Ultrafast 25-fs relaxation in highly excited states of methyl azide mediated by strong nonadiabatic coupling

Highly excited electronic states are challenging to explore experimentally and theoretically—due to the large density of states and the fact that small structural changes lead to large changes in electronic character with associated strong nonadiabatic dynamics. They can play a key role in astrophys...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2017-12, Vol.114 (52), p.E11072-E11081
Hauptverfasser: Peters, William K., Couch, David E., Mignolet, Benoit, Shi, Xuetao, Nguyen, Quynh L., Fortenberry, Ryan C., Schlegel, H. Bernhard, Remacle, Françoise, Kapteyn, Henry C., Murnane, Margaret M., Li, Wen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page E11081
container_issue 52
container_start_page E11072
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 114
creator Peters, William K.
Couch, David E.
Mignolet, Benoit
Shi, Xuetao
Nguyen, Quynh L.
Fortenberry, Ryan C.
Schlegel, H. Bernhard
Remacle, Françoise
Kapteyn, Henry C.
Murnane, Margaret M.
Li, Wen
description Highly excited electronic states are challenging to explore experimentally and theoretically—due to the large density of states and the fact that small structural changes lead to large changes in electronic character with associated strong nonadiabatic dynamics. They can play a key role in astrophysical and ionospheric chemistry, as well as the detonation chemistry of high-energy density materials. Here, we implement ultrafast vacuum-UV (VUV)-driven electron–ion coincidence imaging spectroscopy to directly probe the reaction pathways of highly excited states of energetic molecules—in this case, methyl azide. Our data, combined with advanced theoretical simulations, show that photoexcitation of methyl azide by a 10-fs UV pulse at 8 eV drives fast structural changes and strong nonadiabatic coupling that leads to relaxation to other excited states on a surprisingly fast timescale of 25 fs. This ultrafast relaxation differs from dynamics occurring on lower excited states, where the timescale required for the wavepacket to reach a region of strong nonadiabatic coupling is typically much longer. Moreover, our theoretical calculations show that ultrafast relaxation of the wavepacket to a lower excited state occurs along one of the conical intersection seams before reaching the minimum energy conical intersection. These findings are important for understanding the unique strongly coupled non-Born–Oppenheimer molecular dynamics of VUV-excited energetic molecules. Although such observations have been predicted for many years, this study represents one of the few where such strongly coupled non-Born–Oppenheimer molecular dynamics of VUV-excited energetic molecules have been conclusively observed directly, making it possible to identify the ultrafast reaction pathways.
doi_str_mv 10.1073/pnas.1712566114
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5748188</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26488790</jstor_id><sourcerecordid>26488790</sourcerecordid><originalsourceid>FETCH-LOGICAL-c486t-f2bae4f745161ccd973c188d604a18f2acd759b36e7f1e36034f50df4ddfaf923</originalsourceid><addsrcrecordid>eNpVkU1vFSEYhYnR2Gt17UpDXLmZFhgGmI1J0_iVNHFj14RhYIaGC1dgml5_vUyntrri4304nJMDwFuMzjDi7fkhqHyGOSYdYxjTZ2CHUY8bRnv0HOwQIrwRlNAT8CrnG4RQ3wn0EpyQvmKE9zvgr31JyqpcIOkam2EyXt2p4mKALsDZTbM_QnOnXTEjzEUVk2G0cG_KfPRQ_XajqYfRqXU-HCuSYphgiEHVy6EqaajjcvAuTK_BC6t8Nm8e1lNw_eXzz8tvzdWPr98vL64aTQUrjSWDMtRy2mGGtR573mosxMgQVVhYovTIu35omeEWm5ahltoOjZaOo1W2J-0p-LTpHpahetMm1IxeHpLbq3SUUTn5_yS4WU7xVnacivpTFfiwCcRcnMxreD3rGILRRWKKRDVWoXaDvDOTkTENTt6Se_X7_eInqbQcjCSECUnWmlbpjw_eUvy1mFzk3mVtvFfBxCVL3DPM2o7SFT3fUJ1izsnYxwQYybV-udYvn-qvL97_G_yR_9t3Bd5twE0uMT3NGRWC96j9Axp6t5Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1961635448</pqid></control><display><type>article</type><title>Ultrafast 25-fs relaxation in highly excited states of methyl azide mediated by strong nonadiabatic coupling</title><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Peters, William K. ; Couch, David E. ; Mignolet, Benoit ; Shi, Xuetao ; Nguyen, Quynh L. ; Fortenberry, Ryan C. ; Schlegel, H. Bernhard ; Remacle, Françoise ; Kapteyn, Henry C. ; Murnane, Margaret M. ; Li, Wen</creator><creatorcontrib>Peters, William K. ; Couch, David E. ; Mignolet, Benoit ; Shi, Xuetao ; Nguyen, Quynh L. ; Fortenberry, Ryan C. ; Schlegel, H. Bernhard ; Remacle, Françoise ; Kapteyn, Henry C. ; Murnane, Margaret M. ; Li, Wen ; Wayne State Univ., Detroit, MI (United States)</creatorcontrib><description>Highly excited electronic states are challenging to explore experimentally and theoretically—due to the large density of states and the fact that small structural changes lead to large changes in electronic character with associated strong nonadiabatic dynamics. They can play a key role in astrophysical and ionospheric chemistry, as well as the detonation chemistry of high-energy density materials. Here, we implement ultrafast vacuum-UV (VUV)-driven electron–ion coincidence imaging spectroscopy to directly probe the reaction pathways of highly excited states of energetic molecules—in this case, methyl azide. Our data, combined with advanced theoretical simulations, show that photoexcitation of methyl azide by a 10-fs UV pulse at 8 eV drives fast structural changes and strong nonadiabatic coupling that leads to relaxation to other excited states on a surprisingly fast timescale of 25 fs. This ultrafast relaxation differs from dynamics occurring on lower excited states, where the timescale required for the wavepacket to reach a region of strong nonadiabatic coupling is typically much longer. Moreover, our theoretical calculations show that ultrafast relaxation of the wavepacket to a lower excited state occurs along one of the conical intersection seams before reaching the minimum energy conical intersection. These findings are important for understanding the unique strongly coupled non-Born–Oppenheimer molecular dynamics of VUV-excited energetic molecules. Although such observations have been predicted for many years, this study represents one of the few where such strongly coupled non-Born–Oppenheimer molecular dynamics of VUV-excited energetic molecules have been conclusively observed directly, making it possible to identify the ultrafast reaction pathways.</description><identifier>ISSN: 0027-8424</identifier><identifier>ISSN: 1091-6490</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1712566114</identifier><identifier>PMID: 29109279</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Chemistry ; Chimie ; conical intersection ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; nonadiabatic dynamics ; PEPICO ; Physical Sciences ; Physical, chemical, mathematical &amp; earth Sciences ; Physique, chimie, mathématiques &amp; sciences de la terre ; PNAS Plus ; Rydberg–valence electronic states ; SEE COMMENTARY</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2017-12, Vol.114 (52), p.E11072-E11081</ispartof><rights>Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c486t-f2bae4f745161ccd973c188d604a18f2acd759b36e7f1e36034f50df4ddfaf923</citedby><cites>FETCH-LOGICAL-c486t-f2bae4f745161ccd973c188d604a18f2acd759b36e7f1e36034f50df4ddfaf923</cites><orcidid>0000-0002-1270-7623 ; 0000000212707623</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26488790$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26488790$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29109279$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1408161$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Peters, William K.</creatorcontrib><creatorcontrib>Couch, David E.</creatorcontrib><creatorcontrib>Mignolet, Benoit</creatorcontrib><creatorcontrib>Shi, Xuetao</creatorcontrib><creatorcontrib>Nguyen, Quynh L.</creatorcontrib><creatorcontrib>Fortenberry, Ryan C.</creatorcontrib><creatorcontrib>Schlegel, H. Bernhard</creatorcontrib><creatorcontrib>Remacle, Françoise</creatorcontrib><creatorcontrib>Kapteyn, Henry C.</creatorcontrib><creatorcontrib>Murnane, Margaret M.</creatorcontrib><creatorcontrib>Li, Wen</creatorcontrib><creatorcontrib>Wayne State Univ., Detroit, MI (United States)</creatorcontrib><title>Ultrafast 25-fs relaxation in highly excited states of methyl azide mediated by strong nonadiabatic coupling</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Highly excited electronic states are challenging to explore experimentally and theoretically—due to the large density of states and the fact that small structural changes lead to large changes in electronic character with associated strong nonadiabatic dynamics. They can play a key role in astrophysical and ionospheric chemistry, as well as the detonation chemistry of high-energy density materials. Here, we implement ultrafast vacuum-UV (VUV)-driven electron–ion coincidence imaging spectroscopy to directly probe the reaction pathways of highly excited states of energetic molecules—in this case, methyl azide. Our data, combined with advanced theoretical simulations, show that photoexcitation of methyl azide by a 10-fs UV pulse at 8 eV drives fast structural changes and strong nonadiabatic coupling that leads to relaxation to other excited states on a surprisingly fast timescale of 25 fs. This ultrafast relaxation differs from dynamics occurring on lower excited states, where the timescale required for the wavepacket to reach a region of strong nonadiabatic coupling is typically much longer. Moreover, our theoretical calculations show that ultrafast relaxation of the wavepacket to a lower excited state occurs along one of the conical intersection seams before reaching the minimum energy conical intersection. These findings are important for understanding the unique strongly coupled non-Born–Oppenheimer molecular dynamics of VUV-excited energetic molecules. Although such observations have been predicted for many years, this study represents one of the few where such strongly coupled non-Born–Oppenheimer molecular dynamics of VUV-excited energetic molecules have been conclusively observed directly, making it possible to identify the ultrafast reaction pathways.</description><subject>Chemistry</subject><subject>Chimie</subject><subject>conical intersection</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>nonadiabatic dynamics</subject><subject>PEPICO</subject><subject>Physical Sciences</subject><subject>Physical, chemical, mathematical &amp; earth Sciences</subject><subject>Physique, chimie, mathématiques &amp; sciences de la terre</subject><subject>PNAS Plus</subject><subject>Rydberg–valence electronic states</subject><subject>SEE COMMENTARY</subject><issn>0027-8424</issn><issn>1091-6490</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpVkU1vFSEYhYnR2Gt17UpDXLmZFhgGmI1J0_iVNHFj14RhYIaGC1dgml5_vUyntrri4304nJMDwFuMzjDi7fkhqHyGOSYdYxjTZ2CHUY8bRnv0HOwQIrwRlNAT8CrnG4RQ3wn0EpyQvmKE9zvgr31JyqpcIOkam2EyXt2p4mKALsDZTbM_QnOnXTEjzEUVk2G0cG_KfPRQ_XajqYfRqXU-HCuSYphgiEHVy6EqaajjcvAuTK_BC6t8Nm8e1lNw_eXzz8tvzdWPr98vL64aTQUrjSWDMtRy2mGGtR573mosxMgQVVhYovTIu35omeEWm5ahltoOjZaOo1W2J-0p-LTpHpahetMm1IxeHpLbq3SUUTn5_yS4WU7xVnacivpTFfiwCcRcnMxreD3rGILRRWKKRDVWoXaDvDOTkTENTt6Se_X7_eInqbQcjCSECUnWmlbpjw_eUvy1mFzk3mVtvFfBxCVL3DPM2o7SFT3fUJ1izsnYxwQYybV-udYvn-qvL97_G_yR_9t3Bd5twE0uMT3NGRWC96j9Axp6t5Q</recordid><startdate>20171226</startdate><enddate>20171226</enddate><creator>Peters, William K.</creator><creator>Couch, David E.</creator><creator>Mignolet, Benoit</creator><creator>Shi, Xuetao</creator><creator>Nguyen, Quynh L.</creator><creator>Fortenberry, Ryan C.</creator><creator>Schlegel, H. Bernhard</creator><creator>Remacle, Françoise</creator><creator>Kapteyn, Henry C.</creator><creator>Murnane, Margaret M.</creator><creator>Li, Wen</creator><general>National Academy of Sciences</general><general>Proceedings of the National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>Q33</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1270-7623</orcidid><orcidid>https://orcid.org/0000000212707623</orcidid></search><sort><creationdate>20171226</creationdate><title>Ultrafast 25-fs relaxation in highly excited states of methyl azide mediated by strong nonadiabatic coupling</title><author>Peters, William K. ; Couch, David E. ; Mignolet, Benoit ; Shi, Xuetao ; Nguyen, Quynh L. ; Fortenberry, Ryan C. ; Schlegel, H. Bernhard ; Remacle, Françoise ; Kapteyn, Henry C. ; Murnane, Margaret M. ; Li, Wen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c486t-f2bae4f745161ccd973c188d604a18f2acd759b36e7f1e36034f50df4ddfaf923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Chemistry</topic><topic>Chimie</topic><topic>conical intersection</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>nonadiabatic dynamics</topic><topic>PEPICO</topic><topic>Physical Sciences</topic><topic>Physical, chemical, mathematical &amp; earth Sciences</topic><topic>Physique, chimie, mathématiques &amp; sciences de la terre</topic><topic>PNAS Plus</topic><topic>Rydberg–valence electronic states</topic><topic>SEE COMMENTARY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peters, William K.</creatorcontrib><creatorcontrib>Couch, David E.</creatorcontrib><creatorcontrib>Mignolet, Benoit</creatorcontrib><creatorcontrib>Shi, Xuetao</creatorcontrib><creatorcontrib>Nguyen, Quynh L.</creatorcontrib><creatorcontrib>Fortenberry, Ryan C.</creatorcontrib><creatorcontrib>Schlegel, H. Bernhard</creatorcontrib><creatorcontrib>Remacle, Françoise</creatorcontrib><creatorcontrib>Kapteyn, Henry C.</creatorcontrib><creatorcontrib>Murnane, Margaret M.</creatorcontrib><creatorcontrib>Li, Wen</creatorcontrib><creatorcontrib>Wayne State Univ., Detroit, MI (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Université de Liège - Open Repository and Bibliography (ORBI)</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peters, William K.</au><au>Couch, David E.</au><au>Mignolet, Benoit</au><au>Shi, Xuetao</au><au>Nguyen, Quynh L.</au><au>Fortenberry, Ryan C.</au><au>Schlegel, H. Bernhard</au><au>Remacle, Françoise</au><au>Kapteyn, Henry C.</au><au>Murnane, Margaret M.</au><au>Li, Wen</au><aucorp>Wayne State Univ., Detroit, MI (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrafast 25-fs relaxation in highly excited states of methyl azide mediated by strong nonadiabatic coupling</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2017-12-26</date><risdate>2017</risdate><volume>114</volume><issue>52</issue><spage>E11072</spage><epage>E11081</epage><pages>E11072-E11081</pages><issn>0027-8424</issn><issn>1091-6490</issn><eissn>1091-6490</eissn><abstract>Highly excited electronic states are challenging to explore experimentally and theoretically—due to the large density of states and the fact that small structural changes lead to large changes in electronic character with associated strong nonadiabatic dynamics. They can play a key role in astrophysical and ionospheric chemistry, as well as the detonation chemistry of high-energy density materials. Here, we implement ultrafast vacuum-UV (VUV)-driven electron–ion coincidence imaging spectroscopy to directly probe the reaction pathways of highly excited states of energetic molecules—in this case, methyl azide. Our data, combined with advanced theoretical simulations, show that photoexcitation of methyl azide by a 10-fs UV pulse at 8 eV drives fast structural changes and strong nonadiabatic coupling that leads to relaxation to other excited states on a surprisingly fast timescale of 25 fs. This ultrafast relaxation differs from dynamics occurring on lower excited states, where the timescale required for the wavepacket to reach a region of strong nonadiabatic coupling is typically much longer. Moreover, our theoretical calculations show that ultrafast relaxation of the wavepacket to a lower excited state occurs along one of the conical intersection seams before reaching the minimum energy conical intersection. These findings are important for understanding the unique strongly coupled non-Born–Oppenheimer molecular dynamics of VUV-excited energetic molecules. Although such observations have been predicted for many years, this study represents one of the few where such strongly coupled non-Born–Oppenheimer molecular dynamics of VUV-excited energetic molecules have been conclusively observed directly, making it possible to identify the ultrafast reaction pathways.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>29109279</pmid><doi>10.1073/pnas.1712566114</doi><orcidid>https://orcid.org/0000-0002-1270-7623</orcidid><orcidid>https://orcid.org/0000000212707623</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2017-12, Vol.114 (52), p.E11072-E11081
issn 0027-8424
1091-6490
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5748188
source JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Chemistry
Chimie
conical intersection
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
nonadiabatic dynamics
PEPICO
Physical Sciences
Physical, chemical, mathematical & earth Sciences
Physique, chimie, mathématiques & sciences de la terre
PNAS Plus
Rydberg–valence electronic states
SEE COMMENTARY
title Ultrafast 25-fs relaxation in highly excited states of methyl azide mediated by strong nonadiabatic coupling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T17%3A00%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrafast%2025-fs%20relaxation%20in%20highly%20excited%20states%20of%20methyl%20azide%20mediated%20by%20strong%20nonadiabatic%20coupling&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Peters,%20William%20K.&rft.aucorp=Wayne%20State%20Univ.,%20Detroit,%20MI%20(United%20States)&rft.date=2017-12-26&rft.volume=114&rft.issue=52&rft.spage=E11072&rft.epage=E11081&rft.pages=E11072-E11081&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1712566114&rft_dat=%3Cjstor_pubme%3E26488790%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1961635448&rft_id=info:pmid/29109279&rft_jstor_id=26488790&rfr_iscdi=true