Factorization threshold models for scale-free networks generation

Background Several models for producing scale-free networks have been suggested; most of them are based on the preferential attachment approach. In this article, we suggest a new approach for generating scale-free networks with an alternative source of the power-law degree distribution. Methods The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational social networks 2016-01, Vol.3 (1), p.4-20, Article 4
Hauptverfasser: Artikov, Akmal, Dorodnykh, Aleksandr, Kashinskaya, Yana, Samosvat, Egor
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20
container_issue 1
container_start_page 4
container_title Computational social networks
container_volume 3
creator Artikov, Akmal
Dorodnykh, Aleksandr
Kashinskaya, Yana
Samosvat, Egor
description Background Several models for producing scale-free networks have been suggested; most of them are based on the preferential attachment approach. In this article, we suggest a new approach for generating scale-free networks with an alternative source of the power-law degree distribution. Methods The model derives from matrix factorization methods and geographical threshold models that were recently proven to show good results in generating scale-free networks. We associate each node with a vector having latent features distributed over a unit sphere and with a weight variable sampled from a Pareto distribution. We join two nodes by an edge if they are spatially close and/or have large weights. Results and conclusion The network produced by this approach is scale free and has a power-law degree distribution with an exponent of 2. In addition, we propose an extension of the model that allows us to generate directed networks with tunable power-law exponents.
doi_str_mv 10.1186/s40649-016-0029-8
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5749431</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1989914574</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3378-3a33cba7e09af92281e7f5f063a3431c4a51564be6262224763b374b099a77223</originalsourceid><addsrcrecordid>eNp1kc1LwzAYxoMobsz9AV6k4MVLNV9NmoswhlNh4EXPIe3ebp1tM5NO0b_e1E6ZgqcE3t_zvB8PQqcEXxKSiivPseAqxkTEGFMVpwdoSImSMWeEH-79B2js_RrjQDJOpDxGA6pYklDGh2gyM3lrXflh2tI2Ubty4Fe2WkS1XUDlo8K6yOemgrhwAFED7Zt1zz5aQgPuS3OCjgpTeRjv3hF6mt08Tu_i-cPt_XQyj3PGZBozw1ieGQlYmUJRmhKQRVJgEQphypybhCSCZyCooJRyKVjGJM-wUkZKStkIXfe-m21WwyKHpnWm0htX1sa9a2tK_bvSlCu9tK86kVyFDsHgYmfg7MsWfKvr0udQVaYBu_WaqFQpwgMe0PM_6NpuXRPW6yipaGA6ivRU7qz3DoqfYQjWXUa6z0iHy-suI50Gzdn-Fj-K70QCQHvAh1KzBLfX-l_XT8j1m4Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1987927434</pqid></control><display><type>article</type><title>Factorization threshold models for scale-free networks generation</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Springer Nature OA/Free Journals</source><creator>Artikov, Akmal ; Dorodnykh, Aleksandr ; Kashinskaya, Yana ; Samosvat, Egor</creator><creatorcontrib>Artikov, Akmal ; Dorodnykh, Aleksandr ; Kashinskaya, Yana ; Samosvat, Egor</creatorcontrib><description>Background Several models for producing scale-free networks have been suggested; most of them are based on the preferential attachment approach. In this article, we suggest a new approach for generating scale-free networks with an alternative source of the power-law degree distribution. Methods The model derives from matrix factorization methods and geographical threshold models that were recently proven to show good results in generating scale-free networks. We associate each node with a vector having latent features distributed over a unit sphere and with a weight variable sampled from a Pareto distribution. We join two nodes by an edge if they are spatially close and/or have large weights. Results and conclusion The network produced by this approach is scale free and has a power-law degree distribution with an exponent of 2. In addition, we propose an extension of the model that allows us to generate directed networks with tunable power-law exponents.</description><identifier>ISSN: 2197-4314</identifier><identifier>EISSN: 2197-4314</identifier><identifier>DOI: 10.1186/s40649-016-0029-8</identifier><identifier>PMID: 29355234</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Complex Networks ; Complex systems ; Data-driven Science ; Database Management ; Factorization ; Graph theory ; Industrial and Production Engineering ; Industrial Organization ; Mathematical Models of Cognitive Processes and Neural Networks ; Mathematics ; Mathematics and Statistics ; Media Sociology ; Modeling and Theory Building ; Networks ; Scale (ratio)</subject><ispartof>Computational social networks, 2016-01, Vol.3 (1), p.4-20, Article 4</ispartof><rights>The Author(s) 2016</rights><rights>Computational Social Networks is a copyright of Springer, (2016). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3378-3a33cba7e09af92281e7f5f063a3431c4a51564be6262224763b374b099a77223</cites><orcidid>0000-0003-3399-4235</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1186/s40649-016-0029-8$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://doi.org/10.1186/s40649-016-0029-8$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27923,27924,41119,42188,51575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29355234$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Artikov, Akmal</creatorcontrib><creatorcontrib>Dorodnykh, Aleksandr</creatorcontrib><creatorcontrib>Kashinskaya, Yana</creatorcontrib><creatorcontrib>Samosvat, Egor</creatorcontrib><title>Factorization threshold models for scale-free networks generation</title><title>Computational social networks</title><addtitle>Compu Social Networls</addtitle><addtitle>Comput Soc Netw</addtitle><description>Background Several models for producing scale-free networks have been suggested; most of them are based on the preferential attachment approach. In this article, we suggest a new approach for generating scale-free networks with an alternative source of the power-law degree distribution. Methods The model derives from matrix factorization methods and geographical threshold models that were recently proven to show good results in generating scale-free networks. We associate each node with a vector having latent features distributed over a unit sphere and with a weight variable sampled from a Pareto distribution. We join two nodes by an edge if they are spatially close and/or have large weights. Results and conclusion The network produced by this approach is scale free and has a power-law degree distribution with an exponent of 2. In addition, we propose an extension of the model that allows us to generate directed networks with tunable power-law exponents.</description><subject>Complex Networks</subject><subject>Complex systems</subject><subject>Data-driven Science</subject><subject>Database Management</subject><subject>Factorization</subject><subject>Graph theory</subject><subject>Industrial and Production Engineering</subject><subject>Industrial Organization</subject><subject>Mathematical Models of Cognitive Processes and Neural Networks</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Media Sociology</subject><subject>Modeling and Theory Building</subject><subject>Networks</subject><subject>Scale (ratio)</subject><issn>2197-4314</issn><issn>2197-4314</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kc1LwzAYxoMobsz9AV6k4MVLNV9NmoswhlNh4EXPIe3ebp1tM5NO0b_e1E6ZgqcE3t_zvB8PQqcEXxKSiivPseAqxkTEGFMVpwdoSImSMWeEH-79B2js_RrjQDJOpDxGA6pYklDGh2gyM3lrXflh2tI2Ubty4Fe2WkS1XUDlo8K6yOemgrhwAFED7Zt1zz5aQgPuS3OCjgpTeRjv3hF6mt08Tu_i-cPt_XQyj3PGZBozw1ieGQlYmUJRmhKQRVJgEQphypybhCSCZyCooJRyKVjGJM-wUkZKStkIXfe-m21WwyKHpnWm0htX1sa9a2tK_bvSlCu9tK86kVyFDsHgYmfg7MsWfKvr0udQVaYBu_WaqFQpwgMe0PM_6NpuXRPW6yipaGA6ivRU7qz3DoqfYQjWXUa6z0iHy-suI50Gzdn-Fj-K70QCQHvAh1KzBLfX-l_XT8j1m4Q</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Artikov, Akmal</creator><creator>Dorodnykh, Aleksandr</creator><creator>Kashinskaya, Yana</creator><creator>Samosvat, Egor</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3399-4235</orcidid></search><sort><creationdate>20160101</creationdate><title>Factorization threshold models for scale-free networks generation</title><author>Artikov, Akmal ; Dorodnykh, Aleksandr ; Kashinskaya, Yana ; Samosvat, Egor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3378-3a33cba7e09af92281e7f5f063a3431c4a51564be6262224763b374b099a77223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Complex Networks</topic><topic>Complex systems</topic><topic>Data-driven Science</topic><topic>Database Management</topic><topic>Factorization</topic><topic>Graph theory</topic><topic>Industrial and Production Engineering</topic><topic>Industrial Organization</topic><topic>Mathematical Models of Cognitive Processes and Neural Networks</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Media Sociology</topic><topic>Modeling and Theory Building</topic><topic>Networks</topic><topic>Scale (ratio)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Artikov, Akmal</creatorcontrib><creatorcontrib>Dorodnykh, Aleksandr</creatorcontrib><creatorcontrib>Kashinskaya, Yana</creatorcontrib><creatorcontrib>Samosvat, Egor</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Computing Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Computational social networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Artikov, Akmal</au><au>Dorodnykh, Aleksandr</au><au>Kashinskaya, Yana</au><au>Samosvat, Egor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Factorization threshold models for scale-free networks generation</atitle><jtitle>Computational social networks</jtitle><stitle>Compu Social Networls</stitle><addtitle>Comput Soc Netw</addtitle><date>2016-01-01</date><risdate>2016</risdate><volume>3</volume><issue>1</issue><spage>4</spage><epage>20</epage><pages>4-20</pages><artnum>4</artnum><issn>2197-4314</issn><eissn>2197-4314</eissn><abstract>Background Several models for producing scale-free networks have been suggested; most of them are based on the preferential attachment approach. In this article, we suggest a new approach for generating scale-free networks with an alternative source of the power-law degree distribution. Methods The model derives from matrix factorization methods and geographical threshold models that were recently proven to show good results in generating scale-free networks. We associate each node with a vector having latent features distributed over a unit sphere and with a weight variable sampled from a Pareto distribution. We join two nodes by an edge if they are spatially close and/or have large weights. Results and conclusion The network produced by this approach is scale free and has a power-law degree distribution with an exponent of 2. In addition, we propose an extension of the model that allows us to generate directed networks with tunable power-law exponents.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>29355234</pmid><doi>10.1186/s40649-016-0029-8</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0003-3399-4235</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2197-4314
ispartof Computational social networks, 2016-01, Vol.3 (1), p.4-20, Article 4
issn 2197-4314
2197-4314
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5749431
source EZB-FREE-00999 freely available EZB journals; Springer Nature OA/Free Journals
subjects Complex Networks
Complex systems
Data-driven Science
Database Management
Factorization
Graph theory
Industrial and Production Engineering
Industrial Organization
Mathematical Models of Cognitive Processes and Neural Networks
Mathematics
Mathematics and Statistics
Media Sociology
Modeling and Theory Building
Networks
Scale (ratio)
title Factorization threshold models for scale-free networks generation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T07%3A23%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Factorization%20threshold%20models%20for%20scale-free%20networks%20generation&rft.jtitle=Computational%20social%20networks&rft.au=Artikov,%20Akmal&rft.date=2016-01-01&rft.volume=3&rft.issue=1&rft.spage=4&rft.epage=20&rft.pages=4-20&rft.artnum=4&rft.issn=2197-4314&rft.eissn=2197-4314&rft_id=info:doi/10.1186/s40649-016-0029-8&rft_dat=%3Cproquest_pubme%3E1989914574%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1987927434&rft_id=info:pmid/29355234&rfr_iscdi=true