Isolation and Characterization of Ftsz Genes in Cassava

The filamenting temperature-sensitive Z proteins (FtsZs) play an important role in plastid division. In this study, three FtsZ genes were isolated from the cassava genome, and named MeFtsZ1, MeFtsZ2-1, and MeFtsZ2-2, respectively. Based on phylogeny, the MeFtsZs were classified into two groups (FtsZ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genes 2017-12, Vol.8 (12), p.391
Hauptverfasser: Geng, Meng-Ting, Min, Yi, Yao, Yuan, Chen, Xia, Fan, Jie, Yuan, Shuai, Wang, Lei, Sun, Chong, Zhang, Fan, Shang, Lu, Wang, Yun-Lin, Li, Rui-Mei, Fu, Shao-Ping, Duan, Rui-Jun, Liu, Jiao, Hu, Xin-Wen, Guo, Jian-Chun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page 391
container_title Genes
container_volume 8
creator Geng, Meng-Ting
Min, Yi
Yao, Yuan
Chen, Xia
Fan, Jie
Yuan, Shuai
Wang, Lei
Sun, Chong
Zhang, Fan
Shang, Lu
Wang, Yun-Lin
Li, Rui-Mei
Fu, Shao-Ping
Duan, Rui-Jun
Liu, Jiao
Hu, Xin-Wen
Guo, Jian-Chun
description The filamenting temperature-sensitive Z proteins (FtsZs) play an important role in plastid division. In this study, three FtsZ genes were isolated from the cassava genome, and named MeFtsZ1, MeFtsZ2-1, and MeFtsZ2-2, respectively. Based on phylogeny, the MeFtsZs were classified into two groups (FtsZ1 and FtsZ2). MeFtsZ1 with a putative signal peptide at N-terminal, has six exons, and is classed to FtsZ1 clade. MeFtsZ2-1 and MeFtsZ2-2 without a putative signal peptide, have seven exons, and are classed to FtsZ2 clade. Subcellular localization found that all the three MeFtsZs could locate in chloroplasts and form a ring in chloroplastids. Structure analysis found that all MeFtsZ proteins contain a conserved guanosine triphosphatase (GTPase) domain in favor of generate contractile force for cassava plastid division. The expression profiles of MeFtsZ genes by quantitative reverse transcription-PCR (qRT-PCR) analysis in photosynthetic and non-photosynthetic tissues found that all of the MeFtsZ genes had higher expression levels in photosynthetic tissues, especially in younger leaves, and lower expression levels in the non-photosynthetic tissues. During cassava storage root development, the expressions of MeFtsZ2-1 and MeFtsZ2-2 were comparatively higher than MeFtsZ1. The transformed Arabidopsis of MeFtsZ2-1 and MeFtsZ2-2 contained abnormally shape, fewer number, and larger volume chloroplasts. Phytohormones were involved in regulating the expressions of MeFtsZ genes. Therefore, we deduced that all of the play an important role in chloroplast division, and that 2 (2-1, 2-2) might be involved in amyloplast division and regulated by phytohormones during cassava storage root development.
doi_str_mv 10.3390/genes8120391
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5748709</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1977780776</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-8ce75f7024b7e7dbf0bb0a032bd413b7e5d4e9f834ac3531845d84d09ff0157a3</originalsourceid><addsrcrecordid>eNpdkU1LAzEQhoMottTePMuCFw-uTr5MchFksbVQ8KLnkN3Ntlu2m5psC_bXm9JaqnOZYebhnRlehK4xPFCq4HFmWxskJkAVPkN9AoKmjBF-flL30DCEBcRgQAD4JeoRRRgTFPpITIJrTFe7NjFtmWRz403RWV9v901XJaMubJPxblFSt0lmQjAbc4UuKtMEOzzkAfocvX5kb-n0fTzJXqZpwTDpUllYwSsBhOXCijKvIM_BACV5yTCNPV4yqypJmSkop1gyXkpWgqoqwFwYOkDPe93VOl_asrBt502jV75eGv-tnan130lbz_XMbTQXTApQUeDuIODd19qGTi_rUNimMa1166CxEkJIEOIporf_0IVb-za-FykpuWIKs0jd76nCuxC8rY7HYNA7U_SpKRG_OX3gCP9aQH8AsgmHdw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1988594914</pqid></control><display><type>article</type><title>Isolation and Characterization of Ftsz Genes in Cassava</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><creator>Geng, Meng-Ting ; Min, Yi ; Yao, Yuan ; Chen, Xia ; Fan, Jie ; Yuan, Shuai ; Wang, Lei ; Sun, Chong ; Zhang, Fan ; Shang, Lu ; Wang, Yun-Lin ; Li, Rui-Mei ; Fu, Shao-Ping ; Duan, Rui-Jun ; Liu, Jiao ; Hu, Xin-Wen ; Guo, Jian-Chun</creator><creatorcontrib>Geng, Meng-Ting ; Min, Yi ; Yao, Yuan ; Chen, Xia ; Fan, Jie ; Yuan, Shuai ; Wang, Lei ; Sun, Chong ; Zhang, Fan ; Shang, Lu ; Wang, Yun-Lin ; Li, Rui-Mei ; Fu, Shao-Ping ; Duan, Rui-Jun ; Liu, Jiao ; Hu, Xin-Wen ; Guo, Jian-Chun</creatorcontrib><description>The filamenting temperature-sensitive Z proteins (FtsZs) play an important role in plastid division. In this study, three FtsZ genes were isolated from the cassava genome, and named MeFtsZ1, MeFtsZ2-1, and MeFtsZ2-2, respectively. Based on phylogeny, the MeFtsZs were classified into two groups (FtsZ1 and FtsZ2). MeFtsZ1 with a putative signal peptide at N-terminal, has six exons, and is classed to FtsZ1 clade. MeFtsZ2-1 and MeFtsZ2-2 without a putative signal peptide, have seven exons, and are classed to FtsZ2 clade. Subcellular localization found that all the three MeFtsZs could locate in chloroplasts and form a ring in chloroplastids. Structure analysis found that all MeFtsZ proteins contain a conserved guanosine triphosphatase (GTPase) domain in favor of generate contractile force for cassava plastid division. The expression profiles of MeFtsZ genes by quantitative reverse transcription-PCR (qRT-PCR) analysis in photosynthetic and non-photosynthetic tissues found that all of the MeFtsZ genes had higher expression levels in photosynthetic tissues, especially in younger leaves, and lower expression levels in the non-photosynthetic tissues. During cassava storage root development, the expressions of MeFtsZ2-1 and MeFtsZ2-2 were comparatively higher than MeFtsZ1. The transformed Arabidopsis of MeFtsZ2-1 and MeFtsZ2-2 contained abnormally shape, fewer number, and larger volume chloroplasts. Phytohormones were involved in regulating the expressions of MeFtsZ genes. Therefore, we deduced that all of the play an important role in chloroplast division, and that 2 (2-1, 2-2) might be involved in amyloplast division and regulated by phytohormones during cassava storage root development.</description><identifier>ISSN: 2073-4425</identifier><identifier>EISSN: 2073-4425</identifier><identifier>DOI: 10.3390/genes8120391</identifier><identifier>PMID: 29244730</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Cassava ; Chloroplasts ; Contractility ; Exons ; Genomes ; Guanosine ; Guanosine triphosphatases ; Localization ; Phylogeny ; Reverse transcription ; Triphosphatase</subject><ispartof>Genes, 2017-12, Vol.8 (12), p.391</ispartof><rights>Copyright MDPI AG 2017</rights><rights>2017 by the authors. 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-8ce75f7024b7e7dbf0bb0a032bd413b7e5d4e9f834ac3531845d84d09ff0157a3</citedby><cites>FETCH-LOGICAL-c412t-8ce75f7024b7e7dbf0bb0a032bd413b7e5d4e9f834ac3531845d84d09ff0157a3</cites><orcidid>0000-0003-1791-0433</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5748709/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5748709/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,883,27907,27908,53774,53776</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29244730$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Geng, Meng-Ting</creatorcontrib><creatorcontrib>Min, Yi</creatorcontrib><creatorcontrib>Yao, Yuan</creatorcontrib><creatorcontrib>Chen, Xia</creatorcontrib><creatorcontrib>Fan, Jie</creatorcontrib><creatorcontrib>Yuan, Shuai</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Sun, Chong</creatorcontrib><creatorcontrib>Zhang, Fan</creatorcontrib><creatorcontrib>Shang, Lu</creatorcontrib><creatorcontrib>Wang, Yun-Lin</creatorcontrib><creatorcontrib>Li, Rui-Mei</creatorcontrib><creatorcontrib>Fu, Shao-Ping</creatorcontrib><creatorcontrib>Duan, Rui-Jun</creatorcontrib><creatorcontrib>Liu, Jiao</creatorcontrib><creatorcontrib>Hu, Xin-Wen</creatorcontrib><creatorcontrib>Guo, Jian-Chun</creatorcontrib><title>Isolation and Characterization of Ftsz Genes in Cassava</title><title>Genes</title><addtitle>Genes (Basel)</addtitle><description>The filamenting temperature-sensitive Z proteins (FtsZs) play an important role in plastid division. In this study, three FtsZ genes were isolated from the cassava genome, and named MeFtsZ1, MeFtsZ2-1, and MeFtsZ2-2, respectively. Based on phylogeny, the MeFtsZs were classified into two groups (FtsZ1 and FtsZ2). MeFtsZ1 with a putative signal peptide at N-terminal, has six exons, and is classed to FtsZ1 clade. MeFtsZ2-1 and MeFtsZ2-2 without a putative signal peptide, have seven exons, and are classed to FtsZ2 clade. Subcellular localization found that all the three MeFtsZs could locate in chloroplasts and form a ring in chloroplastids. Structure analysis found that all MeFtsZ proteins contain a conserved guanosine triphosphatase (GTPase) domain in favor of generate contractile force for cassava plastid division. The expression profiles of MeFtsZ genes by quantitative reverse transcription-PCR (qRT-PCR) analysis in photosynthetic and non-photosynthetic tissues found that all of the MeFtsZ genes had higher expression levels in photosynthetic tissues, especially in younger leaves, and lower expression levels in the non-photosynthetic tissues. During cassava storage root development, the expressions of MeFtsZ2-1 and MeFtsZ2-2 were comparatively higher than MeFtsZ1. The transformed Arabidopsis of MeFtsZ2-1 and MeFtsZ2-2 contained abnormally shape, fewer number, and larger volume chloroplasts. Phytohormones were involved in regulating the expressions of MeFtsZ genes. Therefore, we deduced that all of the play an important role in chloroplast division, and that 2 (2-1, 2-2) might be involved in amyloplast division and regulated by phytohormones during cassava storage root development.</description><subject>Cassava</subject><subject>Chloroplasts</subject><subject>Contractility</subject><subject>Exons</subject><subject>Genomes</subject><subject>Guanosine</subject><subject>Guanosine triphosphatases</subject><subject>Localization</subject><subject>Phylogeny</subject><subject>Reverse transcription</subject><subject>Triphosphatase</subject><issn>2073-4425</issn><issn>2073-4425</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpdkU1LAzEQhoMottTePMuCFw-uTr5MchFksbVQ8KLnkN3Ntlu2m5psC_bXm9JaqnOZYebhnRlehK4xPFCq4HFmWxskJkAVPkN9AoKmjBF-flL30DCEBcRgQAD4JeoRRRgTFPpITIJrTFe7NjFtmWRz403RWV9v901XJaMubJPxblFSt0lmQjAbc4UuKtMEOzzkAfocvX5kb-n0fTzJXqZpwTDpUllYwSsBhOXCijKvIM_BACV5yTCNPV4yqypJmSkop1gyXkpWgqoqwFwYOkDPe93VOl_asrBt502jV75eGv-tnan130lbz_XMbTQXTApQUeDuIODd19qGTi_rUNimMa1166CxEkJIEOIporf_0IVb-za-FykpuWIKs0jd76nCuxC8rY7HYNA7U_SpKRG_OX3gCP9aQH8AsgmHdw</recordid><startdate>20171215</startdate><enddate>20171215</enddate><creator>Geng, Meng-Ting</creator><creator>Min, Yi</creator><creator>Yao, Yuan</creator><creator>Chen, Xia</creator><creator>Fan, Jie</creator><creator>Yuan, Shuai</creator><creator>Wang, Lei</creator><creator>Sun, Chong</creator><creator>Zhang, Fan</creator><creator>Shang, Lu</creator><creator>Wang, Yun-Lin</creator><creator>Li, Rui-Mei</creator><creator>Fu, Shao-Ping</creator><creator>Duan, Rui-Jun</creator><creator>Liu, Jiao</creator><creator>Hu, Xin-Wen</creator><creator>Guo, Jian-Chun</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1791-0433</orcidid></search><sort><creationdate>20171215</creationdate><title>Isolation and Characterization of Ftsz Genes in Cassava</title><author>Geng, Meng-Ting ; Min, Yi ; Yao, Yuan ; Chen, Xia ; Fan, Jie ; Yuan, Shuai ; Wang, Lei ; Sun, Chong ; Zhang, Fan ; Shang, Lu ; Wang, Yun-Lin ; Li, Rui-Mei ; Fu, Shao-Ping ; Duan, Rui-Jun ; Liu, Jiao ; Hu, Xin-Wen ; Guo, Jian-Chun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-8ce75f7024b7e7dbf0bb0a032bd413b7e5d4e9f834ac3531845d84d09ff0157a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Cassava</topic><topic>Chloroplasts</topic><topic>Contractility</topic><topic>Exons</topic><topic>Genomes</topic><topic>Guanosine</topic><topic>Guanosine triphosphatases</topic><topic>Localization</topic><topic>Phylogeny</topic><topic>Reverse transcription</topic><topic>Triphosphatase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Geng, Meng-Ting</creatorcontrib><creatorcontrib>Min, Yi</creatorcontrib><creatorcontrib>Yao, Yuan</creatorcontrib><creatorcontrib>Chen, Xia</creatorcontrib><creatorcontrib>Fan, Jie</creatorcontrib><creatorcontrib>Yuan, Shuai</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Sun, Chong</creatorcontrib><creatorcontrib>Zhang, Fan</creatorcontrib><creatorcontrib>Shang, Lu</creatorcontrib><creatorcontrib>Wang, Yun-Lin</creatorcontrib><creatorcontrib>Li, Rui-Mei</creatorcontrib><creatorcontrib>Fu, Shao-Ping</creatorcontrib><creatorcontrib>Duan, Rui-Jun</creatorcontrib><creatorcontrib>Liu, Jiao</creatorcontrib><creatorcontrib>Hu, Xin-Wen</creatorcontrib><creatorcontrib>Guo, Jian-Chun</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Geng, Meng-Ting</au><au>Min, Yi</au><au>Yao, Yuan</au><au>Chen, Xia</au><au>Fan, Jie</au><au>Yuan, Shuai</au><au>Wang, Lei</au><au>Sun, Chong</au><au>Zhang, Fan</au><au>Shang, Lu</au><au>Wang, Yun-Lin</au><au>Li, Rui-Mei</au><au>Fu, Shao-Ping</au><au>Duan, Rui-Jun</au><au>Liu, Jiao</au><au>Hu, Xin-Wen</au><au>Guo, Jian-Chun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Isolation and Characterization of Ftsz Genes in Cassava</atitle><jtitle>Genes</jtitle><addtitle>Genes (Basel)</addtitle><date>2017-12-15</date><risdate>2017</risdate><volume>8</volume><issue>12</issue><spage>391</spage><pages>391-</pages><issn>2073-4425</issn><eissn>2073-4425</eissn><abstract>The filamenting temperature-sensitive Z proteins (FtsZs) play an important role in plastid division. In this study, three FtsZ genes were isolated from the cassava genome, and named MeFtsZ1, MeFtsZ2-1, and MeFtsZ2-2, respectively. Based on phylogeny, the MeFtsZs were classified into two groups (FtsZ1 and FtsZ2). MeFtsZ1 with a putative signal peptide at N-terminal, has six exons, and is classed to FtsZ1 clade. MeFtsZ2-1 and MeFtsZ2-2 without a putative signal peptide, have seven exons, and are classed to FtsZ2 clade. Subcellular localization found that all the three MeFtsZs could locate in chloroplasts and form a ring in chloroplastids. Structure analysis found that all MeFtsZ proteins contain a conserved guanosine triphosphatase (GTPase) domain in favor of generate contractile force for cassava plastid division. The expression profiles of MeFtsZ genes by quantitative reverse transcription-PCR (qRT-PCR) analysis in photosynthetic and non-photosynthetic tissues found that all of the MeFtsZ genes had higher expression levels in photosynthetic tissues, especially in younger leaves, and lower expression levels in the non-photosynthetic tissues. During cassava storage root development, the expressions of MeFtsZ2-1 and MeFtsZ2-2 were comparatively higher than MeFtsZ1. The transformed Arabidopsis of MeFtsZ2-1 and MeFtsZ2-2 contained abnormally shape, fewer number, and larger volume chloroplasts. Phytohormones were involved in regulating the expressions of MeFtsZ genes. Therefore, we deduced that all of the play an important role in chloroplast division, and that 2 (2-1, 2-2) might be involved in amyloplast division and regulated by phytohormones during cassava storage root development.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>29244730</pmid><doi>10.3390/genes8120391</doi><orcidid>https://orcid.org/0000-0003-1791-0433</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4425
ispartof Genes, 2017-12, Vol.8 (12), p.391
issn 2073-4425
2073-4425
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5748709
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central
subjects Cassava
Chloroplasts
Contractility
Exons
Genomes
Guanosine
Guanosine triphosphatases
Localization
Phylogeny
Reverse transcription
Triphosphatase
title Isolation and Characterization of Ftsz Genes in Cassava
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T13%3A28%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Isolation%20and%20Characterization%20of%20Ftsz%20Genes%20in%20Cassava&rft.jtitle=Genes&rft.au=Geng,%20Meng-Ting&rft.date=2017-12-15&rft.volume=8&rft.issue=12&rft.spage=391&rft.pages=391-&rft.issn=2073-4425&rft.eissn=2073-4425&rft_id=info:doi/10.3390/genes8120391&rft_dat=%3Cproquest_pubme%3E1977780776%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1988594914&rft_id=info:pmid/29244730&rfr_iscdi=true