Molecular Mechanism of MDGA1: Regulation of Neuroligin 2:Neurexin Trans-synaptic Bridges
Neuroligins and neurexins promote synapse development and validation by forming trans-synaptic bridges spanning the synaptic cleft. Select pairs promote excitatory and inhibitory synapses, with neuroligin 2 (NLGN2) limited to inhibitory synapses and neuroligin 1 (NLGN1) dominating at excitatory syna...
Gespeichert in:
Veröffentlicht in: | Neuron (Cambridge, Mass.) Mass.), 2017-06, Vol.94 (6), p.1132-1141.e4 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1141.e4 |
---|---|
container_issue | 6 |
container_start_page | 1132 |
container_title | Neuron (Cambridge, Mass.) |
container_volume | 94 |
creator | Gangwar, Shanti Pal Zhong, Xiaoying Seshadrinathan, Suchithra Chen, Hui Machius, Mischa Rudenko, Gabby |
description | Neuroligins and neurexins promote synapse development and validation by forming trans-synaptic bridges spanning the synaptic cleft. Select pairs promote excitatory and inhibitory synapses, with neuroligin 2 (NLGN2) limited to inhibitory synapses and neuroligin 1 (NLGN1) dominating at excitatory synapses. The cell-surface molecules, MAM domain-containing glycosylphosphatidylinositol anchor 1 (MDGA1) and 2 (MDGA2), regulate trans-synaptic adhesion between neurexins and neuroligins, impacting NLGN2 and NLGN1, respectively. We have determined the molecular mechanism of MDGA action. MDGA1 Ig1-Ig2 is sufficient to bind NLGN2 with nanomolar affinity; its crystal structure reveals an unusual locked rod-shaped array. In the crystal structure of the complex, two MDGA1 Ig1-Ig2 molecules each span the entire NLGN2 dimer. Site-directed mutagenesis confirms the observed interaction interface. Strikingly, Ig1 from MDGA1 binds to the same region on NLGN2 as neurexins do. Thus, MDGAs regulate the formation of neuroligin-neurexin trans-synaptic bridges by sterically blocking access of neurexins to neuroligins.
•The structure of MDGA1 Ig1-Ig2 and its complex with neuroligin 2 are determined•The rod-shaped MDGA1 Ig1-Ig2 array bridges an entire neuroligin 2 dimer•Key structural features of both proteins enable nanomolar affinity and selectivity•MDGA1 blocks neurexin binding on neuroligin 2, revealing its regulatory mechanism
Neuroligins and neurexins form trans-synaptic bridges that promote synapse development; a third family of synaptic organizers, MDGAs, regulates these bridges. Gangwar et al. demonstrate the molecular mechanism underlying the regulatory action of MDGAs. |
doi_str_mv | 10.1016/j.neuron.2017.06.009 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5745067</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S089662731730507X</els_id><sourcerecordid>1913398902</sourcerecordid><originalsourceid>FETCH-LOGICAL-c584t-1ca25f86bc3f5c0c345d4e8eb1d676f56db301cdc63cb69606c914aea27b597b3</originalsourceid><addsrcrecordid>eNp9UU1v1DAQtRCILoV_gFAEFy4JHttx4h6QSoGC1AUJFYmb5TiTrVdZe7GTiv57HG0pHwdOtmfevPF7j5CnQCugIF9tK49zDL5iFJqKyopSdY-sgKqmFKDUfbKirZKlZA0_Io9S2lIKolbwkByxVgoAYCvybR1GtPNoYrFGe2W8S7siDMX67fkpnBRfcJN7kwt-KX5aFo5u43zBTpYH_sjXy2h8KtONN_vJ2eJNdP0G02PyYDBjwie35zH5-v7d5dmH8uLz-cez04vS1q2YSrCG1UMrO8uH2lLLRd0LbLGDXjZyqGXfcQq2t5LbTipJpVUgDBrWdLVqOn5MXh9493O3w96in6IZ9T66nYk3Ohin_-54d6U34VrXjaipbDLB8wNBSJPTybop-2CD92gnDYIrCZBBL2-3xPB9xjTpnUsWx9F4DHPSoIBz1SrKMvTFP9BtmKPPHiwollVxKjNKHFA2hpQiDnc_BqqXfPVWH_LVS76aSp3zzWPP_lR7N_Qr0N92YPb82mFcFKG32Lu4COqD-_-Gnx2suLI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1912676306</pqid></control><display><type>article</type><title>Molecular Mechanism of MDGA1: Regulation of Neuroligin 2:Neurexin Trans-synaptic Bridges</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>ScienceDirect Journals (5 years ago - present)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Gangwar, Shanti Pal ; Zhong, Xiaoying ; Seshadrinathan, Suchithra ; Chen, Hui ; Machius, Mischa ; Rudenko, Gabby</creator><creatorcontrib>Gangwar, Shanti Pal ; Zhong, Xiaoying ; Seshadrinathan, Suchithra ; Chen, Hui ; Machius, Mischa ; Rudenko, Gabby ; Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><description>Neuroligins and neurexins promote synapse development and validation by forming trans-synaptic bridges spanning the synaptic cleft. Select pairs promote excitatory and inhibitory synapses, with neuroligin 2 (NLGN2) limited to inhibitory synapses and neuroligin 1 (NLGN1) dominating at excitatory synapses. The cell-surface molecules, MAM domain-containing glycosylphosphatidylinositol anchor 1 (MDGA1) and 2 (MDGA2), regulate trans-synaptic adhesion between neurexins and neuroligins, impacting NLGN2 and NLGN1, respectively. We have determined the molecular mechanism of MDGA action. MDGA1 Ig1-Ig2 is sufficient to bind NLGN2 with nanomolar affinity; its crystal structure reveals an unusual locked rod-shaped array. In the crystal structure of the complex, two MDGA1 Ig1-Ig2 molecules each span the entire NLGN2 dimer. Site-directed mutagenesis confirms the observed interaction interface. Strikingly, Ig1 from MDGA1 binds to the same region on NLGN2 as neurexins do. Thus, MDGAs regulate the formation of neuroligin-neurexin trans-synaptic bridges by sterically blocking access of neurexins to neuroligins.
•The structure of MDGA1 Ig1-Ig2 and its complex with neuroligin 2 are determined•The rod-shaped MDGA1 Ig1-Ig2 array bridges an entire neuroligin 2 dimer•Key structural features of both proteins enable nanomolar affinity and selectivity•MDGA1 blocks neurexin binding on neuroligin 2, revealing its regulatory mechanism
Neuroligins and neurexins form trans-synaptic bridges that promote synapse development; a third family of synaptic organizers, MDGAs, regulates these bridges. Gangwar et al. demonstrate the molecular mechanism underlying the regulatory action of MDGAs.</description><identifier>ISSN: 0896-6273</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/j.neuron.2017.06.009</identifier><identifier>PMID: 28641112</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>adhesion molecule ; Animals ; Autism ; BASIC BIOLOGICAL SCIENCES ; Cell adhesion & migration ; Cell Adhesion - genetics ; Cell Adhesion Molecules, Neuronal - genetics ; Cell Adhesion Molecules, Neuronal - metabolism ; Cell Line ; Cell surface ; Crystal structure ; Crystallography ; excitation-inhibition ; Glycosylphosphatidylinositol ; Humans ; MDGA ; Mutagenesis, Site-Directed ; Mutation ; Nerve Tissue Proteins - genetics ; Nerve Tissue Proteins - metabolism ; Neural Cell Adhesion Molecules - metabolism ; neurexin ; neuro-psychiatric disease ; neuroligin ; Neurons ; Protein Binding ; Protein Structure, Quaternary ; Proteins ; Schizophrenia ; Site-directed mutagenesis ; synapse development ; Synapses ; Synapses - metabolism ; Synaptic cleft ; synaptic organizer ; synaptic plasticity</subject><ispartof>Neuron (Cambridge, Mass.), 2017-06, Vol.94 (6), p.1132-1141.e4</ispartof><rights>2017 Elsevier Inc.</rights><rights>Copyright © 2017 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Jun 21, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c584t-1ca25f86bc3f5c0c345d4e8eb1d676f56db301cdc63cb69606c914aea27b597b3</citedby><cites>FETCH-LOGICAL-c584t-1ca25f86bc3f5c0c345d4e8eb1d676f56db301cdc63cb69606c914aea27b597b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neuron.2017.06.009$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28641112$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1439611$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Gangwar, Shanti Pal</creatorcontrib><creatorcontrib>Zhong, Xiaoying</creatorcontrib><creatorcontrib>Seshadrinathan, Suchithra</creatorcontrib><creatorcontrib>Chen, Hui</creatorcontrib><creatorcontrib>Machius, Mischa</creatorcontrib><creatorcontrib>Rudenko, Gabby</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><title>Molecular Mechanism of MDGA1: Regulation of Neuroligin 2:Neurexin Trans-synaptic Bridges</title><title>Neuron (Cambridge, Mass.)</title><addtitle>Neuron</addtitle><description>Neuroligins and neurexins promote synapse development and validation by forming trans-synaptic bridges spanning the synaptic cleft. Select pairs promote excitatory and inhibitory synapses, with neuroligin 2 (NLGN2) limited to inhibitory synapses and neuroligin 1 (NLGN1) dominating at excitatory synapses. The cell-surface molecules, MAM domain-containing glycosylphosphatidylinositol anchor 1 (MDGA1) and 2 (MDGA2), regulate trans-synaptic adhesion between neurexins and neuroligins, impacting NLGN2 and NLGN1, respectively. We have determined the molecular mechanism of MDGA action. MDGA1 Ig1-Ig2 is sufficient to bind NLGN2 with nanomolar affinity; its crystal structure reveals an unusual locked rod-shaped array. In the crystal structure of the complex, two MDGA1 Ig1-Ig2 molecules each span the entire NLGN2 dimer. Site-directed mutagenesis confirms the observed interaction interface. Strikingly, Ig1 from MDGA1 binds to the same region on NLGN2 as neurexins do. Thus, MDGAs regulate the formation of neuroligin-neurexin trans-synaptic bridges by sterically blocking access of neurexins to neuroligins.
•The structure of MDGA1 Ig1-Ig2 and its complex with neuroligin 2 are determined•The rod-shaped MDGA1 Ig1-Ig2 array bridges an entire neuroligin 2 dimer•Key structural features of both proteins enable nanomolar affinity and selectivity•MDGA1 blocks neurexin binding on neuroligin 2, revealing its regulatory mechanism
Neuroligins and neurexins form trans-synaptic bridges that promote synapse development; a third family of synaptic organizers, MDGAs, regulates these bridges. Gangwar et al. demonstrate the molecular mechanism underlying the regulatory action of MDGAs.</description><subject>adhesion molecule</subject><subject>Animals</subject><subject>Autism</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Cell adhesion & migration</subject><subject>Cell Adhesion - genetics</subject><subject>Cell Adhesion Molecules, Neuronal - genetics</subject><subject>Cell Adhesion Molecules, Neuronal - metabolism</subject><subject>Cell Line</subject><subject>Cell surface</subject><subject>Crystal structure</subject><subject>Crystallography</subject><subject>excitation-inhibition</subject><subject>Glycosylphosphatidylinositol</subject><subject>Humans</subject><subject>MDGA</subject><subject>Mutagenesis, Site-Directed</subject><subject>Mutation</subject><subject>Nerve Tissue Proteins - genetics</subject><subject>Nerve Tissue Proteins - metabolism</subject><subject>Neural Cell Adhesion Molecules - metabolism</subject><subject>neurexin</subject><subject>neuro-psychiatric disease</subject><subject>neuroligin</subject><subject>Neurons</subject><subject>Protein Binding</subject><subject>Protein Structure, Quaternary</subject><subject>Proteins</subject><subject>Schizophrenia</subject><subject>Site-directed mutagenesis</subject><subject>synapse development</subject><subject>Synapses</subject><subject>Synapses - metabolism</subject><subject>Synaptic cleft</subject><subject>synaptic organizer</subject><subject>synaptic plasticity</subject><issn>0896-6273</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UU1v1DAQtRCILoV_gFAEFy4JHttx4h6QSoGC1AUJFYmb5TiTrVdZe7GTiv57HG0pHwdOtmfevPF7j5CnQCugIF9tK49zDL5iFJqKyopSdY-sgKqmFKDUfbKirZKlZA0_Io9S2lIKolbwkByxVgoAYCvybR1GtPNoYrFGe2W8S7siDMX67fkpnBRfcJN7kwt-KX5aFo5u43zBTpYH_sjXy2h8KtONN_vJ2eJNdP0G02PyYDBjwie35zH5-v7d5dmH8uLz-cez04vS1q2YSrCG1UMrO8uH2lLLRd0LbLGDXjZyqGXfcQq2t5LbTipJpVUgDBrWdLVqOn5MXh9493O3w96in6IZ9T66nYk3Ohin_-54d6U34VrXjaipbDLB8wNBSJPTybop-2CD92gnDYIrCZBBL2-3xPB9xjTpnUsWx9F4DHPSoIBz1SrKMvTFP9BtmKPPHiwollVxKjNKHFA2hpQiDnc_BqqXfPVWH_LVS76aSp3zzWPP_lR7N_Qr0N92YPb82mFcFKG32Lu4COqD-_-Gnx2suLI</recordid><startdate>20170621</startdate><enddate>20170621</enddate><creator>Gangwar, Shanti Pal</creator><creator>Zhong, Xiaoying</creator><creator>Seshadrinathan, Suchithra</creator><creator>Chen, Hui</creator><creator>Machius, Mischa</creator><creator>Rudenko, Gabby</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><general>Cell Press - Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20170621</creationdate><title>Molecular Mechanism of MDGA1: Regulation of Neuroligin 2:Neurexin Trans-synaptic Bridges</title><author>Gangwar, Shanti Pal ; Zhong, Xiaoying ; Seshadrinathan, Suchithra ; Chen, Hui ; Machius, Mischa ; Rudenko, Gabby</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c584t-1ca25f86bc3f5c0c345d4e8eb1d676f56db301cdc63cb69606c914aea27b597b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>adhesion molecule</topic><topic>Animals</topic><topic>Autism</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Cell adhesion & migration</topic><topic>Cell Adhesion - genetics</topic><topic>Cell Adhesion Molecules, Neuronal - genetics</topic><topic>Cell Adhesion Molecules, Neuronal - metabolism</topic><topic>Cell Line</topic><topic>Cell surface</topic><topic>Crystal structure</topic><topic>Crystallography</topic><topic>excitation-inhibition</topic><topic>Glycosylphosphatidylinositol</topic><topic>Humans</topic><topic>MDGA</topic><topic>Mutagenesis, Site-Directed</topic><topic>Mutation</topic><topic>Nerve Tissue Proteins - genetics</topic><topic>Nerve Tissue Proteins - metabolism</topic><topic>Neural Cell Adhesion Molecules - metabolism</topic><topic>neurexin</topic><topic>neuro-psychiatric disease</topic><topic>neuroligin</topic><topic>Neurons</topic><topic>Protein Binding</topic><topic>Protein Structure, Quaternary</topic><topic>Proteins</topic><topic>Schizophrenia</topic><topic>Site-directed mutagenesis</topic><topic>synapse development</topic><topic>Synapses</topic><topic>Synapses - metabolism</topic><topic>Synaptic cleft</topic><topic>synaptic organizer</topic><topic>synaptic plasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gangwar, Shanti Pal</creatorcontrib><creatorcontrib>Zhong, Xiaoying</creatorcontrib><creatorcontrib>Seshadrinathan, Suchithra</creatorcontrib><creatorcontrib>Chen, Hui</creatorcontrib><creatorcontrib>Machius, Mischa</creatorcontrib><creatorcontrib>Rudenko, Gabby</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gangwar, Shanti Pal</au><au>Zhong, Xiaoying</au><au>Seshadrinathan, Suchithra</au><au>Chen, Hui</au><au>Machius, Mischa</au><au>Rudenko, Gabby</au><aucorp>Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular Mechanism of MDGA1: Regulation of Neuroligin 2:Neurexin Trans-synaptic Bridges</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><addtitle>Neuron</addtitle><date>2017-06-21</date><risdate>2017</risdate><volume>94</volume><issue>6</issue><spage>1132</spage><epage>1141.e4</epage><pages>1132-1141.e4</pages><issn>0896-6273</issn><eissn>1097-4199</eissn><abstract>Neuroligins and neurexins promote synapse development and validation by forming trans-synaptic bridges spanning the synaptic cleft. Select pairs promote excitatory and inhibitory synapses, with neuroligin 2 (NLGN2) limited to inhibitory synapses and neuroligin 1 (NLGN1) dominating at excitatory synapses. The cell-surface molecules, MAM domain-containing glycosylphosphatidylinositol anchor 1 (MDGA1) and 2 (MDGA2), regulate trans-synaptic adhesion between neurexins and neuroligins, impacting NLGN2 and NLGN1, respectively. We have determined the molecular mechanism of MDGA action. MDGA1 Ig1-Ig2 is sufficient to bind NLGN2 with nanomolar affinity; its crystal structure reveals an unusual locked rod-shaped array. In the crystal structure of the complex, two MDGA1 Ig1-Ig2 molecules each span the entire NLGN2 dimer. Site-directed mutagenesis confirms the observed interaction interface. Strikingly, Ig1 from MDGA1 binds to the same region on NLGN2 as neurexins do. Thus, MDGAs regulate the formation of neuroligin-neurexin trans-synaptic bridges by sterically blocking access of neurexins to neuroligins.
•The structure of MDGA1 Ig1-Ig2 and its complex with neuroligin 2 are determined•The rod-shaped MDGA1 Ig1-Ig2 array bridges an entire neuroligin 2 dimer•Key structural features of both proteins enable nanomolar affinity and selectivity•MDGA1 blocks neurexin binding on neuroligin 2, revealing its regulatory mechanism
Neuroligins and neurexins form trans-synaptic bridges that promote synapse development; a third family of synaptic organizers, MDGAs, regulates these bridges. Gangwar et al. demonstrate the molecular mechanism underlying the regulatory action of MDGAs.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>28641112</pmid><doi>10.1016/j.neuron.2017.06.009</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0896-6273 |
ispartof | Neuron (Cambridge, Mass.), 2017-06, Vol.94 (6), p.1132-1141.e4 |
issn | 0896-6273 1097-4199 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5745067 |
source | MEDLINE; Cell Press Free Archives; ScienceDirect Journals (5 years ago - present); EZB-FREE-00999 freely available EZB journals |
subjects | adhesion molecule Animals Autism BASIC BIOLOGICAL SCIENCES Cell adhesion & migration Cell Adhesion - genetics Cell Adhesion Molecules, Neuronal - genetics Cell Adhesion Molecules, Neuronal - metabolism Cell Line Cell surface Crystal structure Crystallography excitation-inhibition Glycosylphosphatidylinositol Humans MDGA Mutagenesis, Site-Directed Mutation Nerve Tissue Proteins - genetics Nerve Tissue Proteins - metabolism Neural Cell Adhesion Molecules - metabolism neurexin neuro-psychiatric disease neuroligin Neurons Protein Binding Protein Structure, Quaternary Proteins Schizophrenia Site-directed mutagenesis synapse development Synapses Synapses - metabolism Synaptic cleft synaptic organizer synaptic plasticity |
title | Molecular Mechanism of MDGA1: Regulation of Neuroligin 2:Neurexin Trans-synaptic Bridges |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T19%3A36%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20Mechanism%20of%20MDGA1:%20Regulation%20of%20Neuroligin%202:Neurexin%20Trans-synaptic%20Bridges&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=Gangwar,%20Shanti%20Pal&rft.aucorp=Argonne%20National%20Laboratory%20(ANL),%20Argonne,%20IL%20(United%20States).%20Advanced%20Photon%20Source%20(APS)&rft.date=2017-06-21&rft.volume=94&rft.issue=6&rft.spage=1132&rft.epage=1141.e4&rft.pages=1132-1141.e4&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/j.neuron.2017.06.009&rft_dat=%3Cproquest_pubme%3E1913398902%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1912676306&rft_id=info:pmid/28641112&rft_els_id=S089662731730507X&rfr_iscdi=true |