Site-specific randomization of the endogenous genome by a regulatable CRISPR-Cas9 piggyBac system in human cells

Randomized mutagenesis at an endogenous chromosomal locus is a promising approach for protein engineering, functional assessment of regulatory elements, and modeling genetic variations. In mammalian cells, however, it is challenging to perform site-specific single-nucleotide substitution with single...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2018-01, Vol.8 (1), p.310, Article 310
Hauptverfasser: Ishida, Kentaro, Xu, Huaigeng, Sasakawa, Noriko, Lung, Mandy Siu Yu, Kudryashev, Julia Alexandra, Gee, Peter, Hotta, Akitsu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 310
container_title Scientific reports
container_volume 8
creator Ishida, Kentaro
Xu, Huaigeng
Sasakawa, Noriko
Lung, Mandy Siu Yu
Kudryashev, Julia Alexandra
Gee, Peter
Hotta, Akitsu
description Randomized mutagenesis at an endogenous chromosomal locus is a promising approach for protein engineering, functional assessment of regulatory elements, and modeling genetic variations. In mammalian cells, however, it is challenging to perform site-specific single-nucleotide substitution with single-stranded oligodeoxynucleotide (ssODN) donor templates due to insufficient homologous recombination and the infeasibility of positive selection. Here, we developed a DNA transposon based CRISPR-Cas9 regulated transcription and nuclear shuttling (CRONUS) system that enables the stable transduction of CRISPR-Cas9/sgRNA in broad cell types, but avoids undesired genome cleavage in the absence two chemical inducing molecules. Highly efficient single nucleotide alterations induced randomization of desired codons (up to 4 codons) at a defined genomic locus in various human cell lines, including human iPS cells. Thus, CRONUS provides a novel platform for modeling diseases and genetic variations.
doi_str_mv 10.1038/s41598-017-18568-4
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5762678</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1993417875</sourcerecordid><originalsourceid>FETCH-LOGICAL-c621t-fd742d403ac9199007637652925d78c7e90e032953e36c050c0226421a05d5f43</originalsourceid><addsrcrecordid>eNp1kV1rFDEUhoMottT-AS8k4HU0n5PJjaCLH4WC0up1yGbOzKbMJGMyU1h_vVm3lvXC3Jxwzpv3vOFB6CWjbxgV7dsimTItoUwT1qqmJfIJOudUKsIF509P7mfospQ7Wo_iRjLzHJ1xIzhTrTpH821YgJQZfOiDx9nFLk3hl1tCijj1eNkBhtobIKa14EOZAG_32OEMwzq6xW1HwJubq9tvN2TjisFzGIb9B-dx2ZcFJhwi3q2Ti9jDOJYX6FnvxgKXD_UC_fj08fvmC7n--vlq8_6a-IazhfSdlryTVDhvmDGU6kbopn6Aq063XoOhQAU3SoBoPFXUU84byZmjqlO9FBfo3dF3XrcTdB7ikt1o5xwml_c2uWD_ncSws0O6t0o3vNFtNXj9YJDTzxXKYu_SmmPNbGsgIZlutaoqflT5nErJ0D9uYNQeQNkjKFtB2T-g7CHbq9Nsj0_-YqkCcRSUOooD5JPd_7f9DW-6ngg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1993417875</pqid></control><display><type>article</type><title>Site-specific randomization of the endogenous genome by a regulatable CRISPR-Cas9 piggyBac system in human cells</title><source>MEDLINE</source><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature OA Free Journals</source><creator>Ishida, Kentaro ; Xu, Huaigeng ; Sasakawa, Noriko ; Lung, Mandy Siu Yu ; Kudryashev, Julia Alexandra ; Gee, Peter ; Hotta, Akitsu</creator><creatorcontrib>Ishida, Kentaro ; Xu, Huaigeng ; Sasakawa, Noriko ; Lung, Mandy Siu Yu ; Kudryashev, Julia Alexandra ; Gee, Peter ; Hotta, Akitsu</creatorcontrib><description>Randomized mutagenesis at an endogenous chromosomal locus is a promising approach for protein engineering, functional assessment of regulatory elements, and modeling genetic variations. In mammalian cells, however, it is challenging to perform site-specific single-nucleotide substitution with single-stranded oligodeoxynucleotide (ssODN) donor templates due to insufficient homologous recombination and the infeasibility of positive selection. Here, we developed a DNA transposon based CRISPR-Cas9 regulated transcription and nuclear shuttling (CRONUS) system that enables the stable transduction of CRISPR-Cas9/sgRNA in broad cell types, but avoids undesired genome cleavage in the absence two chemical inducing molecules. Highly efficient single nucleotide alterations induced randomization of desired codons (up to 4 codons) at a defined genomic locus in various human cell lines, including human iPS cells. Thus, CRONUS provides a novel platform for modeling diseases and genetic variations.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-017-18568-4</identifier><identifier>PMID: 29321585</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>45/100 ; 45/41 ; 45/44 ; 631/1647/1513/1967/3196 ; 631/532/2064/2158 ; 631/61/2300/1514 ; Cell lines ; Cells, Cultured ; Codon - genetics ; Codons ; CRISPR ; CRISPR-Cas Systems ; Deoxyribonucleic acid ; DNA ; DNA Transposable Elements ; Female ; Gene Editing - methods ; Genetic diversity ; Genomes ; HEK293 Cells ; Homologous recombination ; Humanities and Social Sciences ; Humans ; Male ; Mammalian cells ; multidisciplinary ; Mutagenesis ; Mutagenesis, Site-Directed - methods ; Positive selection ; Protein engineering ; Random Allocation ; Regulatory sequences ; RNA, Guide, CRISPR-Cas Systems - genetics ; Science ; Science (multidisciplinary) ; Transcription ; Transduction, Genetic - methods</subject><ispartof>Scientific reports, 2018-01, Vol.8 (1), p.310, Article 310</ispartof><rights>The Author(s) 2017</rights><rights>2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c621t-fd742d403ac9199007637652925d78c7e90e032953e36c050c0226421a05d5f43</citedby><cites>FETCH-LOGICAL-c621t-fd742d403ac9199007637652925d78c7e90e032953e36c050c0226421a05d5f43</cites><orcidid>0000-0002-2619-7441</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5762678/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5762678/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29321585$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ishida, Kentaro</creatorcontrib><creatorcontrib>Xu, Huaigeng</creatorcontrib><creatorcontrib>Sasakawa, Noriko</creatorcontrib><creatorcontrib>Lung, Mandy Siu Yu</creatorcontrib><creatorcontrib>Kudryashev, Julia Alexandra</creatorcontrib><creatorcontrib>Gee, Peter</creatorcontrib><creatorcontrib>Hotta, Akitsu</creatorcontrib><title>Site-specific randomization of the endogenous genome by a regulatable CRISPR-Cas9 piggyBac system in human cells</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Randomized mutagenesis at an endogenous chromosomal locus is a promising approach for protein engineering, functional assessment of regulatory elements, and modeling genetic variations. In mammalian cells, however, it is challenging to perform site-specific single-nucleotide substitution with single-stranded oligodeoxynucleotide (ssODN) donor templates due to insufficient homologous recombination and the infeasibility of positive selection. Here, we developed a DNA transposon based CRISPR-Cas9 regulated transcription and nuclear shuttling (CRONUS) system that enables the stable transduction of CRISPR-Cas9/sgRNA in broad cell types, but avoids undesired genome cleavage in the absence two chemical inducing molecules. Highly efficient single nucleotide alterations induced randomization of desired codons (up to 4 codons) at a defined genomic locus in various human cell lines, including human iPS cells. Thus, CRONUS provides a novel platform for modeling diseases and genetic variations.</description><subject>45/100</subject><subject>45/41</subject><subject>45/44</subject><subject>631/1647/1513/1967/3196</subject><subject>631/532/2064/2158</subject><subject>631/61/2300/1514</subject><subject>Cell lines</subject><subject>Cells, Cultured</subject><subject>Codon - genetics</subject><subject>Codons</subject><subject>CRISPR</subject><subject>CRISPR-Cas Systems</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA Transposable Elements</subject><subject>Female</subject><subject>Gene Editing - methods</subject><subject>Genetic diversity</subject><subject>Genomes</subject><subject>HEK293 Cells</subject><subject>Homologous recombination</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Male</subject><subject>Mammalian cells</subject><subject>multidisciplinary</subject><subject>Mutagenesis</subject><subject>Mutagenesis, Site-Directed - methods</subject><subject>Positive selection</subject><subject>Protein engineering</subject><subject>Random Allocation</subject><subject>Regulatory sequences</subject><subject>RNA, Guide, CRISPR-Cas Systems - genetics</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Transcription</subject><subject>Transduction, Genetic - methods</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kV1rFDEUhoMottT-AS8k4HU0n5PJjaCLH4WC0up1yGbOzKbMJGMyU1h_vVm3lvXC3Jxwzpv3vOFB6CWjbxgV7dsimTItoUwT1qqmJfIJOudUKsIF509P7mfospQ7Wo_iRjLzHJ1xIzhTrTpH821YgJQZfOiDx9nFLk3hl1tCijj1eNkBhtobIKa14EOZAG_32OEMwzq6xW1HwJubq9tvN2TjisFzGIb9B-dx2ZcFJhwi3q2Ti9jDOJYX6FnvxgKXD_UC_fj08fvmC7n--vlq8_6a-IazhfSdlryTVDhvmDGU6kbopn6Aq063XoOhQAU3SoBoPFXUU84byZmjqlO9FBfo3dF3XrcTdB7ikt1o5xwml_c2uWD_ncSws0O6t0o3vNFtNXj9YJDTzxXKYu_SmmPNbGsgIZlutaoqflT5nErJ0D9uYNQeQNkjKFtB2T-g7CHbq9Nsj0_-YqkCcRSUOooD5JPd_7f9DW-6ngg</recordid><startdate>20180110</startdate><enddate>20180110</enddate><creator>Ishida, Kentaro</creator><creator>Xu, Huaigeng</creator><creator>Sasakawa, Noriko</creator><creator>Lung, Mandy Siu Yu</creator><creator>Kudryashev, Julia Alexandra</creator><creator>Gee, Peter</creator><creator>Hotta, Akitsu</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2619-7441</orcidid></search><sort><creationdate>20180110</creationdate><title>Site-specific randomization of the endogenous genome by a regulatable CRISPR-Cas9 piggyBac system in human cells</title><author>Ishida, Kentaro ; Xu, Huaigeng ; Sasakawa, Noriko ; Lung, Mandy Siu Yu ; Kudryashev, Julia Alexandra ; Gee, Peter ; Hotta, Akitsu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c621t-fd742d403ac9199007637652925d78c7e90e032953e36c050c0226421a05d5f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>45/100</topic><topic>45/41</topic><topic>45/44</topic><topic>631/1647/1513/1967/3196</topic><topic>631/532/2064/2158</topic><topic>631/61/2300/1514</topic><topic>Cell lines</topic><topic>Cells, Cultured</topic><topic>Codon - genetics</topic><topic>Codons</topic><topic>CRISPR</topic><topic>CRISPR-Cas Systems</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA Transposable Elements</topic><topic>Female</topic><topic>Gene Editing - methods</topic><topic>Genetic diversity</topic><topic>Genomes</topic><topic>HEK293 Cells</topic><topic>Homologous recombination</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Male</topic><topic>Mammalian cells</topic><topic>multidisciplinary</topic><topic>Mutagenesis</topic><topic>Mutagenesis, Site-Directed - methods</topic><topic>Positive selection</topic><topic>Protein engineering</topic><topic>Random Allocation</topic><topic>Regulatory sequences</topic><topic>RNA, Guide, CRISPR-Cas Systems - genetics</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Transcription</topic><topic>Transduction, Genetic - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ishida, Kentaro</creatorcontrib><creatorcontrib>Xu, Huaigeng</creatorcontrib><creatorcontrib>Sasakawa, Noriko</creatorcontrib><creatorcontrib>Lung, Mandy Siu Yu</creatorcontrib><creatorcontrib>Kudryashev, Julia Alexandra</creatorcontrib><creatorcontrib>Gee, Peter</creatorcontrib><creatorcontrib>Hotta, Akitsu</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ishida, Kentaro</au><au>Xu, Huaigeng</au><au>Sasakawa, Noriko</au><au>Lung, Mandy Siu Yu</au><au>Kudryashev, Julia Alexandra</au><au>Gee, Peter</au><au>Hotta, Akitsu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Site-specific randomization of the endogenous genome by a regulatable CRISPR-Cas9 piggyBac system in human cells</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2018-01-10</date><risdate>2018</risdate><volume>8</volume><issue>1</issue><spage>310</spage><pages>310-</pages><artnum>310</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Randomized mutagenesis at an endogenous chromosomal locus is a promising approach for protein engineering, functional assessment of regulatory elements, and modeling genetic variations. In mammalian cells, however, it is challenging to perform site-specific single-nucleotide substitution with single-stranded oligodeoxynucleotide (ssODN) donor templates due to insufficient homologous recombination and the infeasibility of positive selection. Here, we developed a DNA transposon based CRISPR-Cas9 regulated transcription and nuclear shuttling (CRONUS) system that enables the stable transduction of CRISPR-Cas9/sgRNA in broad cell types, but avoids undesired genome cleavage in the absence two chemical inducing molecules. Highly efficient single nucleotide alterations induced randomization of desired codons (up to 4 codons) at a defined genomic locus in various human cell lines, including human iPS cells. Thus, CRONUS provides a novel platform for modeling diseases and genetic variations.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>29321585</pmid><doi>10.1038/s41598-017-18568-4</doi><orcidid>https://orcid.org/0000-0002-2619-7441</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2018-01, Vol.8 (1), p.310, Article 310
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5762678
source MEDLINE; Nature Free; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; Springer Nature OA Free Journals
subjects 45/100
45/41
45/44
631/1647/1513/1967/3196
631/532/2064/2158
631/61/2300/1514
Cell lines
Cells, Cultured
Codon - genetics
Codons
CRISPR
CRISPR-Cas Systems
Deoxyribonucleic acid
DNA
DNA Transposable Elements
Female
Gene Editing - methods
Genetic diversity
Genomes
HEK293 Cells
Homologous recombination
Humanities and Social Sciences
Humans
Male
Mammalian cells
multidisciplinary
Mutagenesis
Mutagenesis, Site-Directed - methods
Positive selection
Protein engineering
Random Allocation
Regulatory sequences
RNA, Guide, CRISPR-Cas Systems - genetics
Science
Science (multidisciplinary)
Transcription
Transduction, Genetic - methods
title Site-specific randomization of the endogenous genome by a regulatable CRISPR-Cas9 piggyBac system in human cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T02%3A07%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Site-specific%20randomization%20of%20the%20endogenous%20genome%20by%20a%20regulatable%20CRISPR-Cas9%20piggyBac%20system%20in%20human%20cells&rft.jtitle=Scientific%20reports&rft.au=Ishida,%20Kentaro&rft.date=2018-01-10&rft.volume=8&rft.issue=1&rft.spage=310&rft.pages=310-&rft.artnum=310&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-017-18568-4&rft_dat=%3Cproquest_pubme%3E1993417875%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1993417875&rft_id=info:pmid/29321585&rfr_iscdi=true