Silica immobilization of Geobacter sulfurreducens for constructing ready‐to‐use artificial bioelectrodes

Summary Microbial electrochemical technologies (METs) rely on the control of interactions between microorganisms and electronic devices, enabling to transform chemical energy into electricity. We report a new approach to construct ready‐to‐use artificial bioelectrodes by immobilizing Geobacter sulfu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microbial Biotechnology 2018-01, Vol.11 (1), p.39-49
Hauptverfasser: Estevez‐Canales, Marta, Pinto, David, Coradin, Thibaud, Laberty‐Robert, Christel, Esteve‐Núñez, Abraham
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 49
container_issue 1
container_start_page 39
container_title Microbial Biotechnology
container_volume 11
creator Estevez‐Canales, Marta
Pinto, David
Coradin, Thibaud
Laberty‐Robert, Christel
Esteve‐Núñez, Abraham
description Summary Microbial electrochemical technologies (METs) rely on the control of interactions between microorganisms and electronic devices, enabling to transform chemical energy into electricity. We report a new approach to construct ready‐to‐use artificial bioelectrodes by immobilizing Geobacter sulfurreducens cells in composite materials associating silica gel and carbon felt fibres. Viability test confirmed that the majority of bacteria (ca. 70 ± 5%) survived the encapsulation process in silica and that cell density did not increase in 96 h. The double entrapment within the silica–carbon composite prevented bacterial release from the electrode but allowed a suitable mass transport (ca. 5 min after electron donor pulse), making the electrochemical characterization of the system possible. The artificial bioelectrodes were evaluated in three‐electrode reactors and the maximum current displayed was ca. 220 and 150 μA cm−3 using acetate and lactate as electron donors respectively. Cyclic voltammetry of acetate‐fed bioelectrodes revealed a sigmoidal catalytic oxidation wave, typical of more advanced‐stage biofilms. The presence of G. sulfurreducens within composites was ascertained by SEM analysis, suggesting that only part of the bacterial population was in direct contact with the carbon fibres. Preliminary analyses of the transcriptomic response of immobilized G. sulfurreducens enlightened that encapsulation mainly induces an osmotic stress to the cells. Therefore, ready‐to‐use artificial bioelectrodes represent a versatile time‐ and cost‐saving strategy for microbial electrochemical systems. We report a new approach to construct ready‐to‐use artificial bioelectrodes by immobilizing Geobacter sulfurreducens cells in composite materials associating silica gel and carbon felt fibers. The artificial bioelectrodes were evaluated in 3‐electrodes reactors using acetate and lactate as electron donors. Therefore, ready‐to‐use artificial bioelectrodes, represent a versatile time and cost saving strategy for microbial electrochemical systems.
doi_str_mv 10.1111/1751-7915.12561
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5743811</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A731174775</galeid><sourcerecordid>A731174775</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5691-3e24a4f717f5abfa8b8334afab9785e122a69ea7f8beedf2e3bda701cb6c9a7c3</originalsourceid><addsrcrecordid>eNqFUk1v1DAQjRCIlsKZG4rEBQ67tZ04Ti5IS9UvaREHytkaO-OtKycudlK0nPoT-I38kjpNWZVesCV7NH7vzXj0suwtJUua1iEVnC5EQ_mSMl7RZ9n-LvP8UbyXvYrxipCKEM5eZnusLgkVhOxn7pt1VkNuu86rFP6Cwfo-9yY_Ra9ADxjyODozhoDtqLGPufEh176PQxj1YPtNHhDa7Z_b34NPxxgxhzBYY7UFlyvr0aEegm8xvs5eGHAR3zzcB9n3k-OLo7PF-uvp-dFqvdC8auiiQFZCaQQVhoMyUKu6KEowoBpRc6SMQdUgCFMrxNYwLFQLglCtKt2A0MVB9mnWvR5Vh23qegjg5HWwHYSt9GDlvy-9vZQbfyO5KIua0iTwcRa4fEI7W63llCOUk0aQ4mbCfngoFvyPEeMgOxs1Ogc9-jFKWteC8LISdYK-fwK98mPo0ygkY036HGGMJNRyRm3AobS98alHnXaLnU2DR2NTfiUKSkUpBE-Ew5mgg48xoNm1TImcbCInI8jJCPLeJonx7vGAdvi_vkiAagb8TLW2_9OTXz5fsFn5DjKUy_0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2299780220</pqid></control><display><type>article</type><title>Silica immobilization of Geobacter sulfurreducens for constructing ready‐to‐use artificial bioelectrodes</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley-Blackwell Open Access Titles</source><source>Wiley Online Library All Journals</source><source>PubMed Central</source><creator>Estevez‐Canales, Marta ; Pinto, David ; Coradin, Thibaud ; Laberty‐Robert, Christel ; Esteve‐Núñez, Abraham</creator><creatorcontrib>Estevez‐Canales, Marta ; Pinto, David ; Coradin, Thibaud ; Laberty‐Robert, Christel ; Esteve‐Núñez, Abraham</creatorcontrib><description>Summary Microbial electrochemical technologies (METs) rely on the control of interactions between microorganisms and electronic devices, enabling to transform chemical energy into electricity. We report a new approach to construct ready‐to‐use artificial bioelectrodes by immobilizing Geobacter sulfurreducens cells in composite materials associating silica gel and carbon felt fibres. Viability test confirmed that the majority of bacteria (ca. 70 ± 5%) survived the encapsulation process in silica and that cell density did not increase in 96 h. The double entrapment within the silica–carbon composite prevented bacterial release from the electrode but allowed a suitable mass transport (ca. 5 min after electron donor pulse), making the electrochemical characterization of the system possible. The artificial bioelectrodes were evaluated in three‐electrode reactors and the maximum current displayed was ca. 220 and 150 μA cm−3 using acetate and lactate as electron donors respectively. Cyclic voltammetry of acetate‐fed bioelectrodes revealed a sigmoidal catalytic oxidation wave, typical of more advanced‐stage biofilms. The presence of G. sulfurreducens within composites was ascertained by SEM analysis, suggesting that only part of the bacterial population was in direct contact with the carbon fibres. Preliminary analyses of the transcriptomic response of immobilized G. sulfurreducens enlightened that encapsulation mainly induces an osmotic stress to the cells. Therefore, ready‐to‐use artificial bioelectrodes represent a versatile time‐ and cost‐saving strategy for microbial electrochemical systems. We report a new approach to construct ready‐to‐use artificial bioelectrodes by immobilizing Geobacter sulfurreducens cells in composite materials associating silica gel and carbon felt fibers. The artificial bioelectrodes were evaluated in 3‐electrodes reactors using acetate and lactate as electron donors. Therefore, ready‐to‐use artificial bioelectrodes, represent a versatile time and cost saving strategy for microbial electrochemical systems.</description><identifier>ISSN: 1751-7915</identifier><identifier>EISSN: 1751-7915</identifier><identifier>DOI: 10.1111/1751-7915.12561</identifier><identifier>PMID: 28401700</identifier><language>eng</language><publisher>United States: John Wiley &amp; Sons, Inc</publisher><subject>Acetates ; Acetic acid ; Analysis ; Bacteria ; Bioelectric Energy Sources ; Biofilms ; Bioinformatics ; Bioreactors ; Biotechnology ; Carbon ; Carbon fiber reinforced plastics ; Carbon fibers ; Cell density ; Cells, Immobilized - metabolism ; Chemical energy ; Composite materials ; Donors (electronic) ; Electric contacts ; Electricity ; Electrochemical analysis ; Electrochemistry ; Electrodes ; Electrodes - microbiology ; Electron transport ; Electronic devices ; Electronic equipment ; Encapsulation ; Entrapment ; Fibers ; Gene Expression Profiling ; Geobacter - genetics ; Geobacter - metabolism ; Geobacter sulfurreducens ; Immobilization ; Lactates ; Lactic acid ; Life Sciences ; Mass transport ; Metabolism ; Microbial Viability ; Microorganisms ; Microscopy ; Organic chemistry ; Osmotic Pressure ; Osmotic stress ; Oxidation ; Polymers ; Public domain ; Silica ; Silica Gel ; Silicon dioxide ; Software ; Viability</subject><ispartof>Microbial Biotechnology, 2018-01, Vol.11 (1), p.39-49</ispartof><rights>2017 The Authors. published by John Wiley &amp; Sons Ltd and Society for Applied Microbiology.</rights><rights>2017 The Authors. Microbial Biotechnology published by John Wiley &amp; Sons Ltd and Society for Applied Microbiology.</rights><rights>COPYRIGHT 2018 John Wiley &amp; Sons, Inc.</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5691-3e24a4f717f5abfa8b8334afab9785e122a69ea7f8beedf2e3bda701cb6c9a7c3</citedby><cites>FETCH-LOGICAL-c5691-3e24a4f717f5abfa8b8334afab9785e122a69ea7f8beedf2e3bda701cb6c9a7c3</cites><orcidid>0000-0003-3374-5722</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5743811/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5743811/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,1417,11562,27924,27925,45574,45575,46052,46476,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28401700$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.sorbonne-universite.fr/hal-01509703$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Estevez‐Canales, Marta</creatorcontrib><creatorcontrib>Pinto, David</creatorcontrib><creatorcontrib>Coradin, Thibaud</creatorcontrib><creatorcontrib>Laberty‐Robert, Christel</creatorcontrib><creatorcontrib>Esteve‐Núñez, Abraham</creatorcontrib><title>Silica immobilization of Geobacter sulfurreducens for constructing ready‐to‐use artificial bioelectrodes</title><title>Microbial Biotechnology</title><addtitle>Microb Biotechnol</addtitle><description>Summary Microbial electrochemical technologies (METs) rely on the control of interactions between microorganisms and electronic devices, enabling to transform chemical energy into electricity. We report a new approach to construct ready‐to‐use artificial bioelectrodes by immobilizing Geobacter sulfurreducens cells in composite materials associating silica gel and carbon felt fibres. Viability test confirmed that the majority of bacteria (ca. 70 ± 5%) survived the encapsulation process in silica and that cell density did not increase in 96 h. The double entrapment within the silica–carbon composite prevented bacterial release from the electrode but allowed a suitable mass transport (ca. 5 min after electron donor pulse), making the electrochemical characterization of the system possible. The artificial bioelectrodes were evaluated in three‐electrode reactors and the maximum current displayed was ca. 220 and 150 μA cm−3 using acetate and lactate as electron donors respectively. Cyclic voltammetry of acetate‐fed bioelectrodes revealed a sigmoidal catalytic oxidation wave, typical of more advanced‐stage biofilms. The presence of G. sulfurreducens within composites was ascertained by SEM analysis, suggesting that only part of the bacterial population was in direct contact with the carbon fibres. Preliminary analyses of the transcriptomic response of immobilized G. sulfurreducens enlightened that encapsulation mainly induces an osmotic stress to the cells. Therefore, ready‐to‐use artificial bioelectrodes represent a versatile time‐ and cost‐saving strategy for microbial electrochemical systems. We report a new approach to construct ready‐to‐use artificial bioelectrodes by immobilizing Geobacter sulfurreducens cells in composite materials associating silica gel and carbon felt fibers. The artificial bioelectrodes were evaluated in 3‐electrodes reactors using acetate and lactate as electron donors. Therefore, ready‐to‐use artificial bioelectrodes, represent a versatile time and cost saving strategy for microbial electrochemical systems.</description><subject>Acetates</subject><subject>Acetic acid</subject><subject>Analysis</subject><subject>Bacteria</subject><subject>Bioelectric Energy Sources</subject><subject>Biofilms</subject><subject>Bioinformatics</subject><subject>Bioreactors</subject><subject>Biotechnology</subject><subject>Carbon</subject><subject>Carbon fiber reinforced plastics</subject><subject>Carbon fibers</subject><subject>Cell density</subject><subject>Cells, Immobilized - metabolism</subject><subject>Chemical energy</subject><subject>Composite materials</subject><subject>Donors (electronic)</subject><subject>Electric contacts</subject><subject>Electricity</subject><subject>Electrochemical analysis</subject><subject>Electrochemistry</subject><subject>Electrodes</subject><subject>Electrodes - microbiology</subject><subject>Electron transport</subject><subject>Electronic devices</subject><subject>Electronic equipment</subject><subject>Encapsulation</subject><subject>Entrapment</subject><subject>Fibers</subject><subject>Gene Expression Profiling</subject><subject>Geobacter - genetics</subject><subject>Geobacter - metabolism</subject><subject>Geobacter sulfurreducens</subject><subject>Immobilization</subject><subject>Lactates</subject><subject>Lactic acid</subject><subject>Life Sciences</subject><subject>Mass transport</subject><subject>Metabolism</subject><subject>Microbial Viability</subject><subject>Microorganisms</subject><subject>Microscopy</subject><subject>Organic chemistry</subject><subject>Osmotic Pressure</subject><subject>Osmotic stress</subject><subject>Oxidation</subject><subject>Polymers</subject><subject>Public domain</subject><subject>Silica</subject><subject>Silica Gel</subject><subject>Silicon dioxide</subject><subject>Software</subject><subject>Viability</subject><issn>1751-7915</issn><issn>1751-7915</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFUk1v1DAQjRCIlsKZG4rEBQ67tZ04Ti5IS9UvaREHytkaO-OtKycudlK0nPoT-I38kjpNWZVesCV7NH7vzXj0suwtJUua1iEVnC5EQ_mSMl7RZ9n-LvP8UbyXvYrxipCKEM5eZnusLgkVhOxn7pt1VkNuu86rFP6Cwfo-9yY_Ra9ADxjyODozhoDtqLGPufEh176PQxj1YPtNHhDa7Z_b34NPxxgxhzBYY7UFlyvr0aEegm8xvs5eGHAR3zzcB9n3k-OLo7PF-uvp-dFqvdC8auiiQFZCaQQVhoMyUKu6KEowoBpRc6SMQdUgCFMrxNYwLFQLglCtKt2A0MVB9mnWvR5Vh23qegjg5HWwHYSt9GDlvy-9vZQbfyO5KIua0iTwcRa4fEI7W63llCOUk0aQ4mbCfngoFvyPEeMgOxs1Ogc9-jFKWteC8LISdYK-fwK98mPo0ygkY036HGGMJNRyRm3AobS98alHnXaLnU2DR2NTfiUKSkUpBE-Ew5mgg48xoNm1TImcbCInI8jJCPLeJonx7vGAdvi_vkiAagb8TLW2_9OTXz5fsFn5DjKUy_0</recordid><startdate>201801</startdate><enddate>201801</enddate><creator>Estevez‐Canales, Marta</creator><creator>Pinto, David</creator><creator>Coradin, Thibaud</creator><creator>Laberty‐Robert, Christel</creator><creator>Esteve‐Núñez, Abraham</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IAO</scope><scope>3V.</scope><scope>7QO</scope><scope>7T7</scope><scope>7X7</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3374-5722</orcidid></search><sort><creationdate>201801</creationdate><title>Silica immobilization of Geobacter sulfurreducens for constructing ready‐to‐use artificial bioelectrodes</title><author>Estevez‐Canales, Marta ; Pinto, David ; Coradin, Thibaud ; Laberty‐Robert, Christel ; Esteve‐Núñez, Abraham</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5691-3e24a4f717f5abfa8b8334afab9785e122a69ea7f8beedf2e3bda701cb6c9a7c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Acetates</topic><topic>Acetic acid</topic><topic>Analysis</topic><topic>Bacteria</topic><topic>Bioelectric Energy Sources</topic><topic>Biofilms</topic><topic>Bioinformatics</topic><topic>Bioreactors</topic><topic>Biotechnology</topic><topic>Carbon</topic><topic>Carbon fiber reinforced plastics</topic><topic>Carbon fibers</topic><topic>Cell density</topic><topic>Cells, Immobilized - metabolism</topic><topic>Chemical energy</topic><topic>Composite materials</topic><topic>Donors (electronic)</topic><topic>Electric contacts</topic><topic>Electricity</topic><topic>Electrochemical analysis</topic><topic>Electrochemistry</topic><topic>Electrodes</topic><topic>Electrodes - microbiology</topic><topic>Electron transport</topic><topic>Electronic devices</topic><topic>Electronic equipment</topic><topic>Encapsulation</topic><topic>Entrapment</topic><topic>Fibers</topic><topic>Gene Expression Profiling</topic><topic>Geobacter - genetics</topic><topic>Geobacter - metabolism</topic><topic>Geobacter sulfurreducens</topic><topic>Immobilization</topic><topic>Lactates</topic><topic>Lactic acid</topic><topic>Life Sciences</topic><topic>Mass transport</topic><topic>Metabolism</topic><topic>Microbial Viability</topic><topic>Microorganisms</topic><topic>Microscopy</topic><topic>Organic chemistry</topic><topic>Osmotic Pressure</topic><topic>Osmotic stress</topic><topic>Oxidation</topic><topic>Polymers</topic><topic>Public domain</topic><topic>Silica</topic><topic>Silica Gel</topic><topic>Silicon dioxide</topic><topic>Software</topic><topic>Viability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Estevez‐Canales, Marta</creatorcontrib><creatorcontrib>Pinto, David</creatorcontrib><creatorcontrib>Coradin, Thibaud</creatorcontrib><creatorcontrib>Laberty‐Robert, Christel</creatorcontrib><creatorcontrib>Esteve‐Núñez, Abraham</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale Academic OneFile</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Microbial Biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Estevez‐Canales, Marta</au><au>Pinto, David</au><au>Coradin, Thibaud</au><au>Laberty‐Robert, Christel</au><au>Esteve‐Núñez, Abraham</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Silica immobilization of Geobacter sulfurreducens for constructing ready‐to‐use artificial bioelectrodes</atitle><jtitle>Microbial Biotechnology</jtitle><addtitle>Microb Biotechnol</addtitle><date>2018-01</date><risdate>2018</risdate><volume>11</volume><issue>1</issue><spage>39</spage><epage>49</epage><pages>39-49</pages><issn>1751-7915</issn><eissn>1751-7915</eissn><abstract>Summary Microbial electrochemical technologies (METs) rely on the control of interactions between microorganisms and electronic devices, enabling to transform chemical energy into electricity. We report a new approach to construct ready‐to‐use artificial bioelectrodes by immobilizing Geobacter sulfurreducens cells in composite materials associating silica gel and carbon felt fibres. Viability test confirmed that the majority of bacteria (ca. 70 ± 5%) survived the encapsulation process in silica and that cell density did not increase in 96 h. The double entrapment within the silica–carbon composite prevented bacterial release from the electrode but allowed a suitable mass transport (ca. 5 min after electron donor pulse), making the electrochemical characterization of the system possible. The artificial bioelectrodes were evaluated in three‐electrode reactors and the maximum current displayed was ca. 220 and 150 μA cm−3 using acetate and lactate as electron donors respectively. Cyclic voltammetry of acetate‐fed bioelectrodes revealed a sigmoidal catalytic oxidation wave, typical of more advanced‐stage biofilms. The presence of G. sulfurreducens within composites was ascertained by SEM analysis, suggesting that only part of the bacterial population was in direct contact with the carbon fibres. Preliminary analyses of the transcriptomic response of immobilized G. sulfurreducens enlightened that encapsulation mainly induces an osmotic stress to the cells. Therefore, ready‐to‐use artificial bioelectrodes represent a versatile time‐ and cost‐saving strategy for microbial electrochemical systems. We report a new approach to construct ready‐to‐use artificial bioelectrodes by immobilizing Geobacter sulfurreducens cells in composite materials associating silica gel and carbon felt fibers. The artificial bioelectrodes were evaluated in 3‐electrodes reactors using acetate and lactate as electron donors. Therefore, ready‐to‐use artificial bioelectrodes, represent a versatile time and cost saving strategy for microbial electrochemical systems.</abstract><cop>United States</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>28401700</pmid><doi>10.1111/1751-7915.12561</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3374-5722</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1751-7915
ispartof Microbial Biotechnology, 2018-01, Vol.11 (1), p.39-49
issn 1751-7915
1751-7915
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5743811
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley-Blackwell Open Access Titles; Wiley Online Library All Journals; PubMed Central
subjects Acetates
Acetic acid
Analysis
Bacteria
Bioelectric Energy Sources
Biofilms
Bioinformatics
Bioreactors
Biotechnology
Carbon
Carbon fiber reinforced plastics
Carbon fibers
Cell density
Cells, Immobilized - metabolism
Chemical energy
Composite materials
Donors (electronic)
Electric contacts
Electricity
Electrochemical analysis
Electrochemistry
Electrodes
Electrodes - microbiology
Electron transport
Electronic devices
Electronic equipment
Encapsulation
Entrapment
Fibers
Gene Expression Profiling
Geobacter - genetics
Geobacter - metabolism
Geobacter sulfurreducens
Immobilization
Lactates
Lactic acid
Life Sciences
Mass transport
Metabolism
Microbial Viability
Microorganisms
Microscopy
Organic chemistry
Osmotic Pressure
Osmotic stress
Oxidation
Polymers
Public domain
Silica
Silica Gel
Silicon dioxide
Software
Viability
title Silica immobilization of Geobacter sulfurreducens for constructing ready‐to‐use artificial bioelectrodes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T17%3A03%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Silica%20immobilization%20of%20Geobacter%20sulfurreducens%20for%20constructing%20ready%E2%80%90to%E2%80%90use%20artificial%20bioelectrodes&rft.jtitle=Microbial%20Biotechnology&rft.au=Estevez%E2%80%90Canales,%20Marta&rft.date=2018-01&rft.volume=11&rft.issue=1&rft.spage=39&rft.epage=49&rft.pages=39-49&rft.issn=1751-7915&rft.eissn=1751-7915&rft_id=info:doi/10.1111/1751-7915.12561&rft_dat=%3Cgale_pubme%3EA731174775%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2299780220&rft_id=info:pmid/28401700&rft_galeid=A731174775&rfr_iscdi=true