scRNASeqDB: A Database for RNA-Seq Based Gene Expression Profiles in Human Single Cells

Single-cell RNA sequencing (scRNA-Seq) is rapidly becoming a powerful tool for high-throughput transcriptomic analysis of cell states and dynamics at the single cell level. Both the number and quality of scRNA-Seq datasets have dramatically increased recently. A database that can comprehensively col...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genes 2017-12, Vol.8 (12), p.368
Hauptverfasser: Cao, Yuan, Zhu, Junjie, Jia, Peilin, Zhao, Zhongming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page 368
container_title Genes
container_volume 8
creator Cao, Yuan
Zhu, Junjie
Jia, Peilin
Zhao, Zhongming
description Single-cell RNA sequencing (scRNA-Seq) is rapidly becoming a powerful tool for high-throughput transcriptomic analysis of cell states and dynamics at the single cell level. Both the number and quality of scRNA-Seq datasets have dramatically increased recently. A database that can comprehensively collect, curate, and compare expression features of scRNA-Seq data in humans has not yet been built. Here, we present scRNASeqDB, a database that includes almost all the currently available human single cell transcriptome datasets ( = 38) covering 200 human cell lines or cell types and 13,440 samples. Our online web interface allows users to rank the expression profiles of the genes of interest across different cell types. It also provides tools to query and visualize data, including Gene Ontology and pathway annotations for differentially expressed genes between cell types or groups. The scRNASeqDB is a useful resource for single cell transcriptional studies. This database is publicly available at bioinfo.uth.edu/scrnaseqdb/.
doi_str_mv 10.3390/genes8120368
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5748686</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1988595957</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-82780f9201e76204c3f8213f8da8aef64967a7fae9c595786b0e192cee85d7893</originalsourceid><addsrcrecordid>eNpdkcFPwjAYxRujEYLcPJsmXjw47dqt7TyYICCYEDWi8diU8Q1HRostM_rfWwMStIe26fvl9b18CB3H5IKxjFzOwICXMSWMyz3UpESwKElour9zb6C293MSVkIoIekhatCMEh5z0USvPn-674zhvXdzhTu4p1d6oj3gwjochCgo-CY8TPEgfIX7n0sH3pfW4Edni7ICj0uDh_VCGzwuzawC3IWq8kfooNCVh_bmbKGX2_5zdxiNHgZ33c4oyhMhV5GkQpIipIlBcEqSnBWSxmGbaqmh4EnGhRaFhixPs1RIPiEQZzQHkOlUyIy10PXad1lPFjDNwaycrtTSlQvtvpTVpfqrmPJNzeyHSkUiueTB4Gxj4Ox7DX6lFqXPQwVtwNZexZlghCZMyICe_kPntnYm1AuUlCFgiBio8zWVO-u9g2IbJibqZ2hqd2gBP9ktsIV_R8S-ASu-kLc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1988595957</pqid></control><display><type>article</type><title>scRNASeqDB: A Database for RNA-Seq Based Gene Expression Profiles in Human Single Cells</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><creator>Cao, Yuan ; Zhu, Junjie ; Jia, Peilin ; Zhao, Zhongming</creator><creatorcontrib>Cao, Yuan ; Zhu, Junjie ; Jia, Peilin ; Zhao, Zhongming</creatorcontrib><description>Single-cell RNA sequencing (scRNA-Seq) is rapidly becoming a powerful tool for high-throughput transcriptomic analysis of cell states and dynamics at the single cell level. Both the number and quality of scRNA-Seq datasets have dramatically increased recently. A database that can comprehensively collect, curate, and compare expression features of scRNA-Seq data in humans has not yet been built. Here, we present scRNASeqDB, a database that includes almost all the currently available human single cell transcriptome datasets ( = 38) covering 200 human cell lines or cell types and 13,440 samples. Our online web interface allows users to rank the expression profiles of the genes of interest across different cell types. It also provides tools to query and visualize data, including Gene Ontology and pathway annotations for differentially expressed genes between cell types or groups. The scRNASeqDB is a useful resource for single cell transcriptional studies. This database is publicly available at bioinfo.uth.edu/scrnaseqdb/.</description><identifier>ISSN: 2073-4425</identifier><identifier>EISSN: 2073-4425</identifier><identifier>DOI: 10.3390/genes8120368</identifier><identifier>PMID: 29206167</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Cell lines ; Gene expression ; Ribonucleic acid ; RNA ; Transcription</subject><ispartof>Genes, 2017-12, Vol.8 (12), p.368</ispartof><rights>Copyright MDPI AG 2017</rights><rights>2017 by the authors. 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-82780f9201e76204c3f8213f8da8aef64967a7fae9c595786b0e192cee85d7893</citedby><cites>FETCH-LOGICAL-c478t-82780f9201e76204c3f8213f8da8aef64967a7fae9c595786b0e192cee85d7893</cites><orcidid>0000-0002-3477-0914</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5748686/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5748686/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29206167$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cao, Yuan</creatorcontrib><creatorcontrib>Zhu, Junjie</creatorcontrib><creatorcontrib>Jia, Peilin</creatorcontrib><creatorcontrib>Zhao, Zhongming</creatorcontrib><title>scRNASeqDB: A Database for RNA-Seq Based Gene Expression Profiles in Human Single Cells</title><title>Genes</title><addtitle>Genes (Basel)</addtitle><description>Single-cell RNA sequencing (scRNA-Seq) is rapidly becoming a powerful tool for high-throughput transcriptomic analysis of cell states and dynamics at the single cell level. Both the number and quality of scRNA-Seq datasets have dramatically increased recently. A database that can comprehensively collect, curate, and compare expression features of scRNA-Seq data in humans has not yet been built. Here, we present scRNASeqDB, a database that includes almost all the currently available human single cell transcriptome datasets ( = 38) covering 200 human cell lines or cell types and 13,440 samples. Our online web interface allows users to rank the expression profiles of the genes of interest across different cell types. It also provides tools to query and visualize data, including Gene Ontology and pathway annotations for differentially expressed genes between cell types or groups. The scRNASeqDB is a useful resource for single cell transcriptional studies. This database is publicly available at bioinfo.uth.edu/scrnaseqdb/.</description><subject>Cell lines</subject><subject>Gene expression</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Transcription</subject><issn>2073-4425</issn><issn>2073-4425</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpdkcFPwjAYxRujEYLcPJsmXjw47dqt7TyYICCYEDWi8diU8Q1HRostM_rfWwMStIe26fvl9b18CB3H5IKxjFzOwICXMSWMyz3UpESwKElour9zb6C293MSVkIoIekhatCMEh5z0USvPn-674zhvXdzhTu4p1d6oj3gwjochCgo-CY8TPEgfIX7n0sH3pfW4Edni7ICj0uDh_VCGzwuzawC3IWq8kfooNCVh_bmbKGX2_5zdxiNHgZ33c4oyhMhV5GkQpIipIlBcEqSnBWSxmGbaqmh4EnGhRaFhixPs1RIPiEQZzQHkOlUyIy10PXad1lPFjDNwaycrtTSlQvtvpTVpfqrmPJNzeyHSkUiueTB4Gxj4Ox7DX6lFqXPQwVtwNZexZlghCZMyICe_kPntnYm1AuUlCFgiBio8zWVO-u9g2IbJibqZ2hqd2gBP9ktsIV_R8S-ASu-kLc</recordid><startdate>20171205</startdate><enddate>20171205</enddate><creator>Cao, Yuan</creator><creator>Zhu, Junjie</creator><creator>Jia, Peilin</creator><creator>Zhao, Zhongming</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3477-0914</orcidid></search><sort><creationdate>20171205</creationdate><title>scRNASeqDB: A Database for RNA-Seq Based Gene Expression Profiles in Human Single Cells</title><author>Cao, Yuan ; Zhu, Junjie ; Jia, Peilin ; Zhao, Zhongming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-82780f9201e76204c3f8213f8da8aef64967a7fae9c595786b0e192cee85d7893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Cell lines</topic><topic>Gene expression</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Transcription</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Yuan</creatorcontrib><creatorcontrib>Zhu, Junjie</creatorcontrib><creatorcontrib>Jia, Peilin</creatorcontrib><creatorcontrib>Zhao, Zhongming</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Yuan</au><au>Zhu, Junjie</au><au>Jia, Peilin</au><au>Zhao, Zhongming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>scRNASeqDB: A Database for RNA-Seq Based Gene Expression Profiles in Human Single Cells</atitle><jtitle>Genes</jtitle><addtitle>Genes (Basel)</addtitle><date>2017-12-05</date><risdate>2017</risdate><volume>8</volume><issue>12</issue><spage>368</spage><pages>368-</pages><issn>2073-4425</issn><eissn>2073-4425</eissn><abstract>Single-cell RNA sequencing (scRNA-Seq) is rapidly becoming a powerful tool for high-throughput transcriptomic analysis of cell states and dynamics at the single cell level. Both the number and quality of scRNA-Seq datasets have dramatically increased recently. A database that can comprehensively collect, curate, and compare expression features of scRNA-Seq data in humans has not yet been built. Here, we present scRNASeqDB, a database that includes almost all the currently available human single cell transcriptome datasets ( = 38) covering 200 human cell lines or cell types and 13,440 samples. Our online web interface allows users to rank the expression profiles of the genes of interest across different cell types. It also provides tools to query and visualize data, including Gene Ontology and pathway annotations for differentially expressed genes between cell types or groups. The scRNASeqDB is a useful resource for single cell transcriptional studies. This database is publicly available at bioinfo.uth.edu/scrnaseqdb/.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>29206167</pmid><doi>10.3390/genes8120368</doi><orcidid>https://orcid.org/0000-0002-3477-0914</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4425
ispartof Genes, 2017-12, Vol.8 (12), p.368
issn 2073-4425
2073-4425
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5748686
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central
subjects Cell lines
Gene expression
Ribonucleic acid
RNA
Transcription
title scRNASeqDB: A Database for RNA-Seq Based Gene Expression Profiles in Human Single Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T05%3A16%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=scRNASeqDB:%20A%20Database%20for%20RNA-Seq%20Based%20Gene%20Expression%20Profiles%20in%20Human%20Single%20Cells&rft.jtitle=Genes&rft.au=Cao,%20Yuan&rft.date=2017-12-05&rft.volume=8&rft.issue=12&rft.spage=368&rft.pages=368-&rft.issn=2073-4425&rft.eissn=2073-4425&rft_id=info:doi/10.3390/genes8120368&rft_dat=%3Cproquest_pubme%3E1988595957%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1988595957&rft_id=info:pmid/29206167&rfr_iscdi=true