The Coiled-Coil and Nucleotide Binding Domains of BROWN PLANTHOPPER RESISTANCE14 Function in Signaling and Resistance against Planthopper in Rice

BROWN PLANTHOPPER RESISTANCE14 (BPH14), the first planthopper resistance gene isolated via map-based cloning in rice (Oryza sativa), encodes a coiled-coil, nucleotide binding site, leucine-rich repeat (CC-NB-LRR) protein. Several planthopper and aphid resistance genes encoding proteins with similar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Plant cell 2017-12, Vol.29 (12), p.3157-3185
Hauptverfasser: Hu, Liang, Wu, Yan, Wu, Di, Rao, Weiwei, Guo, Jianping, Ma, Yinhua, Wang, Zhizheng, Shangguan, Xinxin, Wang, Huiying, Xu, Chunxue, Huang, Jin, Shi, Shaojie, Chen, Rongzhi, Du, Bo, Zhu, Lili, He, Guangcun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3185
container_issue 12
container_start_page 3157
container_title The Plant cell
container_volume 29
creator Hu, Liang
Wu, Yan
Wu, Di
Rao, Weiwei
Guo, Jianping
Ma, Yinhua
Wang, Zhizheng
Shangguan, Xinxin
Wang, Huiying
Xu, Chunxue
Huang, Jin
Shi, Shaojie
Chen, Rongzhi
Du, Bo
Zhu, Lili
He, Guangcun
description BROWN PLANTHOPPER RESISTANCE14 (BPH14), the first planthopper resistance gene isolated via map-based cloning in rice (Oryza sativa), encodes a coiled-coil, nucleotide binding site, leucine-rich repeat (CC-NB-LRR) protein. Several planthopper and aphid resistance genes encoding proteins with similar structures have recently been identified. Here, we analyzed the functions of the domains of BPH14 to identify molecular mechanisms underpinning BPH14-mediated planthopper resistance. The CC or NB domains alone or in combination (CC-NB [CN]) conferred a similar level of brown planthopper resistance to that of full-length (FL) BPH14. Both domains activated the salicylic acid signaling pathway and defense gene expression. In rice protoplasts and Nicotiana benthamiana leaves, these domains increased reactive oxygen species levels without triggering cell death. Additionally, the resistance domains and FL BPH14 protein formed homocomplexes that interacted with transcription factors WRKY46 and WRKY72. In rice protoplasts, the expression of FL BPH14 or its CC, NB, and CN domains increased the accumulation of WRKY46 and WRKY72 as well as WRKY46- and WRKY72-dependent transactivation activity. WRKY46 and WRKY72 bind to the promoters of the receptor-like cytoplasmic kinase gene RLCK281 and the callose synthase gene LOC_Os01g67364.1, whose transactivation activity is dependent on WRKY46 or WRKY72. These findings shed light on this important insect resistance mechanism.
doi_str_mv 10.1105/tpc.17.00263
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5757267</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>90017102</jstor_id><sourcerecordid>90017102</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-b2a2f4ec82661b5efb22dd85bfedb2786fb21a023dcc3f734fe7b5c62ddeebc03</originalsourceid><addsrcrecordid>eNpdkl9v0zAUxSMEYmPwxivIEi88LMV_4qR5mdSVjk2q2iotgjfLcW5aV6kdYgeJj8E3nrNuFePpWr4_H917jqPoPcEjQjD_4ls1ItkIY5qyF9E54YzGNB__fBnOOMFxknJyFr1xbo8xJhnJX0dnNMc5oyQ9j_5udoCmVjdQxUNB0lRo0asGrNcVoGttKm226Ks9SG0csjW6LpY_Fmg1nyw2t8vValagYra-W28mi-mMJOimN8pra5A2aK23RjbD-0G2AKedl0YBkttBzaNVI43f2baFbuALreBt9KqWjYN3j_Ui-n4z20xv4_ny2910Mo9VwhIfl1TSOgE1pmlKSg51SWlVjXlZQ1XSbJyGCyIxZZVSrM5YUkNWcpUGCKBUmF1EV0fdti8PUCkwvpONaDt9kN0fYaUWzztG78TW_hY84xlNsyDw-VGgs796cF4ctFPQhJXA9k6QnAeTKeM8oJ_-Q_e274I1TlCM0xwnST4IXh4p1VnnOqhPwxAshqxFyFqQTDxkHfCP_y5wgp_CDcCHI7B33nanfv7wDYIz9_-Fr0c</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2006904497</pqid></control><display><type>article</type><title>The Coiled-Coil and Nucleotide Binding Domains of BROWN PLANTHOPPER RESISTANCE14 Function in Signaling and Resistance against Planthopper in Rice</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Hu, Liang ; Wu, Yan ; Wu, Di ; Rao, Weiwei ; Guo, Jianping ; Ma, Yinhua ; Wang, Zhizheng ; Shangguan, Xinxin ; Wang, Huiying ; Xu, Chunxue ; Huang, Jin ; Shi, Shaojie ; Chen, Rongzhi ; Du, Bo ; Zhu, Lili ; He, Guangcun</creator><creatorcontrib>Hu, Liang ; Wu, Yan ; Wu, Di ; Rao, Weiwei ; Guo, Jianping ; Ma, Yinhua ; Wang, Zhizheng ; Shangguan, Xinxin ; Wang, Huiying ; Xu, Chunxue ; Huang, Jin ; Shi, Shaojie ; Chen, Rongzhi ; Du, Bo ; Zhu, Lili ; He, Guangcun</creatorcontrib><description>BROWN PLANTHOPPER RESISTANCE14 (BPH14), the first planthopper resistance gene isolated via map-based cloning in rice (Oryza sativa), encodes a coiled-coil, nucleotide binding site, leucine-rich repeat (CC-NB-LRR) protein. Several planthopper and aphid resistance genes encoding proteins with similar structures have recently been identified. Here, we analyzed the functions of the domains of BPH14 to identify molecular mechanisms underpinning BPH14-mediated planthopper resistance. The CC or NB domains alone or in combination (CC-NB [CN]) conferred a similar level of brown planthopper resistance to that of full-length (FL) BPH14. Both domains activated the salicylic acid signaling pathway and defense gene expression. In rice protoplasts and Nicotiana benthamiana leaves, these domains increased reactive oxygen species levels without triggering cell death. Additionally, the resistance domains and FL BPH14 protein formed homocomplexes that interacted with transcription factors WRKY46 and WRKY72. In rice protoplasts, the expression of FL BPH14 or its CC, NB, and CN domains increased the accumulation of WRKY46 and WRKY72 as well as WRKY46- and WRKY72-dependent transactivation activity. WRKY46 and WRKY72 bind to the promoters of the receptor-like cytoplasmic kinase gene RLCK281 and the callose synthase gene LOC_Os01g67364.1, whose transactivation activity is dependent on WRKY46 or WRKY72. These findings shed light on this important insect resistance mechanism.</description><identifier>ISSN: 1040-4651</identifier><identifier>ISSN: 1532-298X</identifier><identifier>EISSN: 1532-298X</identifier><identifier>DOI: 10.1105/tpc.17.00263</identifier><identifier>PMID: 29093216</identifier><language>eng</language><publisher>England: American Society of Plant Biologists</publisher><subject>Animals ; Binding sites ; Cell death ; Cell Death - drug effects ; Cell Nucleus - drug effects ; Cell Nucleus - metabolism ; Cloning ; Coils ; Disease Resistance ; Gene expression ; Hemiptera - physiology ; Kinases ; Leucine ; Magnaporthe - physiology ; Models, Biological ; Molecular modelling ; Oryza - genetics ; Oryza - immunology ; Oryza - metabolism ; Oryza - parasitology ; Oryza sativa ; Plant Diseases - microbiology ; Plant Diseases - parasitology ; Plant Growth Regulators - pharmacology ; Plant Proteins - chemistry ; Plant Proteins - metabolism ; Plants, Genetically Modified ; Protein Binding - drug effects ; Protein Domains ; Protein Stability - drug effects ; Proteins ; Proteolysis - drug effects ; Protoplasts ; Reactive oxygen species ; Rice ; Salicylic acid ; Salicylic Acid - metabolism ; Signal Transduction ; Signaling ; Structure-Activity Relationship ; Transcription factors ; Transcription Factors - metabolism ; Xanthomonas - physiology</subject><ispartof>The Plant cell, 2017-12, Vol.29 (12), p.3157-3185</ispartof><rights>2017 American Society of Plant Biologists</rights><rights>2017 American Society of Plant Biologists. All rights reserved.</rights><rights>Copyright American Society of Plant Biologists Dec 2017</rights><rights>2017 American Society of Plant Biologists. All rights reserved. 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-b2a2f4ec82661b5efb22dd85bfedb2786fb21a023dcc3f734fe7b5c62ddeebc03</citedby><orcidid>0000-0001-6395-4774</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/90017102$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/90017102$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,885,27924,27925,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29093216$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hu, Liang</creatorcontrib><creatorcontrib>Wu, Yan</creatorcontrib><creatorcontrib>Wu, Di</creatorcontrib><creatorcontrib>Rao, Weiwei</creatorcontrib><creatorcontrib>Guo, Jianping</creatorcontrib><creatorcontrib>Ma, Yinhua</creatorcontrib><creatorcontrib>Wang, Zhizheng</creatorcontrib><creatorcontrib>Shangguan, Xinxin</creatorcontrib><creatorcontrib>Wang, Huiying</creatorcontrib><creatorcontrib>Xu, Chunxue</creatorcontrib><creatorcontrib>Huang, Jin</creatorcontrib><creatorcontrib>Shi, Shaojie</creatorcontrib><creatorcontrib>Chen, Rongzhi</creatorcontrib><creatorcontrib>Du, Bo</creatorcontrib><creatorcontrib>Zhu, Lili</creatorcontrib><creatorcontrib>He, Guangcun</creatorcontrib><title>The Coiled-Coil and Nucleotide Binding Domains of BROWN PLANTHOPPER RESISTANCE14 Function in Signaling and Resistance against Planthopper in Rice</title><title>The Plant cell</title><addtitle>Plant Cell</addtitle><description>BROWN PLANTHOPPER RESISTANCE14 (BPH14), the first planthopper resistance gene isolated via map-based cloning in rice (Oryza sativa), encodes a coiled-coil, nucleotide binding site, leucine-rich repeat (CC-NB-LRR) protein. Several planthopper and aphid resistance genes encoding proteins with similar structures have recently been identified. Here, we analyzed the functions of the domains of BPH14 to identify molecular mechanisms underpinning BPH14-mediated planthopper resistance. The CC or NB domains alone or in combination (CC-NB [CN]) conferred a similar level of brown planthopper resistance to that of full-length (FL) BPH14. Both domains activated the salicylic acid signaling pathway and defense gene expression. In rice protoplasts and Nicotiana benthamiana leaves, these domains increased reactive oxygen species levels without triggering cell death. Additionally, the resistance domains and FL BPH14 protein formed homocomplexes that interacted with transcription factors WRKY46 and WRKY72. In rice protoplasts, the expression of FL BPH14 or its CC, NB, and CN domains increased the accumulation of WRKY46 and WRKY72 as well as WRKY46- and WRKY72-dependent transactivation activity. WRKY46 and WRKY72 bind to the promoters of the receptor-like cytoplasmic kinase gene RLCK281 and the callose synthase gene LOC_Os01g67364.1, whose transactivation activity is dependent on WRKY46 or WRKY72. These findings shed light on this important insect resistance mechanism.</description><subject>Animals</subject><subject>Binding sites</subject><subject>Cell death</subject><subject>Cell Death - drug effects</subject><subject>Cell Nucleus - drug effects</subject><subject>Cell Nucleus - metabolism</subject><subject>Cloning</subject><subject>Coils</subject><subject>Disease Resistance</subject><subject>Gene expression</subject><subject>Hemiptera - physiology</subject><subject>Kinases</subject><subject>Leucine</subject><subject>Magnaporthe - physiology</subject><subject>Models, Biological</subject><subject>Molecular modelling</subject><subject>Oryza - genetics</subject><subject>Oryza - immunology</subject><subject>Oryza - metabolism</subject><subject>Oryza - parasitology</subject><subject>Oryza sativa</subject><subject>Plant Diseases - microbiology</subject><subject>Plant Diseases - parasitology</subject><subject>Plant Growth Regulators - pharmacology</subject><subject>Plant Proteins - chemistry</subject><subject>Plant Proteins - metabolism</subject><subject>Plants, Genetically Modified</subject><subject>Protein Binding - drug effects</subject><subject>Protein Domains</subject><subject>Protein Stability - drug effects</subject><subject>Proteins</subject><subject>Proteolysis - drug effects</subject><subject>Protoplasts</subject><subject>Reactive oxygen species</subject><subject>Rice</subject><subject>Salicylic acid</subject><subject>Salicylic Acid - metabolism</subject><subject>Signal Transduction</subject><subject>Signaling</subject><subject>Structure-Activity Relationship</subject><subject>Transcription factors</subject><subject>Transcription Factors - metabolism</subject><subject>Xanthomonas - physiology</subject><issn>1040-4651</issn><issn>1532-298X</issn><issn>1532-298X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkl9v0zAUxSMEYmPwxivIEi88LMV_4qR5mdSVjk2q2iotgjfLcW5aV6kdYgeJj8E3nrNuFePpWr4_H917jqPoPcEjQjD_4ls1ItkIY5qyF9E54YzGNB__fBnOOMFxknJyFr1xbo8xJhnJX0dnNMc5oyQ9j_5udoCmVjdQxUNB0lRo0asGrNcVoGttKm226Ks9SG0csjW6LpY_Fmg1nyw2t8vValagYra-W28mi-mMJOimN8pra5A2aK23RjbD-0G2AKedl0YBkttBzaNVI43f2baFbuALreBt9KqWjYN3j_Ui-n4z20xv4_ny2910Mo9VwhIfl1TSOgE1pmlKSg51SWlVjXlZQ1XSbJyGCyIxZZVSrM5YUkNWcpUGCKBUmF1EV0fdti8PUCkwvpONaDt9kN0fYaUWzztG78TW_hY84xlNsyDw-VGgs796cF4ctFPQhJXA9k6QnAeTKeM8oJ_-Q_e274I1TlCM0xwnST4IXh4p1VnnOqhPwxAshqxFyFqQTDxkHfCP_y5wgp_CDcCHI7B33nanfv7wDYIz9_-Fr0c</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Hu, Liang</creator><creator>Wu, Yan</creator><creator>Wu, Di</creator><creator>Rao, Weiwei</creator><creator>Guo, Jianping</creator><creator>Ma, Yinhua</creator><creator>Wang, Zhizheng</creator><creator>Shangguan, Xinxin</creator><creator>Wang, Huiying</creator><creator>Xu, Chunxue</creator><creator>Huang, Jin</creator><creator>Shi, Shaojie</creator><creator>Chen, Rongzhi</creator><creator>Du, Bo</creator><creator>Zhu, Lili</creator><creator>He, Guangcun</creator><general>American Society of Plant Biologists</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>4T-</scope><scope>7QO</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6395-4774</orcidid></search><sort><creationdate>20171201</creationdate><title>The Coiled-Coil and Nucleotide Binding Domains of BROWN PLANTHOPPER RESISTANCE14 Function in Signaling and Resistance against Planthopper in Rice</title><author>Hu, Liang ; Wu, Yan ; Wu, Di ; Rao, Weiwei ; Guo, Jianping ; Ma, Yinhua ; Wang, Zhizheng ; Shangguan, Xinxin ; Wang, Huiying ; Xu, Chunxue ; Huang, Jin ; Shi, Shaojie ; Chen, Rongzhi ; Du, Bo ; Zhu, Lili ; He, Guangcun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-b2a2f4ec82661b5efb22dd85bfedb2786fb21a023dcc3f734fe7b5c62ddeebc03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Binding sites</topic><topic>Cell death</topic><topic>Cell Death - drug effects</topic><topic>Cell Nucleus - drug effects</topic><topic>Cell Nucleus - metabolism</topic><topic>Cloning</topic><topic>Coils</topic><topic>Disease Resistance</topic><topic>Gene expression</topic><topic>Hemiptera - physiology</topic><topic>Kinases</topic><topic>Leucine</topic><topic>Magnaporthe - physiology</topic><topic>Models, Biological</topic><topic>Molecular modelling</topic><topic>Oryza - genetics</topic><topic>Oryza - immunology</topic><topic>Oryza - metabolism</topic><topic>Oryza - parasitology</topic><topic>Oryza sativa</topic><topic>Plant Diseases - microbiology</topic><topic>Plant Diseases - parasitology</topic><topic>Plant Growth Regulators - pharmacology</topic><topic>Plant Proteins - chemistry</topic><topic>Plant Proteins - metabolism</topic><topic>Plants, Genetically Modified</topic><topic>Protein Binding - drug effects</topic><topic>Protein Domains</topic><topic>Protein Stability - drug effects</topic><topic>Proteins</topic><topic>Proteolysis - drug effects</topic><topic>Protoplasts</topic><topic>Reactive oxygen species</topic><topic>Rice</topic><topic>Salicylic acid</topic><topic>Salicylic Acid - metabolism</topic><topic>Signal Transduction</topic><topic>Signaling</topic><topic>Structure-Activity Relationship</topic><topic>Transcription factors</topic><topic>Transcription Factors - metabolism</topic><topic>Xanthomonas - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Liang</creatorcontrib><creatorcontrib>Wu, Yan</creatorcontrib><creatorcontrib>Wu, Di</creatorcontrib><creatorcontrib>Rao, Weiwei</creatorcontrib><creatorcontrib>Guo, Jianping</creatorcontrib><creatorcontrib>Ma, Yinhua</creatorcontrib><creatorcontrib>Wang, Zhizheng</creatorcontrib><creatorcontrib>Shangguan, Xinxin</creatorcontrib><creatorcontrib>Wang, Huiying</creatorcontrib><creatorcontrib>Xu, Chunxue</creatorcontrib><creatorcontrib>Huang, Jin</creatorcontrib><creatorcontrib>Shi, Shaojie</creatorcontrib><creatorcontrib>Chen, Rongzhi</creatorcontrib><creatorcontrib>Du, Bo</creatorcontrib><creatorcontrib>Zhu, Lili</creatorcontrib><creatorcontrib>He, Guangcun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Docstoc</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Plant cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Liang</au><au>Wu, Yan</au><au>Wu, Di</au><au>Rao, Weiwei</au><au>Guo, Jianping</au><au>Ma, Yinhua</au><au>Wang, Zhizheng</au><au>Shangguan, Xinxin</au><au>Wang, Huiying</au><au>Xu, Chunxue</au><au>Huang, Jin</au><au>Shi, Shaojie</au><au>Chen, Rongzhi</au><au>Du, Bo</au><au>Zhu, Lili</au><au>He, Guangcun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Coiled-Coil and Nucleotide Binding Domains of BROWN PLANTHOPPER RESISTANCE14 Function in Signaling and Resistance against Planthopper in Rice</atitle><jtitle>The Plant cell</jtitle><addtitle>Plant Cell</addtitle><date>2017-12-01</date><risdate>2017</risdate><volume>29</volume><issue>12</issue><spage>3157</spage><epage>3185</epage><pages>3157-3185</pages><issn>1040-4651</issn><issn>1532-298X</issn><eissn>1532-298X</eissn><abstract>BROWN PLANTHOPPER RESISTANCE14 (BPH14), the first planthopper resistance gene isolated via map-based cloning in rice (Oryza sativa), encodes a coiled-coil, nucleotide binding site, leucine-rich repeat (CC-NB-LRR) protein. Several planthopper and aphid resistance genes encoding proteins with similar structures have recently been identified. Here, we analyzed the functions of the domains of BPH14 to identify molecular mechanisms underpinning BPH14-mediated planthopper resistance. The CC or NB domains alone or in combination (CC-NB [CN]) conferred a similar level of brown planthopper resistance to that of full-length (FL) BPH14. Both domains activated the salicylic acid signaling pathway and defense gene expression. In rice protoplasts and Nicotiana benthamiana leaves, these domains increased reactive oxygen species levels without triggering cell death. Additionally, the resistance domains and FL BPH14 protein formed homocomplexes that interacted with transcription factors WRKY46 and WRKY72. In rice protoplasts, the expression of FL BPH14 or its CC, NB, and CN domains increased the accumulation of WRKY46 and WRKY72 as well as WRKY46- and WRKY72-dependent transactivation activity. WRKY46 and WRKY72 bind to the promoters of the receptor-like cytoplasmic kinase gene RLCK281 and the callose synthase gene LOC_Os01g67364.1, whose transactivation activity is dependent on WRKY46 or WRKY72. These findings shed light on this important insect resistance mechanism.</abstract><cop>England</cop><pub>American Society of Plant Biologists</pub><pmid>29093216</pmid><doi>10.1105/tpc.17.00263</doi><tpages>29</tpages><orcidid>https://orcid.org/0000-0001-6395-4774</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1040-4651
ispartof The Plant cell, 2017-12, Vol.29 (12), p.3157-3185
issn 1040-4651
1532-298X
1532-298X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5757267
source MEDLINE; JSTOR Archive Collection A-Z Listing; Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals
subjects Animals
Binding sites
Cell death
Cell Death - drug effects
Cell Nucleus - drug effects
Cell Nucleus - metabolism
Cloning
Coils
Disease Resistance
Gene expression
Hemiptera - physiology
Kinases
Leucine
Magnaporthe - physiology
Models, Biological
Molecular modelling
Oryza - genetics
Oryza - immunology
Oryza - metabolism
Oryza - parasitology
Oryza sativa
Plant Diseases - microbiology
Plant Diseases - parasitology
Plant Growth Regulators - pharmacology
Plant Proteins - chemistry
Plant Proteins - metabolism
Plants, Genetically Modified
Protein Binding - drug effects
Protein Domains
Protein Stability - drug effects
Proteins
Proteolysis - drug effects
Protoplasts
Reactive oxygen species
Rice
Salicylic acid
Salicylic Acid - metabolism
Signal Transduction
Signaling
Structure-Activity Relationship
Transcription factors
Transcription Factors - metabolism
Xanthomonas - physiology
title The Coiled-Coil and Nucleotide Binding Domains of BROWN PLANTHOPPER RESISTANCE14 Function in Signaling and Resistance against Planthopper in Rice
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T23%3A36%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Coiled-Coil%20and%20Nucleotide%20Binding%20Domains%20of%20BROWN%20PLANTHOPPER%20RESISTANCE14%20Function%20in%20Signaling%20and%20Resistance%20against%20Planthopper%20in%20Rice&rft.jtitle=The%20Plant%20cell&rft.au=Hu,%20Liang&rft.date=2017-12-01&rft.volume=29&rft.issue=12&rft.spage=3157&rft.epage=3185&rft.pages=3157-3185&rft.issn=1040-4651&rft.eissn=1532-298X&rft_id=info:doi/10.1105/tpc.17.00263&rft_dat=%3Cjstor_pubme%3E90017102%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2006904497&rft_id=info:pmid/29093216&rft_jstor_id=90017102&rfr_iscdi=true