Standardized maximim D-optimal designs for enzyme kinetic inhibition models
Locally optimal designs for nonlinear models require a single set of nominal values for the unknown parameters. An alternative is the maximin approach that allows the user to specify a range of values for each parameter of interest. However, the maximin approach is difficult because we first have to...
Gespeichert in:
Veröffentlicht in: | Chemometrics and intelligent laboratory systems 2017-10, Vol.169, p.79-86 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 86 |
---|---|
container_issue | |
container_start_page | 79 |
container_title | Chemometrics and intelligent laboratory systems |
container_volume | 169 |
creator | Chen, Ping-Yang Chen, Ray-Bing Tung, Heng-Chin Wong, Weng Kee |
description | Locally optimal designs for nonlinear models require a single set of nominal values for the unknown parameters. An alternative is the maximin approach that allows the user to specify a range of values for each parameter of interest. However, the maximin approach is difficult because we first have to determine the locally optimal design for each set of nominal values before maximin types of optimal designs can be found via a nested optimization process. We show that particle swarm optimization (PSO) techniques can solve such complex optimization problems effectively. We demonstrate numerical results from PSO can help find, for the first time, formulae for standardized maximin D-optimal designs for nonlinear model with 3 or 4 parameters on the compact and nonnegative design space. Additionally, we show locally and standardized maximin D-optimal designs for inhibition models are not necessarily supported at a minimum number of points. To facilitate use of such designs, we create a web-based tool for practitioners to find tailor-made locally and standardized maximin optimal designs. |
doi_str_mv | 10.1016/j.chemolab.2017.08.009 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5761082</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0169743917300060</els_id><sourcerecordid>1989587354</sourcerecordid><originalsourceid>FETCH-LOGICAL-c471t-80a30145509a2242d422af6584edf58cdfe5a7cf0ea83e716cf1b65a81f97c643</originalsourceid><addsrcrecordid>eNqFUctuFDEQtBCILIFfiObIZSZ-jMf2BYECBEQkDsDZ8trtbC8z9mLPRiRfz6w2ieDEqdXq6qpSFSFnjHaMsuF82_kNTHl0645TpjqqO0rNE7JiWolWcGGektUCNK3qhTkhL2rd0sPes-fkhBshuFFmRb58m10KrgS8g9BM7jdOODXv27ybcXJjE6DidapNzKWBdHc7QfMTE8zoG0wbXOOMOTVTDjDWl-RZdGOFV_fzlPz4-OH7xaf26uvl54t3V63vFZtbTZ2grJeSGsd5z0PPuYuD1D2EKLUPEaRTPlJwWoBig49sPUinWTTKD704JW-OvLv9eoLgIc3FjXZXFsfl1maH9t9Lwo29zjdWqoFRzReC1_cEJf_aQ53thNXDOLoEeV8tM9rIJUd50BqOUF9yrQXiowyj9tCE3dqHJuyhCUu1XZpYHs_-Nvn49hD9Anh7BCzJwQ1CsdUjJA8BC_jZhoz_0_gDG_afnw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1989587354</pqid></control><display><type>article</type><title>Standardized maximim D-optimal designs for enzyme kinetic inhibition models</title><source>Elsevier ScienceDirect Journals</source><creator>Chen, Ping-Yang ; Chen, Ray-Bing ; Tung, Heng-Chin ; Wong, Weng Kee</creator><creatorcontrib>Chen, Ping-Yang ; Chen, Ray-Bing ; Tung, Heng-Chin ; Wong, Weng Kee</creatorcontrib><description>Locally optimal designs for nonlinear models require a single set of nominal values for the unknown parameters. An alternative is the maximin approach that allows the user to specify a range of values for each parameter of interest. However, the maximin approach is difficult because we first have to determine the locally optimal design for each set of nominal values before maximin types of optimal designs can be found via a nested optimization process. We show that particle swarm optimization (PSO) techniques can solve such complex optimization problems effectively. We demonstrate numerical results from PSO can help find, for the first time, formulae for standardized maximin D-optimal designs for nonlinear model with 3 or 4 parameters on the compact and nonnegative design space. Additionally, we show locally and standardized maximin D-optimal designs for inhibition models are not necessarily supported at a minimum number of points. To facilitate use of such designs, we create a web-based tool for practitioners to find tailor-made locally and standardized maximin optimal designs.</description><identifier>ISSN: 0169-7439</identifier><identifier>EISSN: 1873-3239</identifier><identifier>DOI: 10.1016/j.chemolab.2017.08.009</identifier><identifier>PMID: 29332979</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Approximate design ; Locally D-optimal design ; Nonlinear model ; Particle swarm optimization</subject><ispartof>Chemometrics and intelligent laboratory systems, 2017-10, Vol.169, p.79-86</ispartof><rights>2017 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c471t-80a30145509a2242d422af6584edf58cdfe5a7cf0ea83e716cf1b65a81f97c643</citedby><cites>FETCH-LOGICAL-c471t-80a30145509a2242d422af6584edf58cdfe5a7cf0ea83e716cf1b65a81f97c643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.chemolab.2017.08.009$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,777,781,882,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29332979$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Ping-Yang</creatorcontrib><creatorcontrib>Chen, Ray-Bing</creatorcontrib><creatorcontrib>Tung, Heng-Chin</creatorcontrib><creatorcontrib>Wong, Weng Kee</creatorcontrib><title>Standardized maximim D-optimal designs for enzyme kinetic inhibition models</title><title>Chemometrics and intelligent laboratory systems</title><addtitle>Chemometr Intell Lab Syst</addtitle><description>Locally optimal designs for nonlinear models require a single set of nominal values for the unknown parameters. An alternative is the maximin approach that allows the user to specify a range of values for each parameter of interest. However, the maximin approach is difficult because we first have to determine the locally optimal design for each set of nominal values before maximin types of optimal designs can be found via a nested optimization process. We show that particle swarm optimization (PSO) techniques can solve such complex optimization problems effectively. We demonstrate numerical results from PSO can help find, for the first time, formulae for standardized maximin D-optimal designs for nonlinear model with 3 or 4 parameters on the compact and nonnegative design space. Additionally, we show locally and standardized maximin D-optimal designs for inhibition models are not necessarily supported at a minimum number of points. To facilitate use of such designs, we create a web-based tool for practitioners to find tailor-made locally and standardized maximin optimal designs.</description><subject>Approximate design</subject><subject>Locally D-optimal design</subject><subject>Nonlinear model</subject><subject>Particle swarm optimization</subject><issn>0169-7439</issn><issn>1873-3239</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFUctuFDEQtBCILIFfiObIZSZ-jMf2BYECBEQkDsDZ8trtbC8z9mLPRiRfz6w2ieDEqdXq6qpSFSFnjHaMsuF82_kNTHl0645TpjqqO0rNE7JiWolWcGGektUCNK3qhTkhL2rd0sPes-fkhBshuFFmRb58m10KrgS8g9BM7jdOODXv27ybcXJjE6DidapNzKWBdHc7QfMTE8zoG0wbXOOMOTVTDjDWl-RZdGOFV_fzlPz4-OH7xaf26uvl54t3V63vFZtbTZ2grJeSGsd5z0PPuYuD1D2EKLUPEaRTPlJwWoBig49sPUinWTTKD704JW-OvLv9eoLgIc3FjXZXFsfl1maH9t9Lwo29zjdWqoFRzReC1_cEJf_aQ53thNXDOLoEeV8tM9rIJUd50BqOUF9yrQXiowyj9tCE3dqHJuyhCUu1XZpYHs_-Nvn49hD9Anh7BCzJwQ1CsdUjJA8BC_jZhoz_0_gDG_afnw</recordid><startdate>20171015</startdate><enddate>20171015</enddate><creator>Chen, Ping-Yang</creator><creator>Chen, Ray-Bing</creator><creator>Tung, Heng-Chin</creator><creator>Wong, Weng Kee</creator><general>Elsevier B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20171015</creationdate><title>Standardized maximim D-optimal designs for enzyme kinetic inhibition models</title><author>Chen, Ping-Yang ; Chen, Ray-Bing ; Tung, Heng-Chin ; Wong, Weng Kee</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c471t-80a30145509a2242d422af6584edf58cdfe5a7cf0ea83e716cf1b65a81f97c643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Approximate design</topic><topic>Locally D-optimal design</topic><topic>Nonlinear model</topic><topic>Particle swarm optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Ping-Yang</creatorcontrib><creatorcontrib>Chen, Ray-Bing</creatorcontrib><creatorcontrib>Tung, Heng-Chin</creatorcontrib><creatorcontrib>Wong, Weng Kee</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chemometrics and intelligent laboratory systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Ping-Yang</au><au>Chen, Ray-Bing</au><au>Tung, Heng-Chin</au><au>Wong, Weng Kee</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Standardized maximim D-optimal designs for enzyme kinetic inhibition models</atitle><jtitle>Chemometrics and intelligent laboratory systems</jtitle><addtitle>Chemometr Intell Lab Syst</addtitle><date>2017-10-15</date><risdate>2017</risdate><volume>169</volume><spage>79</spage><epage>86</epage><pages>79-86</pages><issn>0169-7439</issn><eissn>1873-3239</eissn><abstract>Locally optimal designs for nonlinear models require a single set of nominal values for the unknown parameters. An alternative is the maximin approach that allows the user to specify a range of values for each parameter of interest. However, the maximin approach is difficult because we first have to determine the locally optimal design for each set of nominal values before maximin types of optimal designs can be found via a nested optimization process. We show that particle swarm optimization (PSO) techniques can solve such complex optimization problems effectively. We demonstrate numerical results from PSO can help find, for the first time, formulae for standardized maximin D-optimal designs for nonlinear model with 3 or 4 parameters on the compact and nonnegative design space. Additionally, we show locally and standardized maximin D-optimal designs for inhibition models are not necessarily supported at a minimum number of points. To facilitate use of such designs, we create a web-based tool for practitioners to find tailor-made locally and standardized maximin optimal designs.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>29332979</pmid><doi>10.1016/j.chemolab.2017.08.009</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0169-7439 |
ispartof | Chemometrics and intelligent laboratory systems, 2017-10, Vol.169, p.79-86 |
issn | 0169-7439 1873-3239 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5761082 |
source | Elsevier ScienceDirect Journals |
subjects | Approximate design Locally D-optimal design Nonlinear model Particle swarm optimization |
title | Standardized maximim D-optimal designs for enzyme kinetic inhibition models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T05%3A05%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Standardized%20maximim%20D-optimal%20designs%20for%20enzyme%20kinetic%20inhibition%20models&rft.jtitle=Chemometrics%20and%20intelligent%20laboratory%20systems&rft.au=Chen,%20Ping-Yang&rft.date=2017-10-15&rft.volume=169&rft.spage=79&rft.epage=86&rft.pages=79-86&rft.issn=0169-7439&rft.eissn=1873-3239&rft_id=info:doi/10.1016/j.chemolab.2017.08.009&rft_dat=%3Cproquest_pubme%3E1989587354%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1989587354&rft_id=info:pmid/29332979&rft_els_id=S0169743917300060&rfr_iscdi=true |