A miR-20a/MAPK1/c-Myc regulatory feedback loop regulates breast carcinogenesis and chemoresistance

Chemoresistance often leads to the failure of breast cancer treatment. MicroRNAs (miRNAs) play an important role in the progression and chemoresistance of cancer. However, because of the complexity of the mechanisms of chemoresistance and the specificity of miRNA regulation in different cell types,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell death and differentiation 2018-02, Vol.25 (2), p.406-420
Hauptverfasser: Si, Wengong, Shen, Jiaying, Du, Chengyong, Chen, Danni, Gu, Xidong, Li, Chenggong, Yao, Minya, Pan, Jie, Cheng, Junchi, Jiang, Donghai, Xu, Liang, Bao, Chang, Fu, Peifen, Fan, Weimin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 420
container_issue 2
container_start_page 406
container_title Cell death and differentiation
container_volume 25
creator Si, Wengong
Shen, Jiaying
Du, Chengyong
Chen, Danni
Gu, Xidong
Li, Chenggong
Yao, Minya
Pan, Jie
Cheng, Junchi
Jiang, Donghai
Xu, Liang
Bao, Chang
Fu, Peifen
Fan, Weimin
description Chemoresistance often leads to the failure of breast cancer treatment. MicroRNAs (miRNAs) play an important role in the progression and chemoresistance of cancer. However, because of the complexity of the mechanisms of chemoresistance and the specificity of miRNA regulation in different cell types, the function of miR-20a in breast cancer chemoresistance is still unclear. Here, by using miRNA microarray and high-content screening techniques, we found that miR-20a/b were significantly downregulated in breast cancer tissues compared with normal breast tissues, and low miR-20a/b expression was correlated with poor survival in breast cancer patients. Ectopic overexpression of miR-20a sensitized breast cancer cells to a broad spectrum of chemotherapy drugs and suppress their proliferation both in vitro and in vivo . Further study demonstrated that miR-20a directly targeted the 3'untranslated region of MAPK1 , and thus downregulated the expression of P-gp and c-Myc by inhibiting the MAPK/ERK signaling pathway, whereas c-Myc can bind to the promoter region of the miR-20a gene to promote the expression of miR-20a. Together, our study identified a novel miR-20a/MAPK1/c-Myc feedback loop that regulates breast cancer growth and chemoresistance. These findings suggest that miR-20a synergizing with anticancer drugs will be a promising treatment strategy, especially for chemoresistant patients.
doi_str_mv 10.1038/cdd.2017.176
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5762853</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1985552887</sourcerecordid><originalsourceid>FETCH-LOGICAL-c450t-23c2b9d1f028754666618eac598951f9d65d4d8d18a4ea02afc328ae6965af213</originalsourceid><addsrcrecordid>eNptkc1LAzEQxYMoft88y4JXt02ym2xyEUrxCxVF9Bxmk9m62m5qshX635tSFQXnkgnvx5sHj5AjRgeMFmponRtwyqoBq-QG2WVlJXNR0mIz7YWguaZltUP2YnyllMpKy22ywzXjQmi1S-pRNmsfc05heDd6uGFDm98tbRZwsphC78MyaxBdDfYtm3o__xYwZnVAiH1mIdi28xPsMLYxg85l9gVnPqy-PXQWD8hWA9OIh1_vPnm-OH8aX-W395fX49FtbktB-5wXltfasYZyVYlSpmEKwaaYWrBGOylc6ZRjCkoEyqGxBVeAUksBDWfFPjlb-84X9Qydxa4PMDXz0M4gLI2H1vxVuvbFTPyHEZXkShTJ4OTLIPj3BcbevPpF6FJmw7QSQnClqkSdrikbfIwBm58LjJpVIyY1YlaNmNRIwo9_p_qBvytIQL4GYpK6CYZfV_8z_ARLupZW</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1985552887</pqid></control><display><type>article</type><title>A miR-20a/MAPK1/c-Myc regulatory feedback loop regulates breast carcinogenesis and chemoresistance</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>SpringerLink Journals - AutoHoldings</source><creator>Si, Wengong ; Shen, Jiaying ; Du, Chengyong ; Chen, Danni ; Gu, Xidong ; Li, Chenggong ; Yao, Minya ; Pan, Jie ; Cheng, Junchi ; Jiang, Donghai ; Xu, Liang ; Bao, Chang ; Fu, Peifen ; Fan, Weimin</creator><creatorcontrib>Si, Wengong ; Shen, Jiaying ; Du, Chengyong ; Chen, Danni ; Gu, Xidong ; Li, Chenggong ; Yao, Minya ; Pan, Jie ; Cheng, Junchi ; Jiang, Donghai ; Xu, Liang ; Bao, Chang ; Fu, Peifen ; Fan, Weimin</creatorcontrib><description>Chemoresistance often leads to the failure of breast cancer treatment. MicroRNAs (miRNAs) play an important role in the progression and chemoresistance of cancer. However, because of the complexity of the mechanisms of chemoresistance and the specificity of miRNA regulation in different cell types, the function of miR-20a in breast cancer chemoresistance is still unclear. Here, by using miRNA microarray and high-content screening techniques, we found that miR-20a/b were significantly downregulated in breast cancer tissues compared with normal breast tissues, and low miR-20a/b expression was correlated with poor survival in breast cancer patients. Ectopic overexpression of miR-20a sensitized breast cancer cells to a broad spectrum of chemotherapy drugs and suppress their proliferation both in vitro and in vivo . Further study demonstrated that miR-20a directly targeted the 3'untranslated region of MAPK1 , and thus downregulated the expression of P-gp and c-Myc by inhibiting the MAPK/ERK signaling pathway, whereas c-Myc can bind to the promoter region of the miR-20a gene to promote the expression of miR-20a. Together, our study identified a novel miR-20a/MAPK1/c-Myc feedback loop that regulates breast cancer growth and chemoresistance. These findings suggest that miR-20a synergizing with anticancer drugs will be a promising treatment strategy, especially for chemoresistant patients.</description><identifier>ISSN: 1350-9047</identifier><identifier>EISSN: 1476-5403</identifier><identifier>DOI: 10.1038/cdd.2017.176</identifier><identifier>PMID: 29125598</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/67/1857 ; 692/420/2489/68 ; Antineoplastic Agents - pharmacology ; Antineoplastic drugs ; Antitumor agents ; Apoptosis ; Biochemistry ; Biomedical and Life Sciences ; Breast cancer ; Breast Neoplasms - drug therapy ; Breast Neoplasms - metabolism ; Breast Neoplasms - pathology ; c-Myc protein ; Cancer therapies ; Carcinogenesis ; Cell Biology ; Cell Cycle Analysis ; Cell proliferation ; Cell Proliferation - drug effects ; Chemoresistance ; Chemotherapy ; DNA microarrays ; Drug Resistance, Neoplasm - drug effects ; Drug Screening Assays, Antitumor ; Feedback ; Feedback loops ; Female ; Humans ; Life Sciences ; MAP kinase ; MicroRNAs - genetics ; MicroRNAs - metabolism ; miRNA ; Mitogen-Activated Protein Kinase 1 - metabolism ; Myc protein ; Oligonucleotide Array Sequence Analysis ; Original Paper ; Proto-Oncogene Proteins c-myc - metabolism ; Signal transduction ; Stem Cells ; Tumor Cells, Cultured</subject><ispartof>Cell death and differentiation, 2018-02, Vol.25 (2), p.406-420</ispartof><rights>The Author(s) 2018</rights><rights>Copyright Nature Publishing Group Feb 2018</rights><rights>Copyright © 2018 The Author(s) 2018 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c450t-23c2b9d1f028754666618eac598951f9d65d4d8d18a4ea02afc328ae6965af213</citedby><cites>FETCH-LOGICAL-c450t-23c2b9d1f028754666618eac598951f9d65d4d8d18a4ea02afc328ae6965af213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5762853/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5762853/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,41464,42533,51294,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29125598$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Si, Wengong</creatorcontrib><creatorcontrib>Shen, Jiaying</creatorcontrib><creatorcontrib>Du, Chengyong</creatorcontrib><creatorcontrib>Chen, Danni</creatorcontrib><creatorcontrib>Gu, Xidong</creatorcontrib><creatorcontrib>Li, Chenggong</creatorcontrib><creatorcontrib>Yao, Minya</creatorcontrib><creatorcontrib>Pan, Jie</creatorcontrib><creatorcontrib>Cheng, Junchi</creatorcontrib><creatorcontrib>Jiang, Donghai</creatorcontrib><creatorcontrib>Xu, Liang</creatorcontrib><creatorcontrib>Bao, Chang</creatorcontrib><creatorcontrib>Fu, Peifen</creatorcontrib><creatorcontrib>Fan, Weimin</creatorcontrib><title>A miR-20a/MAPK1/c-Myc regulatory feedback loop regulates breast carcinogenesis and chemoresistance</title><title>Cell death and differentiation</title><addtitle>Cell Death Differ</addtitle><addtitle>Cell Death Differ</addtitle><description>Chemoresistance often leads to the failure of breast cancer treatment. MicroRNAs (miRNAs) play an important role in the progression and chemoresistance of cancer. However, because of the complexity of the mechanisms of chemoresistance and the specificity of miRNA regulation in different cell types, the function of miR-20a in breast cancer chemoresistance is still unclear. Here, by using miRNA microarray and high-content screening techniques, we found that miR-20a/b were significantly downregulated in breast cancer tissues compared with normal breast tissues, and low miR-20a/b expression was correlated with poor survival in breast cancer patients. Ectopic overexpression of miR-20a sensitized breast cancer cells to a broad spectrum of chemotherapy drugs and suppress their proliferation both in vitro and in vivo . Further study demonstrated that miR-20a directly targeted the 3'untranslated region of MAPK1 , and thus downregulated the expression of P-gp and c-Myc by inhibiting the MAPK/ERK signaling pathway, whereas c-Myc can bind to the promoter region of the miR-20a gene to promote the expression of miR-20a. Together, our study identified a novel miR-20a/MAPK1/c-Myc feedback loop that regulates breast cancer growth and chemoresistance. These findings suggest that miR-20a synergizing with anticancer drugs will be a promising treatment strategy, especially for chemoresistant patients.</description><subject>631/67/1857</subject><subject>692/420/2489/68</subject><subject>Antineoplastic Agents - pharmacology</subject><subject>Antineoplastic drugs</subject><subject>Antitumor agents</subject><subject>Apoptosis</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Breast cancer</subject><subject>Breast Neoplasms - drug therapy</subject><subject>Breast Neoplasms - metabolism</subject><subject>Breast Neoplasms - pathology</subject><subject>c-Myc protein</subject><subject>Cancer therapies</subject><subject>Carcinogenesis</subject><subject>Cell Biology</subject><subject>Cell Cycle Analysis</subject><subject>Cell proliferation</subject><subject>Cell Proliferation - drug effects</subject><subject>Chemoresistance</subject><subject>Chemotherapy</subject><subject>DNA microarrays</subject><subject>Drug Resistance, Neoplasm - drug effects</subject><subject>Drug Screening Assays, Antitumor</subject><subject>Feedback</subject><subject>Feedback loops</subject><subject>Female</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>MAP kinase</subject><subject>MicroRNAs - genetics</subject><subject>MicroRNAs - metabolism</subject><subject>miRNA</subject><subject>Mitogen-Activated Protein Kinase 1 - metabolism</subject><subject>Myc protein</subject><subject>Oligonucleotide Array Sequence Analysis</subject><subject>Original Paper</subject><subject>Proto-Oncogene Proteins c-myc - metabolism</subject><subject>Signal transduction</subject><subject>Stem Cells</subject><subject>Tumor Cells, Cultured</subject><issn>1350-9047</issn><issn>1476-5403</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNptkc1LAzEQxYMoft88y4JXt02ym2xyEUrxCxVF9Bxmk9m62m5qshX635tSFQXnkgnvx5sHj5AjRgeMFmponRtwyqoBq-QG2WVlJXNR0mIz7YWguaZltUP2YnyllMpKy22ywzXjQmi1S-pRNmsfc05heDd6uGFDm98tbRZwsphC78MyaxBdDfYtm3o__xYwZnVAiH1mIdi28xPsMLYxg85l9gVnPqy-PXQWD8hWA9OIh1_vPnm-OH8aX-W395fX49FtbktB-5wXltfasYZyVYlSpmEKwaaYWrBGOylc6ZRjCkoEyqGxBVeAUksBDWfFPjlb-84X9Qydxa4PMDXz0M4gLI2H1vxVuvbFTPyHEZXkShTJ4OTLIPj3BcbevPpF6FJmw7QSQnClqkSdrikbfIwBm58LjJpVIyY1YlaNmNRIwo9_p_qBvytIQL4GYpK6CYZfV_8z_ARLupZW</recordid><startdate>20180201</startdate><enddate>20180201</enddate><creator>Si, Wengong</creator><creator>Shen, Jiaying</creator><creator>Du, Chengyong</creator><creator>Chen, Danni</creator><creator>Gu, Xidong</creator><creator>Li, Chenggong</creator><creator>Yao, Minya</creator><creator>Pan, Jie</creator><creator>Cheng, Junchi</creator><creator>Jiang, Donghai</creator><creator>Xu, Liang</creator><creator>Bao, Chang</creator><creator>Fu, Peifen</creator><creator>Fan, Weimin</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20180201</creationdate><title>A miR-20a/MAPK1/c-Myc regulatory feedback loop regulates breast carcinogenesis and chemoresistance</title><author>Si, Wengong ; Shen, Jiaying ; Du, Chengyong ; Chen, Danni ; Gu, Xidong ; Li, Chenggong ; Yao, Minya ; Pan, Jie ; Cheng, Junchi ; Jiang, Donghai ; Xu, Liang ; Bao, Chang ; Fu, Peifen ; Fan, Weimin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c450t-23c2b9d1f028754666618eac598951f9d65d4d8d18a4ea02afc328ae6965af213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>631/67/1857</topic><topic>692/420/2489/68</topic><topic>Antineoplastic Agents - pharmacology</topic><topic>Antineoplastic drugs</topic><topic>Antitumor agents</topic><topic>Apoptosis</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Breast cancer</topic><topic>Breast Neoplasms - drug therapy</topic><topic>Breast Neoplasms - metabolism</topic><topic>Breast Neoplasms - pathology</topic><topic>c-Myc protein</topic><topic>Cancer therapies</topic><topic>Carcinogenesis</topic><topic>Cell Biology</topic><topic>Cell Cycle Analysis</topic><topic>Cell proliferation</topic><topic>Cell Proliferation - drug effects</topic><topic>Chemoresistance</topic><topic>Chemotherapy</topic><topic>DNA microarrays</topic><topic>Drug Resistance, Neoplasm - drug effects</topic><topic>Drug Screening Assays, Antitumor</topic><topic>Feedback</topic><topic>Feedback loops</topic><topic>Female</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>MAP kinase</topic><topic>MicroRNAs - genetics</topic><topic>MicroRNAs - metabolism</topic><topic>miRNA</topic><topic>Mitogen-Activated Protein Kinase 1 - metabolism</topic><topic>Myc protein</topic><topic>Oligonucleotide Array Sequence Analysis</topic><topic>Original Paper</topic><topic>Proto-Oncogene Proteins c-myc - metabolism</topic><topic>Signal transduction</topic><topic>Stem Cells</topic><topic>Tumor Cells, Cultured</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Si, Wengong</creatorcontrib><creatorcontrib>Shen, Jiaying</creatorcontrib><creatorcontrib>Du, Chengyong</creatorcontrib><creatorcontrib>Chen, Danni</creatorcontrib><creatorcontrib>Gu, Xidong</creatorcontrib><creatorcontrib>Li, Chenggong</creatorcontrib><creatorcontrib>Yao, Minya</creatorcontrib><creatorcontrib>Pan, Jie</creatorcontrib><creatorcontrib>Cheng, Junchi</creatorcontrib><creatorcontrib>Jiang, Donghai</creatorcontrib><creatorcontrib>Xu, Liang</creatorcontrib><creatorcontrib>Bao, Chang</creatorcontrib><creatorcontrib>Fu, Peifen</creatorcontrib><creatorcontrib>Fan, Weimin</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell death and differentiation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Si, Wengong</au><au>Shen, Jiaying</au><au>Du, Chengyong</au><au>Chen, Danni</au><au>Gu, Xidong</au><au>Li, Chenggong</au><au>Yao, Minya</au><au>Pan, Jie</au><au>Cheng, Junchi</au><au>Jiang, Donghai</au><au>Xu, Liang</au><au>Bao, Chang</au><au>Fu, Peifen</au><au>Fan, Weimin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A miR-20a/MAPK1/c-Myc regulatory feedback loop regulates breast carcinogenesis and chemoresistance</atitle><jtitle>Cell death and differentiation</jtitle><stitle>Cell Death Differ</stitle><addtitle>Cell Death Differ</addtitle><date>2018-02-01</date><risdate>2018</risdate><volume>25</volume><issue>2</issue><spage>406</spage><epage>420</epage><pages>406-420</pages><issn>1350-9047</issn><eissn>1476-5403</eissn><abstract>Chemoresistance often leads to the failure of breast cancer treatment. MicroRNAs (miRNAs) play an important role in the progression and chemoresistance of cancer. However, because of the complexity of the mechanisms of chemoresistance and the specificity of miRNA regulation in different cell types, the function of miR-20a in breast cancer chemoresistance is still unclear. Here, by using miRNA microarray and high-content screening techniques, we found that miR-20a/b were significantly downregulated in breast cancer tissues compared with normal breast tissues, and low miR-20a/b expression was correlated with poor survival in breast cancer patients. Ectopic overexpression of miR-20a sensitized breast cancer cells to a broad spectrum of chemotherapy drugs and suppress their proliferation both in vitro and in vivo . Further study demonstrated that miR-20a directly targeted the 3'untranslated region of MAPK1 , and thus downregulated the expression of P-gp and c-Myc by inhibiting the MAPK/ERK signaling pathway, whereas c-Myc can bind to the promoter region of the miR-20a gene to promote the expression of miR-20a. Together, our study identified a novel miR-20a/MAPK1/c-Myc feedback loop that regulates breast cancer growth and chemoresistance. These findings suggest that miR-20a synergizing with anticancer drugs will be a promising treatment strategy, especially for chemoresistant patients.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>29125598</pmid><doi>10.1038/cdd.2017.176</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1350-9047
ispartof Cell death and differentiation, 2018-02, Vol.25 (2), p.406-420
issn 1350-9047
1476-5403
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5762853
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; SpringerLink Journals - AutoHoldings
subjects 631/67/1857
692/420/2489/68
Antineoplastic Agents - pharmacology
Antineoplastic drugs
Antitumor agents
Apoptosis
Biochemistry
Biomedical and Life Sciences
Breast cancer
Breast Neoplasms - drug therapy
Breast Neoplasms - metabolism
Breast Neoplasms - pathology
c-Myc protein
Cancer therapies
Carcinogenesis
Cell Biology
Cell Cycle Analysis
Cell proliferation
Cell Proliferation - drug effects
Chemoresistance
Chemotherapy
DNA microarrays
Drug Resistance, Neoplasm - drug effects
Drug Screening Assays, Antitumor
Feedback
Feedback loops
Female
Humans
Life Sciences
MAP kinase
MicroRNAs - genetics
MicroRNAs - metabolism
miRNA
Mitogen-Activated Protein Kinase 1 - metabolism
Myc protein
Oligonucleotide Array Sequence Analysis
Original Paper
Proto-Oncogene Proteins c-myc - metabolism
Signal transduction
Stem Cells
Tumor Cells, Cultured
title A miR-20a/MAPK1/c-Myc regulatory feedback loop regulates breast carcinogenesis and chemoresistance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T12%3A17%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20miR-20a/MAPK1/c-Myc%20regulatory%20feedback%20loop%20regulates%20breast%20carcinogenesis%20and%20chemoresistance&rft.jtitle=Cell%20death%20and%20differentiation&rft.au=Si,%20Wengong&rft.date=2018-02-01&rft.volume=25&rft.issue=2&rft.spage=406&rft.epage=420&rft.pages=406-420&rft.issn=1350-9047&rft.eissn=1476-5403&rft_id=info:doi/10.1038/cdd.2017.176&rft_dat=%3Cproquest_pubme%3E1985552887%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1985552887&rft_id=info:pmid/29125598&rfr_iscdi=true