Silica immobilization of Geobacter sulfurreducens for constructing ready‐to‐use artificial bioelectrodes
Summary Microbial electrochemical technologies (METs) rely on the control of interactions between microorganisms and electronic devices, enabling to transform chemical energy into electricity. We report a new approach to construct ready‐to‐use artificial bioelectrodes by immobilizing Geobacter sulfu...
Gespeichert in:
Veröffentlicht in: | Microbial Biotechnology 2018-01, Vol.11 (1), p.39-49 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 49 |
---|---|
container_issue | 1 |
container_start_page | 39 |
container_title | Microbial Biotechnology |
container_volume | 11 |
creator | Estevez‐Canales, Marta Pinto, David Coradin, Thibaud Laberty‐Robert, Christel Esteve‐Núñez, Abraham |
description | Summary
Microbial electrochemical technologies (METs) rely on the control of interactions between microorganisms and electronic devices, enabling to transform chemical energy into electricity. We report a new approach to construct ready‐to‐use artificial bioelectrodes by immobilizing Geobacter sulfurreducens cells in composite materials associating silica gel and carbon felt fibres. Viability test confirmed that the majority of bacteria (ca. 70 ± 5%) survived the encapsulation process in silica and that cell density did not increase in 96 h. The double entrapment within the silica–carbon composite prevented bacterial release from the electrode but allowed a suitable mass transport (ca. 5 min after electron donor pulse), making the electrochemical characterization of the system possible. The artificial bioelectrodes were evaluated in three‐electrode reactors and the maximum current displayed was ca. 220 and 150 μA cm−3 using acetate and lactate as electron donors respectively. Cyclic voltammetry of acetate‐fed bioelectrodes revealed a sigmoidal catalytic oxidation wave, typical of more advanced‐stage biofilms. The presence of G. sulfurreducens within composites was ascertained by SEM analysis, suggesting that only part of the bacterial population was in direct contact with the carbon fibres. Preliminary analyses of the transcriptomic response of immobilized G. sulfurreducens enlightened that encapsulation mainly induces an osmotic stress to the cells. Therefore, ready‐to‐use artificial bioelectrodes represent a versatile time‐ and cost‐saving strategy for microbial electrochemical systems.
We report a new approach to construct ready‐to‐use artificial bioelectrodes by immobilizing Geobacter sulfurreducens cells in composite materials associating silica gel and carbon felt fibers. The artificial bioelectrodes were evaluated in 3‐electrodes reactors using acetate and lactate as electron donors. Therefore, ready‐to‐use artificial bioelectrodes, represent a versatile time and cost saving strategy for microbial electrochemical systems. |
doi_str_mv | 10.1111/1751-7915.12561 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5743811</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A731174775</galeid><sourcerecordid>A731174775</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5691-3e24a4f717f5abfa8b8334afab9785e122a69ea7f8beedf2e3bda701cb6c9a7c3</originalsourceid><addsrcrecordid>eNqFUk1v1DAQjRCIlsKZG4rEBQ67tZ04Ti5IS9UvaREHytkaO-OtKycudlK0nPoT-I38kjpNWZVesCV7NH7vzXj0suwtJUua1iEVnC5EQ_mSMl7RZ9n-LvP8UbyXvYrxipCKEM5eZnusLgkVhOxn7pt1VkNuu86rFP6Cwfo-9yY_Ra9ADxjyODozhoDtqLGPufEh176PQxj1YPtNHhDa7Z_b34NPxxgxhzBYY7UFlyvr0aEegm8xvs5eGHAR3zzcB9n3k-OLo7PF-uvp-dFqvdC8auiiQFZCaQQVhoMyUKu6KEowoBpRc6SMQdUgCFMrxNYwLFQLglCtKt2A0MVB9mnWvR5Vh23qegjg5HWwHYSt9GDlvy-9vZQbfyO5KIua0iTwcRa4fEI7W63llCOUk0aQ4mbCfngoFvyPEeMgOxs1Ogc9-jFKWteC8LISdYK-fwK98mPo0ygkY036HGGMJNRyRm3AobS98alHnXaLnU2DR2NTfiUKSkUpBE-Ew5mgg48xoNm1TImcbCInI8jJCPLeJonx7vGAdvi_vkiAagb8TLW2_9OTXz5fsFn5DjKUy_0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2299780220</pqid></control><display><type>article</type><title>Silica immobilization of Geobacter sulfurreducens for constructing ready‐to‐use artificial bioelectrodes</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley-Blackwell Open Access Titles</source><source>Wiley Online Library All Journals</source><source>PubMed Central</source><creator>Estevez‐Canales, Marta ; Pinto, David ; Coradin, Thibaud ; Laberty‐Robert, Christel ; Esteve‐Núñez, Abraham</creator><creatorcontrib>Estevez‐Canales, Marta ; Pinto, David ; Coradin, Thibaud ; Laberty‐Robert, Christel ; Esteve‐Núñez, Abraham</creatorcontrib><description>Summary
Microbial electrochemical technologies (METs) rely on the control of interactions between microorganisms and electronic devices, enabling to transform chemical energy into electricity. We report a new approach to construct ready‐to‐use artificial bioelectrodes by immobilizing Geobacter sulfurreducens cells in composite materials associating silica gel and carbon felt fibres. Viability test confirmed that the majority of bacteria (ca. 70 ± 5%) survived the encapsulation process in silica and that cell density did not increase in 96 h. The double entrapment within the silica–carbon composite prevented bacterial release from the electrode but allowed a suitable mass transport (ca. 5 min after electron donor pulse), making the electrochemical characterization of the system possible. The artificial bioelectrodes were evaluated in three‐electrode reactors and the maximum current displayed was ca. 220 and 150 μA cm−3 using acetate and lactate as electron donors respectively. Cyclic voltammetry of acetate‐fed bioelectrodes revealed a sigmoidal catalytic oxidation wave, typical of more advanced‐stage biofilms. The presence of G. sulfurreducens within composites was ascertained by SEM analysis, suggesting that only part of the bacterial population was in direct contact with the carbon fibres. Preliminary analyses of the transcriptomic response of immobilized G. sulfurreducens enlightened that encapsulation mainly induces an osmotic stress to the cells. Therefore, ready‐to‐use artificial bioelectrodes represent a versatile time‐ and cost‐saving strategy for microbial electrochemical systems.
We report a new approach to construct ready‐to‐use artificial bioelectrodes by immobilizing Geobacter sulfurreducens cells in composite materials associating silica gel and carbon felt fibers. The artificial bioelectrodes were evaluated in 3‐electrodes reactors using acetate and lactate as electron donors. Therefore, ready‐to‐use artificial bioelectrodes, represent a versatile time and cost saving strategy for microbial electrochemical systems.</description><identifier>ISSN: 1751-7915</identifier><identifier>EISSN: 1751-7915</identifier><identifier>DOI: 10.1111/1751-7915.12561</identifier><identifier>PMID: 28401700</identifier><language>eng</language><publisher>United States: John Wiley & Sons, Inc</publisher><subject>Acetates ; Acetic acid ; Analysis ; Bacteria ; Bioelectric Energy Sources ; Biofilms ; Bioinformatics ; Bioreactors ; Biotechnology ; Carbon ; Carbon fiber reinforced plastics ; Carbon fibers ; Cell density ; Cells, Immobilized - metabolism ; Chemical energy ; Composite materials ; Donors (electronic) ; Electric contacts ; Electricity ; Electrochemical analysis ; Electrochemistry ; Electrodes ; Electrodes - microbiology ; Electron transport ; Electronic devices ; Electronic equipment ; Encapsulation ; Entrapment ; Fibers ; Gene Expression Profiling ; Geobacter - genetics ; Geobacter - metabolism ; Geobacter sulfurreducens ; Immobilization ; Lactates ; Lactic acid ; Life Sciences ; Mass transport ; Metabolism ; Microbial Viability ; Microorganisms ; Microscopy ; Organic chemistry ; Osmotic Pressure ; Osmotic stress ; Oxidation ; Polymers ; Public domain ; Silica ; Silica Gel ; Silicon dioxide ; Software ; Viability</subject><ispartof>Microbial Biotechnology, 2018-01, Vol.11 (1), p.39-49</ispartof><rights>2017 The Authors. published by John Wiley & Sons Ltd and Society for Applied Microbiology.</rights><rights>2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.</rights><rights>COPYRIGHT 2018 John Wiley & Sons, Inc.</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5691-3e24a4f717f5abfa8b8334afab9785e122a69ea7f8beedf2e3bda701cb6c9a7c3</citedby><cites>FETCH-LOGICAL-c5691-3e24a4f717f5abfa8b8334afab9785e122a69ea7f8beedf2e3bda701cb6c9a7c3</cites><orcidid>0000-0003-3374-5722</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5743811/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5743811/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,1417,11562,27924,27925,45574,45575,46052,46476,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28401700$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.sorbonne-universite.fr/hal-01509703$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Estevez‐Canales, Marta</creatorcontrib><creatorcontrib>Pinto, David</creatorcontrib><creatorcontrib>Coradin, Thibaud</creatorcontrib><creatorcontrib>Laberty‐Robert, Christel</creatorcontrib><creatorcontrib>Esteve‐Núñez, Abraham</creatorcontrib><title>Silica immobilization of Geobacter sulfurreducens for constructing ready‐to‐use artificial bioelectrodes</title><title>Microbial Biotechnology</title><addtitle>Microb Biotechnol</addtitle><description>Summary
Microbial electrochemical technologies (METs) rely on the control of interactions between microorganisms and electronic devices, enabling to transform chemical energy into electricity. We report a new approach to construct ready‐to‐use artificial bioelectrodes by immobilizing Geobacter sulfurreducens cells in composite materials associating silica gel and carbon felt fibres. Viability test confirmed that the majority of bacteria (ca. 70 ± 5%) survived the encapsulation process in silica and that cell density did not increase in 96 h. The double entrapment within the silica–carbon composite prevented bacterial release from the electrode but allowed a suitable mass transport (ca. 5 min after electron donor pulse), making the electrochemical characterization of the system possible. The artificial bioelectrodes were evaluated in three‐electrode reactors and the maximum current displayed was ca. 220 and 150 μA cm−3 using acetate and lactate as electron donors respectively. Cyclic voltammetry of acetate‐fed bioelectrodes revealed a sigmoidal catalytic oxidation wave, typical of more advanced‐stage biofilms. The presence of G. sulfurreducens within composites was ascertained by SEM analysis, suggesting that only part of the bacterial population was in direct contact with the carbon fibres. Preliminary analyses of the transcriptomic response of immobilized G. sulfurreducens enlightened that encapsulation mainly induces an osmotic stress to the cells. Therefore, ready‐to‐use artificial bioelectrodes represent a versatile time‐ and cost‐saving strategy for microbial electrochemical systems.
We report a new approach to construct ready‐to‐use artificial bioelectrodes by immobilizing Geobacter sulfurreducens cells in composite materials associating silica gel and carbon felt fibers. The artificial bioelectrodes were evaluated in 3‐electrodes reactors using acetate and lactate as electron donors. Therefore, ready‐to‐use artificial bioelectrodes, represent a versatile time and cost saving strategy for microbial electrochemical systems.</description><subject>Acetates</subject><subject>Acetic acid</subject><subject>Analysis</subject><subject>Bacteria</subject><subject>Bioelectric Energy Sources</subject><subject>Biofilms</subject><subject>Bioinformatics</subject><subject>Bioreactors</subject><subject>Biotechnology</subject><subject>Carbon</subject><subject>Carbon fiber reinforced plastics</subject><subject>Carbon fibers</subject><subject>Cell density</subject><subject>Cells, Immobilized - metabolism</subject><subject>Chemical energy</subject><subject>Composite materials</subject><subject>Donors (electronic)</subject><subject>Electric contacts</subject><subject>Electricity</subject><subject>Electrochemical analysis</subject><subject>Electrochemistry</subject><subject>Electrodes</subject><subject>Electrodes - microbiology</subject><subject>Electron transport</subject><subject>Electronic devices</subject><subject>Electronic equipment</subject><subject>Encapsulation</subject><subject>Entrapment</subject><subject>Fibers</subject><subject>Gene Expression Profiling</subject><subject>Geobacter - genetics</subject><subject>Geobacter - metabolism</subject><subject>Geobacter sulfurreducens</subject><subject>Immobilization</subject><subject>Lactates</subject><subject>Lactic acid</subject><subject>Life Sciences</subject><subject>Mass transport</subject><subject>Metabolism</subject><subject>Microbial Viability</subject><subject>Microorganisms</subject><subject>Microscopy</subject><subject>Organic chemistry</subject><subject>Osmotic Pressure</subject><subject>Osmotic stress</subject><subject>Oxidation</subject><subject>Polymers</subject><subject>Public domain</subject><subject>Silica</subject><subject>Silica Gel</subject><subject>Silicon dioxide</subject><subject>Software</subject><subject>Viability</subject><issn>1751-7915</issn><issn>1751-7915</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFUk1v1DAQjRCIlsKZG4rEBQ67tZ04Ti5IS9UvaREHytkaO-OtKycudlK0nPoT-I38kjpNWZVesCV7NH7vzXj0suwtJUua1iEVnC5EQ_mSMl7RZ9n-LvP8UbyXvYrxipCKEM5eZnusLgkVhOxn7pt1VkNuu86rFP6Cwfo-9yY_Ra9ADxjyODozhoDtqLGPufEh176PQxj1YPtNHhDa7Z_b34NPxxgxhzBYY7UFlyvr0aEegm8xvs5eGHAR3zzcB9n3k-OLo7PF-uvp-dFqvdC8auiiQFZCaQQVhoMyUKu6KEowoBpRc6SMQdUgCFMrxNYwLFQLglCtKt2A0MVB9mnWvR5Vh23qegjg5HWwHYSt9GDlvy-9vZQbfyO5KIua0iTwcRa4fEI7W63llCOUk0aQ4mbCfngoFvyPEeMgOxs1Ogc9-jFKWteC8LISdYK-fwK98mPo0ygkY036HGGMJNRyRm3AobS98alHnXaLnU2DR2NTfiUKSkUpBE-Ew5mgg48xoNm1TImcbCInI8jJCPLeJonx7vGAdvi_vkiAagb8TLW2_9OTXz5fsFn5DjKUy_0</recordid><startdate>201801</startdate><enddate>201801</enddate><creator>Estevez‐Canales, Marta</creator><creator>Pinto, David</creator><creator>Coradin, Thibaud</creator><creator>Laberty‐Robert, Christel</creator><creator>Esteve‐Núñez, Abraham</creator><general>John Wiley & Sons, Inc</general><general>Wiley</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IAO</scope><scope>3V.</scope><scope>7QO</scope><scope>7T7</scope><scope>7X7</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3374-5722</orcidid></search><sort><creationdate>201801</creationdate><title>Silica immobilization of Geobacter sulfurreducens for constructing ready‐to‐use artificial bioelectrodes</title><author>Estevez‐Canales, Marta ; Pinto, David ; Coradin, Thibaud ; Laberty‐Robert, Christel ; Esteve‐Núñez, Abraham</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5691-3e24a4f717f5abfa8b8334afab9785e122a69ea7f8beedf2e3bda701cb6c9a7c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Acetates</topic><topic>Acetic acid</topic><topic>Analysis</topic><topic>Bacteria</topic><topic>Bioelectric Energy Sources</topic><topic>Biofilms</topic><topic>Bioinformatics</topic><topic>Bioreactors</topic><topic>Biotechnology</topic><topic>Carbon</topic><topic>Carbon fiber reinforced plastics</topic><topic>Carbon fibers</topic><topic>Cell density</topic><topic>Cells, Immobilized - metabolism</topic><topic>Chemical energy</topic><topic>Composite materials</topic><topic>Donors (electronic)</topic><topic>Electric contacts</topic><topic>Electricity</topic><topic>Electrochemical analysis</topic><topic>Electrochemistry</topic><topic>Electrodes</topic><topic>Electrodes - microbiology</topic><topic>Electron transport</topic><topic>Electronic devices</topic><topic>Electronic equipment</topic><topic>Encapsulation</topic><topic>Entrapment</topic><topic>Fibers</topic><topic>Gene Expression Profiling</topic><topic>Geobacter - genetics</topic><topic>Geobacter - metabolism</topic><topic>Geobacter sulfurreducens</topic><topic>Immobilization</topic><topic>Lactates</topic><topic>Lactic acid</topic><topic>Life Sciences</topic><topic>Mass transport</topic><topic>Metabolism</topic><topic>Microbial Viability</topic><topic>Microorganisms</topic><topic>Microscopy</topic><topic>Organic chemistry</topic><topic>Osmotic Pressure</topic><topic>Osmotic stress</topic><topic>Oxidation</topic><topic>Polymers</topic><topic>Public domain</topic><topic>Silica</topic><topic>Silica Gel</topic><topic>Silicon dioxide</topic><topic>Software</topic><topic>Viability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Estevez‐Canales, Marta</creatorcontrib><creatorcontrib>Pinto, David</creatorcontrib><creatorcontrib>Coradin, Thibaud</creatorcontrib><creatorcontrib>Laberty‐Robert, Christel</creatorcontrib><creatorcontrib>Esteve‐Núñez, Abraham</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale Academic OneFile</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Microbial Biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Estevez‐Canales, Marta</au><au>Pinto, David</au><au>Coradin, Thibaud</au><au>Laberty‐Robert, Christel</au><au>Esteve‐Núñez, Abraham</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Silica immobilization of Geobacter sulfurreducens for constructing ready‐to‐use artificial bioelectrodes</atitle><jtitle>Microbial Biotechnology</jtitle><addtitle>Microb Biotechnol</addtitle><date>2018-01</date><risdate>2018</risdate><volume>11</volume><issue>1</issue><spage>39</spage><epage>49</epage><pages>39-49</pages><issn>1751-7915</issn><eissn>1751-7915</eissn><abstract>Summary
Microbial electrochemical technologies (METs) rely on the control of interactions between microorganisms and electronic devices, enabling to transform chemical energy into electricity. We report a new approach to construct ready‐to‐use artificial bioelectrodes by immobilizing Geobacter sulfurreducens cells in composite materials associating silica gel and carbon felt fibres. Viability test confirmed that the majority of bacteria (ca. 70 ± 5%) survived the encapsulation process in silica and that cell density did not increase in 96 h. The double entrapment within the silica–carbon composite prevented bacterial release from the electrode but allowed a suitable mass transport (ca. 5 min after electron donor pulse), making the electrochemical characterization of the system possible. The artificial bioelectrodes were evaluated in three‐electrode reactors and the maximum current displayed was ca. 220 and 150 μA cm−3 using acetate and lactate as electron donors respectively. Cyclic voltammetry of acetate‐fed bioelectrodes revealed a sigmoidal catalytic oxidation wave, typical of more advanced‐stage biofilms. The presence of G. sulfurreducens within composites was ascertained by SEM analysis, suggesting that only part of the bacterial population was in direct contact with the carbon fibres. Preliminary analyses of the transcriptomic response of immobilized G. sulfurreducens enlightened that encapsulation mainly induces an osmotic stress to the cells. Therefore, ready‐to‐use artificial bioelectrodes represent a versatile time‐ and cost‐saving strategy for microbial electrochemical systems.
We report a new approach to construct ready‐to‐use artificial bioelectrodes by immobilizing Geobacter sulfurreducens cells in composite materials associating silica gel and carbon felt fibers. The artificial bioelectrodes were evaluated in 3‐electrodes reactors using acetate and lactate as electron donors. Therefore, ready‐to‐use artificial bioelectrodes, represent a versatile time and cost saving strategy for microbial electrochemical systems.</abstract><cop>United States</cop><pub>John Wiley & Sons, Inc</pub><pmid>28401700</pmid><doi>10.1111/1751-7915.12561</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3374-5722</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1751-7915 |
ispartof | Microbial Biotechnology, 2018-01, Vol.11 (1), p.39-49 |
issn | 1751-7915 1751-7915 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5743811 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley-Blackwell Open Access Titles; Wiley Online Library All Journals; PubMed Central |
subjects | Acetates Acetic acid Analysis Bacteria Bioelectric Energy Sources Biofilms Bioinformatics Bioreactors Biotechnology Carbon Carbon fiber reinforced plastics Carbon fibers Cell density Cells, Immobilized - metabolism Chemical energy Composite materials Donors (electronic) Electric contacts Electricity Electrochemical analysis Electrochemistry Electrodes Electrodes - microbiology Electron transport Electronic devices Electronic equipment Encapsulation Entrapment Fibers Gene Expression Profiling Geobacter - genetics Geobacter - metabolism Geobacter sulfurreducens Immobilization Lactates Lactic acid Life Sciences Mass transport Metabolism Microbial Viability Microorganisms Microscopy Organic chemistry Osmotic Pressure Osmotic stress Oxidation Polymers Public domain Silica Silica Gel Silicon dioxide Software Viability |
title | Silica immobilization of Geobacter sulfurreducens for constructing ready‐to‐use artificial bioelectrodes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T17%3A03%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Silica%20immobilization%20of%20Geobacter%20sulfurreducens%20for%20constructing%20ready%E2%80%90to%E2%80%90use%20artificial%20bioelectrodes&rft.jtitle=Microbial%20Biotechnology&rft.au=Estevez%E2%80%90Canales,%20Marta&rft.date=2018-01&rft.volume=11&rft.issue=1&rft.spage=39&rft.epage=49&rft.pages=39-49&rft.issn=1751-7915&rft.eissn=1751-7915&rft_id=info:doi/10.1111/1751-7915.12561&rft_dat=%3Cgale_pubme%3EA731174775%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2299780220&rft_id=info:pmid/28401700&rft_galeid=A731174775&rfr_iscdi=true |