Global biogeochemical cycle of vanadium

Synthesizing published data, we provide a quantitative summary of the global biogeochemical cycle of vanadium (V), including both human-derived and natural fluxes. Through mining of V ores (130 × 10⁹ g V/y) and extraction and combustion of fossil fuels (600 × 10⁹ g V/y), humans are the predominant f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2017-12, Vol.114 (52), p.E11092-E11100
Hauptverfasser: Schlesinger, William H., Klein, Emily M., Vengosh, Avner
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Synthesizing published data, we provide a quantitative summary of the global biogeochemical cycle of vanadium (V), including both human-derived and natural fluxes. Through mining of V ores (130 × 10⁹ g V/y) and extraction and combustion of fossil fuels (600 × 10⁹ g V/y), humans are the predominant force in the geochemical cycle of V at Earth’s surface. Human emissions of V to the atmosphere are now likely to exceed background emissions by as much as a factor of 1.7, and, presumably, we have altered the deposition of V from the atmosphere by a similar amount. Excessive V in air and water has potential, but poorly documented, consequences for human health. Much of the atmospheric flux probably derives from emissions from the combustion of fossil fuels, but the magnitude of this flux depends on the type of fuel, with relatively low emissions from coal and higher contributions from heavy crude oils, tar sands bitumen, and petroleum coke. Increasing interest in petroleum derived from unconventional deposits is likely to lead to greater emissions of V to the atmosphere in the near future. Our analysis further suggests that the flux of V in rivers has been incremented by about 15% from human activities. Overall, the budget of dissolved V in the oceans is remarkably well balanced—with about 40 × 10⁹ g V/y to 50 × 10⁹ g V/y inputs and outputs, and a mean residence time for dissolved V in seawater of about 130,000 y with respect to inputs from rivers.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.1715500114