through detecting staining and gene expression. Micro-CT analysis showed that icariin treatment alleviated the loss of cancellous bone of the distal femur in ovariectomized (OVX) mice. H&amp;E staining analysis showed that icariin-treated OVX mice obtained higher bone mass and fewer bone marrow lipid droplets than OVX mice. Western blot and immunofluorescence showed that icariin regulates the bidirectional differentiation of BMMSCs via canonical Wnt signaling. This study demonstrates that icariin exerts its antiosteoporotic effect by regulating the bidirectional differentiation of BMMSCs through the canonical Wnt signaling pathway.</description><subject>Adipocytes</subject><subject>Adipogenesis</subject><subject>Bone density</subject><subject>Bone marrow</subject><subject>Bone mass</subject><subject>Bones</subject><subject>Cancellous bone</subject><subject>Computed tomography</subject><subject>Density</subject><subject>Ethylenediaminetetraacetic acid</subject><subject>Fats</subject><subject>Femur</subject><subject>Gene expression</subject><subject>Immunofluorescence</subject><subject>Kinases</subject><subject>Menopause</subject><subject>Mesenchymal stem cells</subject><subject>Mesenchyme</subject><subject>Mice</subject><subject>Mutation</subject><subject>Osteoblastogenesis</subject><subject>Osteoblasts</subject><subject>Osteogenesis</subject><subject>Osteoporosis</subject><subject>Ovariectomy</subject><subject>Post-menopause</subject><subject>Postmenopausal women</subject><subject>Rodents</subject><subject>Signal transduction</subject><subject>Staining</subject><subject>Stem cell transplantation</subject><subject>Stem cells</subject><subject>Traditional Chinese medicine</subject><subject>Wnt protein</subject><issn>1741-427X</issn><issn>1741-4288</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNks9rFDEUxwdRbK3ePEvAi6Br8zuZi9BuqxZaFKvoLWSzb2ZSZpKazLjs0f_cLLtu1ZOnhPc-fJJv8qrqKcGvCRHimGKijjXWglFxrzokipMZp1rf3-_Vt4PqUc43GNNaKfWwOqA154ITdlj9vHA2eR_QJ2in3o6Q0dgBOvVLn8CNPgbbozPfNJAgjN5uKig26DQGQFc2pbhCV5AhuG49FPR6hAHNoe83nhSntkNzG2LwrjS_hhFd-7YofWjRRzt2K7t-XD1obJ_hyW49qr68Pf88fz-7_PDuYn5yOXO8rscZ1QshJWmkFI4pyjnRWkGDF5gRRW1NJJNSaUprRwhlpbqksnSktFBjvWBH1Zut93ZaDLB0JU6yvblNfrBpbaL15u9O8J1p4w8jlGQE10XwYidI8fsEeTSDz65EtQHilA0t78s14xwX9Pk_6E2cUsmdDam1JDXFQt9Rre3B-NDEcq7bSM2JxJwRjiUv1Kst5VLMOUGzvzLBZjMBZjMBZjcBBX_2Z8w9_PvLC_ByC3Q-LO3K_6cOCgONvaOJ4FJI9guy9MD9</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Guo, Jin-feng</creator><creator>Yao, Xu-dong</creator><creator>Guo, Jia-chao</creator><creator>Jing, Xing-zhi</creator><creator>Xiang, Wei</creator><creator>Bao, Yuan</creator><creator>Huang, Jun-ming</creator><creator>Wang, Rui</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>John Wiley &amp; Sons, Inc</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7T5</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88G</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>M2M</scope><scope>M2O</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5968-4836</orcidid><orcidid>https://orcid.org/0000-0002-6800-2788</orcidid></search><sort><creationdate>20170101</creationdate><title>Icariin Regulates the Bidirectional Differentiation of Bone Marrow Mesenchymal Stem Cells through Canonical Wnt Signaling Pathway</title><author>Guo, Jin-feng ; Yao, Xu-dong ; Guo, Jia-chao ; Jing, Xing-zhi ; Xiang, Wei ; Bao, Yuan ; Huang, Jun-ming ; Wang, Rui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c499t-28b5661f665c372441887ef0b03172a91636678229c1123031d2617266ae908b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adipocytes</topic><topic>Adipogenesis</topic><topic>Bone density</topic><topic>Bone marrow</topic><topic>Bone mass</topic><topic>Bones</topic><topic>Cancellous bone</topic><topic>Computed tomography</topic><topic>Density</topic><topic>Ethylenediaminetetraacetic acid</topic><topic>Fats</topic><topic>Femur</topic><topic>Gene expression</topic><topic>Immunofluorescence</topic><topic>Kinases</topic><topic>Menopause</topic><topic>Mesenchymal stem cells</topic><topic>Mesenchyme</topic><topic>Mice</topic><topic>Mutation</topic><topic>Osteoblastogenesis</topic><topic>Osteoblasts</topic><topic>Osteogenesis</topic><topic>Osteoporosis</topic><topic>Ovariectomy</topic><topic>Post-menopause</topic><topic>Postmenopausal women</topic><topic>Rodents</topic><topic>Signal transduction</topic><topic>Staining</topic><topic>Stem cell transplantation</topic><topic>Stem cells</topic><topic>Traditional Chinese medicine</topic><topic>Wnt protein</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Jin-feng</creatorcontrib><creatorcontrib>Yao, Xu-dong</creatorcontrib><creatorcontrib>Guo, Jia-chao</creatorcontrib><creatorcontrib>Jing, Xing-zhi</creatorcontrib><creatorcontrib>Xiang, Wei</creatorcontrib><creatorcontrib>Bao, Yuan</creatorcontrib><creatorcontrib>Huang, Jun-ming</creatorcontrib><creatorcontrib>Wang, Rui</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Immunology Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Psychology Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Evidence-based complementary and alternative medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Jin-feng</au><au>Yao, Xu-dong</au><au>Guo, Jia-chao</au><au>Jing, Xing-zhi</au><au>Xiang, Wei</au><au>Bao, Yuan</au><au>Huang, Jun-ming</au><au>Wang, Rui</au><au>Somasundaram, Indumathi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Icariin Regulates the Bidirectional Differentiation of Bone Marrow Mesenchymal Stem Cells through Canonical Wnt Signaling Pathway</atitle><jtitle>Evidence-based complementary and alternative medicine</jtitle><addtitle>Evid Based Complement Alternat Med</addtitle><date>2017-01-01</date><risdate>2017</risdate><volume>2017</volume><issue>2017</issue><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>1741-427X</issn><eissn>1741-4288</eissn><abstract>Fat infiltration within the bone marrow is easily observed in some postmenopausal women. Those fats are mainly derived from bone marrow mesenchymal stem cells (BMMSCs). The increment of adipocytes derived from BMMSCs leads to decreased osteoblasts derived from BMMSCs, so the bidirectional differentiation of BMMSCs significantly contributes to osteoporosis. Icariin is the main extractive of Herba Epimedii which is widely used in traditional Chinese medicine. In this experiment, we investigated the effect of icariin on the bidirectional differentiation of BMMSCs through quantitative real-time PCR, immunofluorescence, western blot, and tissue sections in vitro and in vivo. We found that icariin obviously promotes osteogenesis and inhibits adipogenesis through detecting staining and gene expression. Micro-CT analysis showed that icariin treatment alleviated the loss of cancellous bone of the distal femur in ovariectomized (OVX) mice. H&amp;E staining analysis showed that icariin-treated OVX mice obtained higher bone mass and fewer bone marrow lipid droplets than OVX mice. Western blot and immunofluorescence showed that icariin regulates the bidirectional differentiation of BMMSCs via canonical Wnt signaling. This study demonstrates that icariin exerts its antiosteoporotic effect by regulating the bidirectional differentiation of BMMSCs through the canonical Wnt signaling pathway.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><pmid>29445413</pmid><doi>10.1155/2017/8085325</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-5968-4836</orcidid><orcidid>https://orcid.org/0000-0002-6800-2788</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1741-427X
ispartof Evidence-based complementary and alternative medicine, 2017-01, Vol.2017 (2017), p.1-12
issn 1741-427X
1741-4288
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5763109
source Wiley Online Library Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection; PubMed Central Open Access
subjects Adipocytes
Adipogenesis
Bone density
Bone marrow
Bone mass
Bones
Cancellous bone
Computed tomography
Density
Ethylenediaminetetraacetic acid
Fats
Femur
Gene expression
Immunofluorescence
Kinases
Menopause
Mesenchymal stem cells
Mesenchyme
Mice
Mutation
Osteoblastogenesis
Osteoblasts
Osteogenesis
Osteoporosis
Ovariectomy
Post-menopause
Postmenopausal women
Rodents
Signal transduction
Staining
Stem cell transplantation
Stem cells
Traditional Chinese medicine
Wnt protein
title Icariin Regulates the Bidirectional Differentiation of Bone Marrow Mesenchymal Stem Cells through Canonical Wnt Signaling Pathway
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T09%3A03%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Icariin%20Regulates%20the%20Bidirectional%20Differentiation%20of%20Bone%20Marrow%20Mesenchymal%20Stem%20Cells%20through%20Canonical%20Wnt%20Signaling%20Pathway&rft.jtitle=Evidence-based%20complementary%20and%20alternative%20medicine&rft.au=Guo,%20Jin-feng&rft.date=2017-01-01&rft.volume=2017&rft.issue=2017&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=1741-427X&rft.eissn=1741-4288&rft_id=info:doi/10.1155/2017/8085325&rft_dat=%3Cgale_pubme%3EA604314064%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1986192058&rft_id=info:pmid/29445413&rft_galeid=A604314064&rfr_iscdi=true