Runx1 Deficiency Protects Against Adverse Cardiac Remodeling After Myocardial Infarction

BACKGROUND:Myocardial infarction (MI) is a leading cause of heart failure and death worldwide. Preservation of contractile function and protection against adverse changes in ventricular architecture (cardiac remodeling) are key factors to limiting progression of this condition to heart failure. Cons...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Circulation (New York, N.Y.) N.Y.), 2018-01, Vol.137 (1), p.57-70
Hauptverfasser: McCarroll, Charlotte S, He, Weihong, Foote, Kirsty, Bradley, Ashley, Mcglynn, Karen, Vidler, Francesca, Nixon, Colin, Nather, Katrin, Fattah, Caroline, Riddell, Alexandra, Bowman, Peter, Elliott, Elspeth B, Bell, Margaret, Hawksby, Catherine, MacKenzie, Scott M, Morrison, Liam J, Terry, Anne, Blyth, Karen, Smith, Godfrey L, McBride, Martin W, Kubin, Thomas, Braun, Thomas, Nicklin, Stuart A, Cameron, Ewan R, Loughrey, Christopher M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 70
container_issue 1
container_start_page 57
container_title Circulation (New York, N.Y.)
container_volume 137
creator McCarroll, Charlotte S
He, Weihong
Foote, Kirsty
Bradley, Ashley
Mcglynn, Karen
Vidler, Francesca
Nixon, Colin
Nather, Katrin
Fattah, Caroline
Riddell, Alexandra
Bowman, Peter
Elliott, Elspeth B
Bell, Margaret
Hawksby, Catherine
MacKenzie, Scott M
Morrison, Liam J
Terry, Anne
Blyth, Karen
Smith, Godfrey L
McBride, Martin W
Kubin, Thomas
Braun, Thomas
Nicklin, Stuart A
Cameron, Ewan R
Loughrey, Christopher M
description BACKGROUND:Myocardial infarction (MI) is a leading cause of heart failure and death worldwide. Preservation of contractile function and protection against adverse changes in ventricular architecture (cardiac remodeling) are key factors to limiting progression of this condition to heart failure. Consequently, new therapeutic targets are urgently required to achieve this aim. Expression of the Runx1 transcription factor is increased in adult cardiomyocytes after MI; however, the functional role of Runx1 in the heart is unknown. METHODS:To address this question, we have generated a novel tamoxifen-inducible cardiomyocyte-specific Runx1-deficient mouse. Mice were subjected to MI by means of coronary artery ligation. Cardiac remodeling and contractile function were assessed extensively at the whole-heart, cardiomyocyte, and molecular levels. RESULTS:Runx1-deficient mice were protected against adverse cardiac remodeling after MI, maintaining ventricular wall thickness and contractile function. Furthermore, these mice lacked eccentric hypertrophy, and their cardiomyocytes exhibited markedly improved calcium handling. At the mechanistic level, these effects were achieved through increased phosphorylation of phospholamban by protein kinase A and relief of sarco/endoplasmic reticulum Ca-ATPase inhibition. Enhanced sarco/endoplasmic reticulum Ca-ATPase activity in Runx1-deficient mice increased sarcoplasmic reticulum calcium content and sarcoplasmic reticulum–mediated calcium release, preserving cardiomyocyte contraction after MI. CONCLUSIONS:Our data identified Runx1 as a novel therapeutic target with translational potential to counteract the effects of adverse cardiac remodeling, thereby improving survival and quality of life among patients with MI.
doi_str_mv 10.1161/CIRCULATIONAHA.117.028911
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5757664</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1951414425</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5241-20b9258b200cd1ffe0d8229d9602a1bf06596d6dfa239e70addf34e859a538dd3</originalsourceid><addsrcrecordid>eNpVkVtv1DAQhS0EokvhL6DwxkuKr0n8ghSFS1daKFq1Em-W1x7vGrJ2ayct--8xbKnok-UzZ86M5kPoDcFnhDTk3bBcD1er_nJ58bU_74vWnmHaSUKeoAURlNdcMPkULTDGsm4ZpSfoRc4_yrdhrXiOTqjEDDMuFuj7eg6_SPUBnDcegjlU31KcwEy56rfahzxVvb2FlKEadLJem2oN-2hh9GFb9W6CVH05RPO3NlbL4HQyk4_hJXrm9Jjh1f17iq4-fbwczuvVxefl0K9qUxYlNcUbSUW3oRgbS5wDbDtKpZUNpppsHG6EbGxjnaZMQou1tY5x6ITUgnXWslP0_ph7PW_2YA2EKelRXSe_1-mgovbqcSX4ndrGWyVa0TYNLwFv7wNSvJkhT2rvs4Fx1AHinBWRgnDCORXFKo9Wk2LOCdzDGILVHzLqMZmitepIpvS-_n_Ph85_KIqBHw13cSxXzT_H-Q6S2oEep50q7IqPtOVgpMMEU1wXpeT-BmJynIA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1951414425</pqid></control><display><type>article</type><title>Runx1 Deficiency Protects Against Adverse Cardiac Remodeling After Myocardial Infarction</title><source>MEDLINE</source><source>American Heart Association Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Journals@Ovid Complete</source><creator>McCarroll, Charlotte S ; He, Weihong ; Foote, Kirsty ; Bradley, Ashley ; Mcglynn, Karen ; Vidler, Francesca ; Nixon, Colin ; Nather, Katrin ; Fattah, Caroline ; Riddell, Alexandra ; Bowman, Peter ; Elliott, Elspeth B ; Bell, Margaret ; Hawksby, Catherine ; MacKenzie, Scott M ; Morrison, Liam J ; Terry, Anne ; Blyth, Karen ; Smith, Godfrey L ; McBride, Martin W ; Kubin, Thomas ; Braun, Thomas ; Nicklin, Stuart A ; Cameron, Ewan R ; Loughrey, Christopher M</creator><creatorcontrib>McCarroll, Charlotte S ; He, Weihong ; Foote, Kirsty ; Bradley, Ashley ; Mcglynn, Karen ; Vidler, Francesca ; Nixon, Colin ; Nather, Katrin ; Fattah, Caroline ; Riddell, Alexandra ; Bowman, Peter ; Elliott, Elspeth B ; Bell, Margaret ; Hawksby, Catherine ; MacKenzie, Scott M ; Morrison, Liam J ; Terry, Anne ; Blyth, Karen ; Smith, Godfrey L ; McBride, Martin W ; Kubin, Thomas ; Braun, Thomas ; Nicklin, Stuart A ; Cameron, Ewan R ; Loughrey, Christopher M</creatorcontrib><description>BACKGROUND:Myocardial infarction (MI) is a leading cause of heart failure and death worldwide. Preservation of contractile function and protection against adverse changes in ventricular architecture (cardiac remodeling) are key factors to limiting progression of this condition to heart failure. Consequently, new therapeutic targets are urgently required to achieve this aim. Expression of the Runx1 transcription factor is increased in adult cardiomyocytes after MI; however, the functional role of Runx1 in the heart is unknown. METHODS:To address this question, we have generated a novel tamoxifen-inducible cardiomyocyte-specific Runx1-deficient mouse. Mice were subjected to MI by means of coronary artery ligation. Cardiac remodeling and contractile function were assessed extensively at the whole-heart, cardiomyocyte, and molecular levels. RESULTS:Runx1-deficient mice were protected against adverse cardiac remodeling after MI, maintaining ventricular wall thickness and contractile function. Furthermore, these mice lacked eccentric hypertrophy, and their cardiomyocytes exhibited markedly improved calcium handling. At the mechanistic level, these effects were achieved through increased phosphorylation of phospholamban by protein kinase A and relief of sarco/endoplasmic reticulum Ca-ATPase inhibition. Enhanced sarco/endoplasmic reticulum Ca-ATPase activity in Runx1-deficient mice increased sarcoplasmic reticulum calcium content and sarcoplasmic reticulum–mediated calcium release, preserving cardiomyocyte contraction after MI. CONCLUSIONS:Our data identified Runx1 as a novel therapeutic target with translational potential to counteract the effects of adverse cardiac remodeling, thereby improving survival and quality of life among patients with MI.</description><identifier>ISSN: 0009-7322</identifier><identifier>EISSN: 1524-4539</identifier><identifier>DOI: 10.1161/CIRCULATIONAHA.117.028911</identifier><identifier>PMID: 29030345</identifier><language>eng</language><publisher>United States: by the American College of Cardiology Foundation and the American Heart Association, Inc</publisher><subject>Animals ; Calcium Signaling ; Calcium-Binding Proteins - metabolism ; Cells, Cultured ; Core Binding Factor Alpha 2 Subunit - deficiency ; Core Binding Factor Alpha 2 Subunit - genetics ; Cyclic AMP-Dependent Protein Kinases - metabolism ; Disease Models, Animal ; Mice, Inbred C57BL ; Mice, Knockout ; Myocardial Contraction ; Myocardial Infarction - genetics ; Myocardial Infarction - metabolism ; Myocardial Infarction - pathology ; Myocardial Infarction - physiopathology ; Myocytes, Cardiac - metabolism ; Myocytes, Cardiac - pathology ; Original s ; Phosphorylation ; Rabbits ; Sarcoplasmic Reticulum - metabolism ; Sarcoplasmic Reticulum - pathology ; Sarcoplasmic Reticulum Calcium-Transporting ATPases - metabolism ; Time Factors ; Ventricular Function, Left ; Ventricular Remodeling</subject><ispartof>Circulation (New York, N.Y.), 2018-01, Vol.137 (1), p.57-70</ispartof><rights>2018 by the American College of Cardiology Foundation and the American Heart Association, Inc.</rights><rights>2017 The Authors.</rights><rights>2017 The Authors. 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5241-20b9258b200cd1ffe0d8229d9602a1bf06596d6dfa239e70addf34e859a538dd3</citedby><cites>FETCH-LOGICAL-c5241-20b9258b200cd1ffe0d8229d9602a1bf06596d6dfa239e70addf34e859a538dd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,3674,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29030345$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>McCarroll, Charlotte S</creatorcontrib><creatorcontrib>He, Weihong</creatorcontrib><creatorcontrib>Foote, Kirsty</creatorcontrib><creatorcontrib>Bradley, Ashley</creatorcontrib><creatorcontrib>Mcglynn, Karen</creatorcontrib><creatorcontrib>Vidler, Francesca</creatorcontrib><creatorcontrib>Nixon, Colin</creatorcontrib><creatorcontrib>Nather, Katrin</creatorcontrib><creatorcontrib>Fattah, Caroline</creatorcontrib><creatorcontrib>Riddell, Alexandra</creatorcontrib><creatorcontrib>Bowman, Peter</creatorcontrib><creatorcontrib>Elliott, Elspeth B</creatorcontrib><creatorcontrib>Bell, Margaret</creatorcontrib><creatorcontrib>Hawksby, Catherine</creatorcontrib><creatorcontrib>MacKenzie, Scott M</creatorcontrib><creatorcontrib>Morrison, Liam J</creatorcontrib><creatorcontrib>Terry, Anne</creatorcontrib><creatorcontrib>Blyth, Karen</creatorcontrib><creatorcontrib>Smith, Godfrey L</creatorcontrib><creatorcontrib>McBride, Martin W</creatorcontrib><creatorcontrib>Kubin, Thomas</creatorcontrib><creatorcontrib>Braun, Thomas</creatorcontrib><creatorcontrib>Nicklin, Stuart A</creatorcontrib><creatorcontrib>Cameron, Ewan R</creatorcontrib><creatorcontrib>Loughrey, Christopher M</creatorcontrib><title>Runx1 Deficiency Protects Against Adverse Cardiac Remodeling After Myocardial Infarction</title><title>Circulation (New York, N.Y.)</title><addtitle>Circulation</addtitle><description>BACKGROUND:Myocardial infarction (MI) is a leading cause of heart failure and death worldwide. Preservation of contractile function and protection against adverse changes in ventricular architecture (cardiac remodeling) are key factors to limiting progression of this condition to heart failure. Consequently, new therapeutic targets are urgently required to achieve this aim. Expression of the Runx1 transcription factor is increased in adult cardiomyocytes after MI; however, the functional role of Runx1 in the heart is unknown. METHODS:To address this question, we have generated a novel tamoxifen-inducible cardiomyocyte-specific Runx1-deficient mouse. Mice were subjected to MI by means of coronary artery ligation. Cardiac remodeling and contractile function were assessed extensively at the whole-heart, cardiomyocyte, and molecular levels. RESULTS:Runx1-deficient mice were protected against adverse cardiac remodeling after MI, maintaining ventricular wall thickness and contractile function. Furthermore, these mice lacked eccentric hypertrophy, and their cardiomyocytes exhibited markedly improved calcium handling. At the mechanistic level, these effects were achieved through increased phosphorylation of phospholamban by protein kinase A and relief of sarco/endoplasmic reticulum Ca-ATPase inhibition. Enhanced sarco/endoplasmic reticulum Ca-ATPase activity in Runx1-deficient mice increased sarcoplasmic reticulum calcium content and sarcoplasmic reticulum–mediated calcium release, preserving cardiomyocyte contraction after MI. CONCLUSIONS:Our data identified Runx1 as a novel therapeutic target with translational potential to counteract the effects of adverse cardiac remodeling, thereby improving survival and quality of life among patients with MI.</description><subject>Animals</subject><subject>Calcium Signaling</subject><subject>Calcium-Binding Proteins - metabolism</subject><subject>Cells, Cultured</subject><subject>Core Binding Factor Alpha 2 Subunit - deficiency</subject><subject>Core Binding Factor Alpha 2 Subunit - genetics</subject><subject>Cyclic AMP-Dependent Protein Kinases - metabolism</subject><subject>Disease Models, Animal</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Myocardial Contraction</subject><subject>Myocardial Infarction - genetics</subject><subject>Myocardial Infarction - metabolism</subject><subject>Myocardial Infarction - pathology</subject><subject>Myocardial Infarction - physiopathology</subject><subject>Myocytes, Cardiac - metabolism</subject><subject>Myocytes, Cardiac - pathology</subject><subject>Original s</subject><subject>Phosphorylation</subject><subject>Rabbits</subject><subject>Sarcoplasmic Reticulum - metabolism</subject><subject>Sarcoplasmic Reticulum - pathology</subject><subject>Sarcoplasmic Reticulum Calcium-Transporting ATPases - metabolism</subject><subject>Time Factors</subject><subject>Ventricular Function, Left</subject><subject>Ventricular Remodeling</subject><issn>0009-7322</issn><issn>1524-4539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkVtv1DAQhS0EokvhL6DwxkuKr0n8ghSFS1daKFq1Em-W1x7vGrJ2ayct--8xbKnok-UzZ86M5kPoDcFnhDTk3bBcD1er_nJ58bU_74vWnmHaSUKeoAURlNdcMPkULTDGsm4ZpSfoRc4_yrdhrXiOTqjEDDMuFuj7eg6_SPUBnDcegjlU31KcwEy56rfahzxVvb2FlKEadLJem2oN-2hh9GFb9W6CVH05RPO3NlbL4HQyk4_hJXrm9Jjh1f17iq4-fbwczuvVxefl0K9qUxYlNcUbSUW3oRgbS5wDbDtKpZUNpppsHG6EbGxjnaZMQou1tY5x6ITUgnXWslP0_ph7PW_2YA2EKelRXSe_1-mgovbqcSX4ndrGWyVa0TYNLwFv7wNSvJkhT2rvs4Fx1AHinBWRgnDCORXFKo9Wk2LOCdzDGILVHzLqMZmitepIpvS-_n_Ph85_KIqBHw13cSxXzT_H-Q6S2oEep50q7IqPtOVgpMMEU1wXpeT-BmJynIA</recordid><startdate>20180102</startdate><enddate>20180102</enddate><creator>McCarroll, Charlotte S</creator><creator>He, Weihong</creator><creator>Foote, Kirsty</creator><creator>Bradley, Ashley</creator><creator>Mcglynn, Karen</creator><creator>Vidler, Francesca</creator><creator>Nixon, Colin</creator><creator>Nather, Katrin</creator><creator>Fattah, Caroline</creator><creator>Riddell, Alexandra</creator><creator>Bowman, Peter</creator><creator>Elliott, Elspeth B</creator><creator>Bell, Margaret</creator><creator>Hawksby, Catherine</creator><creator>MacKenzie, Scott M</creator><creator>Morrison, Liam J</creator><creator>Terry, Anne</creator><creator>Blyth, Karen</creator><creator>Smith, Godfrey L</creator><creator>McBride, Martin W</creator><creator>Kubin, Thomas</creator><creator>Braun, Thomas</creator><creator>Nicklin, Stuart A</creator><creator>Cameron, Ewan R</creator><creator>Loughrey, Christopher M</creator><general>by the American College of Cardiology Foundation and the American Heart Association, Inc</general><general>Lippincott Williams &amp; Wilkins</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20180102</creationdate><title>Runx1 Deficiency Protects Against Adverse Cardiac Remodeling After Myocardial Infarction</title><author>McCarroll, Charlotte S ; He, Weihong ; Foote, Kirsty ; Bradley, Ashley ; Mcglynn, Karen ; Vidler, Francesca ; Nixon, Colin ; Nather, Katrin ; Fattah, Caroline ; Riddell, Alexandra ; Bowman, Peter ; Elliott, Elspeth B ; Bell, Margaret ; Hawksby, Catherine ; MacKenzie, Scott M ; Morrison, Liam J ; Terry, Anne ; Blyth, Karen ; Smith, Godfrey L ; McBride, Martin W ; Kubin, Thomas ; Braun, Thomas ; Nicklin, Stuart A ; Cameron, Ewan R ; Loughrey, Christopher M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5241-20b9258b200cd1ffe0d8229d9602a1bf06596d6dfa239e70addf34e859a538dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>Calcium Signaling</topic><topic>Calcium-Binding Proteins - metabolism</topic><topic>Cells, Cultured</topic><topic>Core Binding Factor Alpha 2 Subunit - deficiency</topic><topic>Core Binding Factor Alpha 2 Subunit - genetics</topic><topic>Cyclic AMP-Dependent Protein Kinases - metabolism</topic><topic>Disease Models, Animal</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Myocardial Contraction</topic><topic>Myocardial Infarction - genetics</topic><topic>Myocardial Infarction - metabolism</topic><topic>Myocardial Infarction - pathology</topic><topic>Myocardial Infarction - physiopathology</topic><topic>Myocytes, Cardiac - metabolism</topic><topic>Myocytes, Cardiac - pathology</topic><topic>Original s</topic><topic>Phosphorylation</topic><topic>Rabbits</topic><topic>Sarcoplasmic Reticulum - metabolism</topic><topic>Sarcoplasmic Reticulum - pathology</topic><topic>Sarcoplasmic Reticulum Calcium-Transporting ATPases - metabolism</topic><topic>Time Factors</topic><topic>Ventricular Function, Left</topic><topic>Ventricular Remodeling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McCarroll, Charlotte S</creatorcontrib><creatorcontrib>He, Weihong</creatorcontrib><creatorcontrib>Foote, Kirsty</creatorcontrib><creatorcontrib>Bradley, Ashley</creatorcontrib><creatorcontrib>Mcglynn, Karen</creatorcontrib><creatorcontrib>Vidler, Francesca</creatorcontrib><creatorcontrib>Nixon, Colin</creatorcontrib><creatorcontrib>Nather, Katrin</creatorcontrib><creatorcontrib>Fattah, Caroline</creatorcontrib><creatorcontrib>Riddell, Alexandra</creatorcontrib><creatorcontrib>Bowman, Peter</creatorcontrib><creatorcontrib>Elliott, Elspeth B</creatorcontrib><creatorcontrib>Bell, Margaret</creatorcontrib><creatorcontrib>Hawksby, Catherine</creatorcontrib><creatorcontrib>MacKenzie, Scott M</creatorcontrib><creatorcontrib>Morrison, Liam J</creatorcontrib><creatorcontrib>Terry, Anne</creatorcontrib><creatorcontrib>Blyth, Karen</creatorcontrib><creatorcontrib>Smith, Godfrey L</creatorcontrib><creatorcontrib>McBride, Martin W</creatorcontrib><creatorcontrib>Kubin, Thomas</creatorcontrib><creatorcontrib>Braun, Thomas</creatorcontrib><creatorcontrib>Nicklin, Stuart A</creatorcontrib><creatorcontrib>Cameron, Ewan R</creatorcontrib><creatorcontrib>Loughrey, Christopher M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Circulation (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McCarroll, Charlotte S</au><au>He, Weihong</au><au>Foote, Kirsty</au><au>Bradley, Ashley</au><au>Mcglynn, Karen</au><au>Vidler, Francesca</au><au>Nixon, Colin</au><au>Nather, Katrin</au><au>Fattah, Caroline</au><au>Riddell, Alexandra</au><au>Bowman, Peter</au><au>Elliott, Elspeth B</au><au>Bell, Margaret</au><au>Hawksby, Catherine</au><au>MacKenzie, Scott M</au><au>Morrison, Liam J</au><au>Terry, Anne</au><au>Blyth, Karen</au><au>Smith, Godfrey L</au><au>McBride, Martin W</au><au>Kubin, Thomas</au><au>Braun, Thomas</au><au>Nicklin, Stuart A</au><au>Cameron, Ewan R</au><au>Loughrey, Christopher M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Runx1 Deficiency Protects Against Adverse Cardiac Remodeling After Myocardial Infarction</atitle><jtitle>Circulation (New York, N.Y.)</jtitle><addtitle>Circulation</addtitle><date>2018-01-02</date><risdate>2018</risdate><volume>137</volume><issue>1</issue><spage>57</spage><epage>70</epage><pages>57-70</pages><issn>0009-7322</issn><eissn>1524-4539</eissn><abstract>BACKGROUND:Myocardial infarction (MI) is a leading cause of heart failure and death worldwide. Preservation of contractile function and protection against adverse changes in ventricular architecture (cardiac remodeling) are key factors to limiting progression of this condition to heart failure. Consequently, new therapeutic targets are urgently required to achieve this aim. Expression of the Runx1 transcription factor is increased in adult cardiomyocytes after MI; however, the functional role of Runx1 in the heart is unknown. METHODS:To address this question, we have generated a novel tamoxifen-inducible cardiomyocyte-specific Runx1-deficient mouse. Mice were subjected to MI by means of coronary artery ligation. Cardiac remodeling and contractile function were assessed extensively at the whole-heart, cardiomyocyte, and molecular levels. RESULTS:Runx1-deficient mice were protected against adverse cardiac remodeling after MI, maintaining ventricular wall thickness and contractile function. Furthermore, these mice lacked eccentric hypertrophy, and their cardiomyocytes exhibited markedly improved calcium handling. At the mechanistic level, these effects were achieved through increased phosphorylation of phospholamban by protein kinase A and relief of sarco/endoplasmic reticulum Ca-ATPase inhibition. Enhanced sarco/endoplasmic reticulum Ca-ATPase activity in Runx1-deficient mice increased sarcoplasmic reticulum calcium content and sarcoplasmic reticulum–mediated calcium release, preserving cardiomyocyte contraction after MI. CONCLUSIONS:Our data identified Runx1 as a novel therapeutic target with translational potential to counteract the effects of adverse cardiac remodeling, thereby improving survival and quality of life among patients with MI.</abstract><cop>United States</cop><pub>by the American College of Cardiology Foundation and the American Heart Association, Inc</pub><pmid>29030345</pmid><doi>10.1161/CIRCULATIONAHA.117.028911</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0009-7322
ispartof Circulation (New York, N.Y.), 2018-01, Vol.137 (1), p.57-70
issn 0009-7322
1524-4539
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5757664
source MEDLINE; American Heart Association Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Journals@Ovid Complete
subjects Animals
Calcium Signaling
Calcium-Binding Proteins - metabolism
Cells, Cultured
Core Binding Factor Alpha 2 Subunit - deficiency
Core Binding Factor Alpha 2 Subunit - genetics
Cyclic AMP-Dependent Protein Kinases - metabolism
Disease Models, Animal
Mice, Inbred C57BL
Mice, Knockout
Myocardial Contraction
Myocardial Infarction - genetics
Myocardial Infarction - metabolism
Myocardial Infarction - pathology
Myocardial Infarction - physiopathology
Myocytes, Cardiac - metabolism
Myocytes, Cardiac - pathology
Original s
Phosphorylation
Rabbits
Sarcoplasmic Reticulum - metabolism
Sarcoplasmic Reticulum - pathology
Sarcoplasmic Reticulum Calcium-Transporting ATPases - metabolism
Time Factors
Ventricular Function, Left
Ventricular Remodeling
title Runx1 Deficiency Protects Against Adverse Cardiac Remodeling After Myocardial Infarction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T12%3A52%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Runx1%20Deficiency%20Protects%20Against%20Adverse%20Cardiac%20Remodeling%20After%20Myocardial%20Infarction&rft.jtitle=Circulation%20(New%20York,%20N.Y.)&rft.au=McCarroll,%20Charlotte%20S&rft.date=2018-01-02&rft.volume=137&rft.issue=1&rft.spage=57&rft.epage=70&rft.pages=57-70&rft.issn=0009-7322&rft.eissn=1524-4539&rft_id=info:doi/10.1161/CIRCULATIONAHA.117.028911&rft_dat=%3Cproquest_pubme%3E1951414425%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1951414425&rft_id=info:pmid/29030345&rfr_iscdi=true