Addition of carbonic anhydrase 9 inhibitor SLC-0111 to temozolomide treatment delays glioblastoma growth in vivo

Tumor microenvironments can promote stem cell maintenance, tumor growth, and therapeutic resistance, findings linked by the tumor-initiating cell hypothesis. Standard of care for glioblastoma (GBM) includes temozolomide chemotherapy, which is not curative, due, in part, to residual therapy-resistant...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:JCI insight 2017-12, Vol.2 (24)
Hauptverfasser: Boyd, Nathaniel H, Walker, Kiera, Fried, Joshua, Hackney, James R, McDonald, Paul C, Benavides, Gloria A, Spina, Raffaella, Audia, Alessandra, Scott, Sarah E, Landis, Catherine J, Tran, Anh Nhat, Bevensee, Mark O, Griguer, Corinne, Nozell, Susan, Gillespie, G Yancey, Nabors, Burt, Bhat, Krishna P, Bar, Eli E, Darley-Usmar, Victor, Xu, Bo, Gordon, Emily, Cooper, Sara J, Dedhar, Shoukat, Hjelmeland, Anita B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 24
container_start_page
container_title JCI insight
container_volume 2
creator Boyd, Nathaniel H
Walker, Kiera
Fried, Joshua
Hackney, James R
McDonald, Paul C
Benavides, Gloria A
Spina, Raffaella
Audia, Alessandra
Scott, Sarah E
Landis, Catherine J
Tran, Anh Nhat
Bevensee, Mark O
Griguer, Corinne
Nozell, Susan
Gillespie, G Yancey
Nabors, Burt
Bhat, Krishna P
Bar, Eli E
Darley-Usmar, Victor
Xu, Bo
Gordon, Emily
Cooper, Sara J
Dedhar, Shoukat
Hjelmeland, Anita B
description Tumor microenvironments can promote stem cell maintenance, tumor growth, and therapeutic resistance, findings linked by the tumor-initiating cell hypothesis. Standard of care for glioblastoma (GBM) includes temozolomide chemotherapy, which is not curative, due, in part, to residual therapy-resistant brain tumor-initiating cells (BTICs). Temozolomide efficacy may be increased by targeting carbonic anhydrase 9 (CA9), a hypoxia-responsive gene important for maintaining the altered pH gradient of tumor cells. Using patient-derived GBM xenograft cells, we explored whether CA9 and CA12 inhibitor SLC-0111 could decrease GBM growth in combination with temozolomide or influence percentages of BTICs after chemotherapy. In multiple GBMs, SLC-0111 used concurrently with temozolomide reduced cell growth and induced cell cycle arrest via DNA damage in vitro. In addition, this treatment shifted tumor metabolism to a suppressed bioenergetic state in vivo. SLC-0111 also inhibited the enrichment of BTICs after temozolomide treatment determined via CD133 expression and neurosphere formation capacity. GBM xenografts treated with SLC-0111 in combination with temozolomide regressed significantly, and this effect was greater than that of temozolomide or SLC-0111 alone. We determined that SLC-0111 improves the efficacy of temozolomide to extend survival of GBM-bearing mice and should be explored as a treatment strategy in combination with current standard of care.
doi_str_mv 10.1172/jci.insight.92928
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5752277</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29263302</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-7746452cb6b61eb4a39b78a26216c7a5ee045f1ca7cc89039135f49a913707673</originalsourceid><addsrcrecordid>eNpVkd1KAzEQhYMottQ-gDeSF9ian81mcyOU4h8UvFCvQ5LNdlN2NyWJlfr0bm0tenUGZs43wxwArjGaYczJ7dq4meujWzVpJogg5RkYE8pFRjkqz__UIzCNcY0QwjwniJWXYDSMF5QiMgabeVW55HwPfQ2NCtr3zkDVN7sqqGihgK5vnHbJB_i6XGQIYwyTh8l2_su3vnOVhSlYlTrbJ1jZVu0iXLXO61bF5DsFV8F_pmbgwK3b-itwUas22ulRJ-D94f5t8ZQtXx6fF_NlZvKCpYzzvMgZMbrQBbY6V1RoXipSEFwYrpi1KGc1NoobUwpEBaaszoUalCNecDoBdwfu5kN3tjLDdUG1chNcp8JOeuXk_07vGrnyW8k4I4TvAfgAMMHHGGx98mIk9wnIIQF5TED-JDB4bv4uPTl-_02_AaJ6hpQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Addition of carbonic anhydrase 9 inhibitor SLC-0111 to temozolomide treatment delays glioblastoma growth in vivo</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Boyd, Nathaniel H ; Walker, Kiera ; Fried, Joshua ; Hackney, James R ; McDonald, Paul C ; Benavides, Gloria A ; Spina, Raffaella ; Audia, Alessandra ; Scott, Sarah E ; Landis, Catherine J ; Tran, Anh Nhat ; Bevensee, Mark O ; Griguer, Corinne ; Nozell, Susan ; Gillespie, G Yancey ; Nabors, Burt ; Bhat, Krishna P ; Bar, Eli E ; Darley-Usmar, Victor ; Xu, Bo ; Gordon, Emily ; Cooper, Sara J ; Dedhar, Shoukat ; Hjelmeland, Anita B</creator><creatorcontrib>Boyd, Nathaniel H ; Walker, Kiera ; Fried, Joshua ; Hackney, James R ; McDonald, Paul C ; Benavides, Gloria A ; Spina, Raffaella ; Audia, Alessandra ; Scott, Sarah E ; Landis, Catherine J ; Tran, Anh Nhat ; Bevensee, Mark O ; Griguer, Corinne ; Nozell, Susan ; Gillespie, G Yancey ; Nabors, Burt ; Bhat, Krishna P ; Bar, Eli E ; Darley-Usmar, Victor ; Xu, Bo ; Gordon, Emily ; Cooper, Sara J ; Dedhar, Shoukat ; Hjelmeland, Anita B</creatorcontrib><description>Tumor microenvironments can promote stem cell maintenance, tumor growth, and therapeutic resistance, findings linked by the tumor-initiating cell hypothesis. Standard of care for glioblastoma (GBM) includes temozolomide chemotherapy, which is not curative, due, in part, to residual therapy-resistant brain tumor-initiating cells (BTICs). Temozolomide efficacy may be increased by targeting carbonic anhydrase 9 (CA9), a hypoxia-responsive gene important for maintaining the altered pH gradient of tumor cells. Using patient-derived GBM xenograft cells, we explored whether CA9 and CA12 inhibitor SLC-0111 could decrease GBM growth in combination with temozolomide or influence percentages of BTICs after chemotherapy. In multiple GBMs, SLC-0111 used concurrently with temozolomide reduced cell growth and induced cell cycle arrest via DNA damage in vitro. In addition, this treatment shifted tumor metabolism to a suppressed bioenergetic state in vivo. SLC-0111 also inhibited the enrichment of BTICs after temozolomide treatment determined via CD133 expression and neurosphere formation capacity. GBM xenografts treated with SLC-0111 in combination with temozolomide regressed significantly, and this effect was greater than that of temozolomide or SLC-0111 alone. We determined that SLC-0111 improves the efficacy of temozolomide to extend survival of GBM-bearing mice and should be explored as a treatment strategy in combination with current standard of care.</description><identifier>ISSN: 2379-3708</identifier><identifier>EISSN: 2379-3708</identifier><identifier>DOI: 10.1172/jci.insight.92928</identifier><identifier>PMID: 29263302</identifier><language>eng</language><publisher>United States: American Society for Clinical Investigation</publisher><subject>Animals ; Antineoplastic Combined Chemotherapy Protocols - pharmacology ; Antineoplastic Combined Chemotherapy Protocols - therapeutic use ; Brain Neoplasms - genetics ; Brain Neoplasms - metabolism ; Brain Neoplasms - pathology ; Brain Neoplasms - prevention &amp; control ; Cell Proliferation - drug effects ; DNA Damage ; DNA, Neoplasm - genetics ; Glioblastoma - genetics ; Glioblastoma - metabolism ; Glioblastoma - pathology ; Glioblastoma - prevention &amp; control ; Humans ; Hydrogen-Ion Concentration - drug effects ; Mice, Nude ; Neoplastic Stem Cells - drug effects ; Phenylurea Compounds - administration &amp; dosage ; Phenylurea Compounds - pharmacology ; Sulfonamides - administration &amp; dosage ; Sulfonamides - pharmacology ; Temozolomide - administration &amp; dosage ; Temozolomide - pharmacology ; Xenograft Model Antitumor Assays</subject><ispartof>JCI insight, 2017-12, Vol.2 (24)</ispartof><rights>2017 American Society for Clinical Investigation 2017 American Society for Clinical Investigation</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-7746452cb6b61eb4a39b78a26216c7a5ee045f1ca7cc89039135f49a913707673</citedby><cites>FETCH-LOGICAL-c465t-7746452cb6b61eb4a39b78a26216c7a5ee045f1ca7cc89039135f49a913707673</cites><orcidid>0000-0002-9627-0309</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5752277/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5752277/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29263302$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Boyd, Nathaniel H</creatorcontrib><creatorcontrib>Walker, Kiera</creatorcontrib><creatorcontrib>Fried, Joshua</creatorcontrib><creatorcontrib>Hackney, James R</creatorcontrib><creatorcontrib>McDonald, Paul C</creatorcontrib><creatorcontrib>Benavides, Gloria A</creatorcontrib><creatorcontrib>Spina, Raffaella</creatorcontrib><creatorcontrib>Audia, Alessandra</creatorcontrib><creatorcontrib>Scott, Sarah E</creatorcontrib><creatorcontrib>Landis, Catherine J</creatorcontrib><creatorcontrib>Tran, Anh Nhat</creatorcontrib><creatorcontrib>Bevensee, Mark O</creatorcontrib><creatorcontrib>Griguer, Corinne</creatorcontrib><creatorcontrib>Nozell, Susan</creatorcontrib><creatorcontrib>Gillespie, G Yancey</creatorcontrib><creatorcontrib>Nabors, Burt</creatorcontrib><creatorcontrib>Bhat, Krishna P</creatorcontrib><creatorcontrib>Bar, Eli E</creatorcontrib><creatorcontrib>Darley-Usmar, Victor</creatorcontrib><creatorcontrib>Xu, Bo</creatorcontrib><creatorcontrib>Gordon, Emily</creatorcontrib><creatorcontrib>Cooper, Sara J</creatorcontrib><creatorcontrib>Dedhar, Shoukat</creatorcontrib><creatorcontrib>Hjelmeland, Anita B</creatorcontrib><title>Addition of carbonic anhydrase 9 inhibitor SLC-0111 to temozolomide treatment delays glioblastoma growth in vivo</title><title>JCI insight</title><addtitle>JCI Insight</addtitle><description>Tumor microenvironments can promote stem cell maintenance, tumor growth, and therapeutic resistance, findings linked by the tumor-initiating cell hypothesis. Standard of care for glioblastoma (GBM) includes temozolomide chemotherapy, which is not curative, due, in part, to residual therapy-resistant brain tumor-initiating cells (BTICs). Temozolomide efficacy may be increased by targeting carbonic anhydrase 9 (CA9), a hypoxia-responsive gene important for maintaining the altered pH gradient of tumor cells. Using patient-derived GBM xenograft cells, we explored whether CA9 and CA12 inhibitor SLC-0111 could decrease GBM growth in combination with temozolomide or influence percentages of BTICs after chemotherapy. In multiple GBMs, SLC-0111 used concurrently with temozolomide reduced cell growth and induced cell cycle arrest via DNA damage in vitro. In addition, this treatment shifted tumor metabolism to a suppressed bioenergetic state in vivo. SLC-0111 also inhibited the enrichment of BTICs after temozolomide treatment determined via CD133 expression and neurosphere formation capacity. GBM xenografts treated with SLC-0111 in combination with temozolomide regressed significantly, and this effect was greater than that of temozolomide or SLC-0111 alone. We determined that SLC-0111 improves the efficacy of temozolomide to extend survival of GBM-bearing mice and should be explored as a treatment strategy in combination with current standard of care.</description><subject>Animals</subject><subject>Antineoplastic Combined Chemotherapy Protocols - pharmacology</subject><subject>Antineoplastic Combined Chemotherapy Protocols - therapeutic use</subject><subject>Brain Neoplasms - genetics</subject><subject>Brain Neoplasms - metabolism</subject><subject>Brain Neoplasms - pathology</subject><subject>Brain Neoplasms - prevention &amp; control</subject><subject>Cell Proliferation - drug effects</subject><subject>DNA Damage</subject><subject>DNA, Neoplasm - genetics</subject><subject>Glioblastoma - genetics</subject><subject>Glioblastoma - metabolism</subject><subject>Glioblastoma - pathology</subject><subject>Glioblastoma - prevention &amp; control</subject><subject>Humans</subject><subject>Hydrogen-Ion Concentration - drug effects</subject><subject>Mice, Nude</subject><subject>Neoplastic Stem Cells - drug effects</subject><subject>Phenylurea Compounds - administration &amp; dosage</subject><subject>Phenylurea Compounds - pharmacology</subject><subject>Sulfonamides - administration &amp; dosage</subject><subject>Sulfonamides - pharmacology</subject><subject>Temozolomide - administration &amp; dosage</subject><subject>Temozolomide - pharmacology</subject><subject>Xenograft Model Antitumor Assays</subject><issn>2379-3708</issn><issn>2379-3708</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkd1KAzEQhYMottQ-gDeSF9ian81mcyOU4h8UvFCvQ5LNdlN2NyWJlfr0bm0tenUGZs43wxwArjGaYczJ7dq4meujWzVpJogg5RkYE8pFRjkqz__UIzCNcY0QwjwniJWXYDSMF5QiMgabeVW55HwPfQ2NCtr3zkDVN7sqqGihgK5vnHbJB_i6XGQIYwyTh8l2_su3vnOVhSlYlTrbJ1jZVu0iXLXO61bF5DsFV8F_pmbgwK3b-itwUas22ulRJ-D94f5t8ZQtXx6fF_NlZvKCpYzzvMgZMbrQBbY6V1RoXipSEFwYrpi1KGc1NoobUwpEBaaszoUalCNecDoBdwfu5kN3tjLDdUG1chNcp8JOeuXk_07vGrnyW8k4I4TvAfgAMMHHGGx98mIk9wnIIQF5TED-JDB4bv4uPTl-_02_AaJ6hpQ</recordid><startdate>20171221</startdate><enddate>20171221</enddate><creator>Boyd, Nathaniel H</creator><creator>Walker, Kiera</creator><creator>Fried, Joshua</creator><creator>Hackney, James R</creator><creator>McDonald, Paul C</creator><creator>Benavides, Gloria A</creator><creator>Spina, Raffaella</creator><creator>Audia, Alessandra</creator><creator>Scott, Sarah E</creator><creator>Landis, Catherine J</creator><creator>Tran, Anh Nhat</creator><creator>Bevensee, Mark O</creator><creator>Griguer, Corinne</creator><creator>Nozell, Susan</creator><creator>Gillespie, G Yancey</creator><creator>Nabors, Burt</creator><creator>Bhat, Krishna P</creator><creator>Bar, Eli E</creator><creator>Darley-Usmar, Victor</creator><creator>Xu, Bo</creator><creator>Gordon, Emily</creator><creator>Cooper, Sara J</creator><creator>Dedhar, Shoukat</creator><creator>Hjelmeland, Anita B</creator><general>American Society for Clinical Investigation</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9627-0309</orcidid></search><sort><creationdate>20171221</creationdate><title>Addition of carbonic anhydrase 9 inhibitor SLC-0111 to temozolomide treatment delays glioblastoma growth in vivo</title><author>Boyd, Nathaniel H ; Walker, Kiera ; Fried, Joshua ; Hackney, James R ; McDonald, Paul C ; Benavides, Gloria A ; Spina, Raffaella ; Audia, Alessandra ; Scott, Sarah E ; Landis, Catherine J ; Tran, Anh Nhat ; Bevensee, Mark O ; Griguer, Corinne ; Nozell, Susan ; Gillespie, G Yancey ; Nabors, Burt ; Bhat, Krishna P ; Bar, Eli E ; Darley-Usmar, Victor ; Xu, Bo ; Gordon, Emily ; Cooper, Sara J ; Dedhar, Shoukat ; Hjelmeland, Anita B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-7746452cb6b61eb4a39b78a26216c7a5ee045f1ca7cc89039135f49a913707673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Antineoplastic Combined Chemotherapy Protocols - pharmacology</topic><topic>Antineoplastic Combined Chemotherapy Protocols - therapeutic use</topic><topic>Brain Neoplasms - genetics</topic><topic>Brain Neoplasms - metabolism</topic><topic>Brain Neoplasms - pathology</topic><topic>Brain Neoplasms - prevention &amp; control</topic><topic>Cell Proliferation - drug effects</topic><topic>DNA Damage</topic><topic>DNA, Neoplasm - genetics</topic><topic>Glioblastoma - genetics</topic><topic>Glioblastoma - metabolism</topic><topic>Glioblastoma - pathology</topic><topic>Glioblastoma - prevention &amp; control</topic><topic>Humans</topic><topic>Hydrogen-Ion Concentration - drug effects</topic><topic>Mice, Nude</topic><topic>Neoplastic Stem Cells - drug effects</topic><topic>Phenylurea Compounds - administration &amp; dosage</topic><topic>Phenylurea Compounds - pharmacology</topic><topic>Sulfonamides - administration &amp; dosage</topic><topic>Sulfonamides - pharmacology</topic><topic>Temozolomide - administration &amp; dosage</topic><topic>Temozolomide - pharmacology</topic><topic>Xenograft Model Antitumor Assays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boyd, Nathaniel H</creatorcontrib><creatorcontrib>Walker, Kiera</creatorcontrib><creatorcontrib>Fried, Joshua</creatorcontrib><creatorcontrib>Hackney, James R</creatorcontrib><creatorcontrib>McDonald, Paul C</creatorcontrib><creatorcontrib>Benavides, Gloria A</creatorcontrib><creatorcontrib>Spina, Raffaella</creatorcontrib><creatorcontrib>Audia, Alessandra</creatorcontrib><creatorcontrib>Scott, Sarah E</creatorcontrib><creatorcontrib>Landis, Catherine J</creatorcontrib><creatorcontrib>Tran, Anh Nhat</creatorcontrib><creatorcontrib>Bevensee, Mark O</creatorcontrib><creatorcontrib>Griguer, Corinne</creatorcontrib><creatorcontrib>Nozell, Susan</creatorcontrib><creatorcontrib>Gillespie, G Yancey</creatorcontrib><creatorcontrib>Nabors, Burt</creatorcontrib><creatorcontrib>Bhat, Krishna P</creatorcontrib><creatorcontrib>Bar, Eli E</creatorcontrib><creatorcontrib>Darley-Usmar, Victor</creatorcontrib><creatorcontrib>Xu, Bo</creatorcontrib><creatorcontrib>Gordon, Emily</creatorcontrib><creatorcontrib>Cooper, Sara J</creatorcontrib><creatorcontrib>Dedhar, Shoukat</creatorcontrib><creatorcontrib>Hjelmeland, Anita B</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>JCI insight</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boyd, Nathaniel H</au><au>Walker, Kiera</au><au>Fried, Joshua</au><au>Hackney, James R</au><au>McDonald, Paul C</au><au>Benavides, Gloria A</au><au>Spina, Raffaella</au><au>Audia, Alessandra</au><au>Scott, Sarah E</au><au>Landis, Catherine J</au><au>Tran, Anh Nhat</au><au>Bevensee, Mark O</au><au>Griguer, Corinne</au><au>Nozell, Susan</au><au>Gillespie, G Yancey</au><au>Nabors, Burt</au><au>Bhat, Krishna P</au><au>Bar, Eli E</au><au>Darley-Usmar, Victor</au><au>Xu, Bo</au><au>Gordon, Emily</au><au>Cooper, Sara J</au><au>Dedhar, Shoukat</au><au>Hjelmeland, Anita B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Addition of carbonic anhydrase 9 inhibitor SLC-0111 to temozolomide treatment delays glioblastoma growth in vivo</atitle><jtitle>JCI insight</jtitle><addtitle>JCI Insight</addtitle><date>2017-12-21</date><risdate>2017</risdate><volume>2</volume><issue>24</issue><issn>2379-3708</issn><eissn>2379-3708</eissn><abstract>Tumor microenvironments can promote stem cell maintenance, tumor growth, and therapeutic resistance, findings linked by the tumor-initiating cell hypothesis. Standard of care for glioblastoma (GBM) includes temozolomide chemotherapy, which is not curative, due, in part, to residual therapy-resistant brain tumor-initiating cells (BTICs). Temozolomide efficacy may be increased by targeting carbonic anhydrase 9 (CA9), a hypoxia-responsive gene important for maintaining the altered pH gradient of tumor cells. Using patient-derived GBM xenograft cells, we explored whether CA9 and CA12 inhibitor SLC-0111 could decrease GBM growth in combination with temozolomide or influence percentages of BTICs after chemotherapy. In multiple GBMs, SLC-0111 used concurrently with temozolomide reduced cell growth and induced cell cycle arrest via DNA damage in vitro. In addition, this treatment shifted tumor metabolism to a suppressed bioenergetic state in vivo. SLC-0111 also inhibited the enrichment of BTICs after temozolomide treatment determined via CD133 expression and neurosphere formation capacity. GBM xenografts treated with SLC-0111 in combination with temozolomide regressed significantly, and this effect was greater than that of temozolomide or SLC-0111 alone. We determined that SLC-0111 improves the efficacy of temozolomide to extend survival of GBM-bearing mice and should be explored as a treatment strategy in combination with current standard of care.</abstract><cop>United States</cop><pub>American Society for Clinical Investigation</pub><pmid>29263302</pmid><doi>10.1172/jci.insight.92928</doi><orcidid>https://orcid.org/0000-0002-9627-0309</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2379-3708
ispartof JCI insight, 2017-12, Vol.2 (24)
issn 2379-3708
2379-3708
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5752277
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Animals
Antineoplastic Combined Chemotherapy Protocols - pharmacology
Antineoplastic Combined Chemotherapy Protocols - therapeutic use
Brain Neoplasms - genetics
Brain Neoplasms - metabolism
Brain Neoplasms - pathology
Brain Neoplasms - prevention & control
Cell Proliferation - drug effects
DNA Damage
DNA, Neoplasm - genetics
Glioblastoma - genetics
Glioblastoma - metabolism
Glioblastoma - pathology
Glioblastoma - prevention & control
Humans
Hydrogen-Ion Concentration - drug effects
Mice, Nude
Neoplastic Stem Cells - drug effects
Phenylurea Compounds - administration & dosage
Phenylurea Compounds - pharmacology
Sulfonamides - administration & dosage
Sulfonamides - pharmacology
Temozolomide - administration & dosage
Temozolomide - pharmacology
Xenograft Model Antitumor Assays
title Addition of carbonic anhydrase 9 inhibitor SLC-0111 to temozolomide treatment delays glioblastoma growth in vivo
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T17%3A51%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Addition%20of%20carbonic%20anhydrase%209%20inhibitor%20SLC-0111%20to%20temozolomide%20treatment%20delays%20glioblastoma%20growth%20in%20vivo&rft.jtitle=JCI%20insight&rft.au=Boyd,%20Nathaniel%20H&rft.date=2017-12-21&rft.volume=2&rft.issue=24&rft.issn=2379-3708&rft.eissn=2379-3708&rft_id=info:doi/10.1172/jci.insight.92928&rft_dat=%3Cpubmed_cross%3E29263302%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/29263302&rfr_iscdi=true