Predicting substituent effects on activation energy changes by static catalytic fields

Catalytic fields illustrate topology of the optimal charge distribution of a molecular environment reducing the activation energy for any process involving barrier crossing, like chemical reaction, bond rotation etc. Until now, this technique has been successfully applied to predict catalytic effect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of molecular modeling 2018-01, Vol.24 (1), p.28-5, Article 28
Hauptverfasser: Chojnacka, Martyna, Feliks, Mikolaj, Beker, Wiktor, Sokalski, W. Andrzej
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5
container_issue 1
container_start_page 28
container_title Journal of molecular modeling
container_volume 24
creator Chojnacka, Martyna
Feliks, Mikolaj
Beker, Wiktor
Sokalski, W. Andrzej
description Catalytic fields illustrate topology of the optimal charge distribution of a molecular environment reducing the activation energy for any process involving barrier crossing, like chemical reaction, bond rotation etc. Until now, this technique has been successfully applied to predict catalytic effects resulting from intermolecular interactions with individual water molecules constituting the first hydration shell, aminoacid mutations in enzymes or Si→Al substitutions in zeolites. In this contribution, hydrogen to fluorine (H→F) substitution effects for two model reactions have been examined indicating qualitative applicability of the catalytic field concept in the case of systems involving intramolecular interactions. Graphical abstract Hydrogen to fluorine (H→F) substitution effects on activation energy in [kcal/mol]
doi_str_mv 10.1007/s00894-017-3559-6
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5741779</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1979969924</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-cba4d58f8b63b2f17b979b3e63068959463c7d7943f8d5a8396ead4a4c3e3f773</originalsourceid><addsrcrecordid>eNp1kU9r3DAQxUVpaZY0H6CXYsglF6ej_9alEELSFALtoe1VyPJoo-C1U0le2G8fLZuGpNCTRrzfPM3oEfKRwjkF0J8zQGdEC1S3XErTqjdkBUZ0rQTG35IVVRRaZgQckZOc7wGAMqkkY-_JETNMi3pfkd8_Eg7Rlzitm7z0ucSy4FQaDAF9yc08Na6qW1diLXHCtN41_s5Na8xNv2tyqYpvvCtu3O2rEHEc8gfyLrgx48nTeUx-XV_9vLxpb79__XZ5cdt6oaG0vndikF3oesV7FqjujTY9R8VBdUYaobjXgzaCh26QruNGoRuEE54jD1rzY_Ll4Puw9BscfB09udE-pLhxaWdnF-1rZYp3dj1vrdSCam2qwdmTQZr_LJiL3cTscRzdhPOSLa0DGWUMExU9_Qe9n5c01fUq1YEymktaKXqgfJpzThieh6Fg98HZQ3C2Bmf3wVlVez693OK5429MFWAHIFepfn168fR_XR8B3EKktg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1980697351</pqid></control><display><type>article</type><title>Predicting substituent effects on activation energy changes by static catalytic fields</title><source>SpringerNature Journals</source><creator>Chojnacka, Martyna ; Feliks, Mikolaj ; Beker, Wiktor ; Sokalski, W. Andrzej</creator><creatorcontrib>Chojnacka, Martyna ; Feliks, Mikolaj ; Beker, Wiktor ; Sokalski, W. Andrzej</creatorcontrib><description>Catalytic fields illustrate topology of the optimal charge distribution of a molecular environment reducing the activation energy for any process involving barrier crossing, like chemical reaction, bond rotation etc. Until now, this technique has been successfully applied to predict catalytic effects resulting from intermolecular interactions with individual water molecules constituting the first hydration shell, aminoacid mutations in enzymes or Si→Al substitutions in zeolites. In this contribution, hydrogen to fluorine (H→F) substitution effects for two model reactions have been examined indicating qualitative applicability of the catalytic field concept in the case of systems involving intramolecular interactions. Graphical abstract Hydrogen to fluorine (H→F) substitution effects on activation energy in [kcal/mol]</description><identifier>ISSN: 1610-2940</identifier><identifier>EISSN: 0948-5023</identifier><identifier>DOI: 10.1007/s00894-017-3559-6</identifier><identifier>PMID: 29274012</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Activation energy ; Aluminum ; Catalysis ; Characterization and Evaluation of Materials ; Charge distribution ; Chemical reactions ; Chemistry ; Chemistry and Materials Science ; Computer Appl. in Life Sciences ; Computer Applications in Chemistry ; Fluorine ; Molecular Medicine ; Mutation ; Original Paper ; P. Politzer 80th Birthday Festschrift ; Substitution reactions ; Theoretical and Computational Chemistry ; Water chemistry ; Zeolites</subject><ispartof>Journal of molecular modeling, 2018-01, Vol.24 (1), p.28-5, Article 28</ispartof><rights>The Author(s) 2017</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-cba4d58f8b63b2f17b979b3e63068959463c7d7943f8d5a8396ead4a4c3e3f773</citedby><cites>FETCH-LOGICAL-c470t-cba4d58f8b63b2f17b979b3e63068959463c7d7943f8d5a8396ead4a4c3e3f773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00894-017-3559-6$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00894-017-3559-6$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29274012$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chojnacka, Martyna</creatorcontrib><creatorcontrib>Feliks, Mikolaj</creatorcontrib><creatorcontrib>Beker, Wiktor</creatorcontrib><creatorcontrib>Sokalski, W. Andrzej</creatorcontrib><title>Predicting substituent effects on activation energy changes by static catalytic fields</title><title>Journal of molecular modeling</title><addtitle>J Mol Model</addtitle><addtitle>J Mol Model</addtitle><description>Catalytic fields illustrate topology of the optimal charge distribution of a molecular environment reducing the activation energy for any process involving barrier crossing, like chemical reaction, bond rotation etc. Until now, this technique has been successfully applied to predict catalytic effects resulting from intermolecular interactions with individual water molecules constituting the first hydration shell, aminoacid mutations in enzymes or Si→Al substitutions in zeolites. In this contribution, hydrogen to fluorine (H→F) substitution effects for two model reactions have been examined indicating qualitative applicability of the catalytic field concept in the case of systems involving intramolecular interactions. Graphical abstract Hydrogen to fluorine (H→F) substitution effects on activation energy in [kcal/mol]</description><subject>Activation energy</subject><subject>Aluminum</subject><subject>Catalysis</subject><subject>Characterization and Evaluation of Materials</subject><subject>Charge distribution</subject><subject>Chemical reactions</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Computer Appl. in Life Sciences</subject><subject>Computer Applications in Chemistry</subject><subject>Fluorine</subject><subject>Molecular Medicine</subject><subject>Mutation</subject><subject>Original Paper</subject><subject>P. Politzer 80th Birthday Festschrift</subject><subject>Substitution reactions</subject><subject>Theoretical and Computational Chemistry</subject><subject>Water chemistry</subject><subject>Zeolites</subject><issn>1610-2940</issn><issn>0948-5023</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp1kU9r3DAQxUVpaZY0H6CXYsglF6ej_9alEELSFALtoe1VyPJoo-C1U0le2G8fLZuGpNCTRrzfPM3oEfKRwjkF0J8zQGdEC1S3XErTqjdkBUZ0rQTG35IVVRRaZgQckZOc7wGAMqkkY-_JETNMi3pfkd8_Eg7Rlzitm7z0ucSy4FQaDAF9yc08Na6qW1diLXHCtN41_s5Na8xNv2tyqYpvvCtu3O2rEHEc8gfyLrgx48nTeUx-XV_9vLxpb79__XZ5cdt6oaG0vndikF3oesV7FqjujTY9R8VBdUYaobjXgzaCh26QruNGoRuEE54jD1rzY_Ll4Puw9BscfB09udE-pLhxaWdnF-1rZYp3dj1vrdSCam2qwdmTQZr_LJiL3cTscRzdhPOSLa0DGWUMExU9_Qe9n5c01fUq1YEymktaKXqgfJpzThieh6Fg98HZQ3C2Bmf3wVlVez693OK5429MFWAHIFepfn168fR_XR8B3EKktg</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Chojnacka, Martyna</creator><creator>Feliks, Mikolaj</creator><creator>Beker, Wiktor</creator><creator>Sokalski, W. Andrzej</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20180101</creationdate><title>Predicting substituent effects on activation energy changes by static catalytic fields</title><author>Chojnacka, Martyna ; Feliks, Mikolaj ; Beker, Wiktor ; Sokalski, W. Andrzej</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-cba4d58f8b63b2f17b979b3e63068959463c7d7943f8d5a8396ead4a4c3e3f773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Activation energy</topic><topic>Aluminum</topic><topic>Catalysis</topic><topic>Characterization and Evaluation of Materials</topic><topic>Charge distribution</topic><topic>Chemical reactions</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Computer Appl. in Life Sciences</topic><topic>Computer Applications in Chemistry</topic><topic>Fluorine</topic><topic>Molecular Medicine</topic><topic>Mutation</topic><topic>Original Paper</topic><topic>P. Politzer 80th Birthday Festschrift</topic><topic>Substitution reactions</topic><topic>Theoretical and Computational Chemistry</topic><topic>Water chemistry</topic><topic>Zeolites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chojnacka, Martyna</creatorcontrib><creatorcontrib>Feliks, Mikolaj</creatorcontrib><creatorcontrib>Beker, Wiktor</creatorcontrib><creatorcontrib>Sokalski, W. Andrzej</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of molecular modeling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chojnacka, Martyna</au><au>Feliks, Mikolaj</au><au>Beker, Wiktor</au><au>Sokalski, W. Andrzej</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting substituent effects on activation energy changes by static catalytic fields</atitle><jtitle>Journal of molecular modeling</jtitle><stitle>J Mol Model</stitle><addtitle>J Mol Model</addtitle><date>2018-01-01</date><risdate>2018</risdate><volume>24</volume><issue>1</issue><spage>28</spage><epage>5</epage><pages>28-5</pages><artnum>28</artnum><issn>1610-2940</issn><eissn>0948-5023</eissn><abstract>Catalytic fields illustrate topology of the optimal charge distribution of a molecular environment reducing the activation energy for any process involving barrier crossing, like chemical reaction, bond rotation etc. Until now, this technique has been successfully applied to predict catalytic effects resulting from intermolecular interactions with individual water molecules constituting the first hydration shell, aminoacid mutations in enzymes or Si→Al substitutions in zeolites. In this contribution, hydrogen to fluorine (H→F) substitution effects for two model reactions have been examined indicating qualitative applicability of the catalytic field concept in the case of systems involving intramolecular interactions. Graphical abstract Hydrogen to fluorine (H→F) substitution effects on activation energy in [kcal/mol]</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>29274012</pmid><doi>10.1007/s00894-017-3559-6</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1610-2940
ispartof Journal of molecular modeling, 2018-01, Vol.24 (1), p.28-5, Article 28
issn 1610-2940
0948-5023
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5741779
source SpringerNature Journals
subjects Activation energy
Aluminum
Catalysis
Characterization and Evaluation of Materials
Charge distribution
Chemical reactions
Chemistry
Chemistry and Materials Science
Computer Appl. in Life Sciences
Computer Applications in Chemistry
Fluorine
Molecular Medicine
Mutation
Original Paper
P. Politzer 80th Birthday Festschrift
Substitution reactions
Theoretical and Computational Chemistry
Water chemistry
Zeolites
title Predicting substituent effects on activation energy changes by static catalytic fields
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T00%3A59%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20substituent%20effects%20on%20activation%20energy%20changes%20by%20static%20catalytic%20fields&rft.jtitle=Journal%20of%20molecular%20modeling&rft.au=Chojnacka,%20Martyna&rft.date=2018-01-01&rft.volume=24&rft.issue=1&rft.spage=28&rft.epage=5&rft.pages=28-5&rft.artnum=28&rft.issn=1610-2940&rft.eissn=0948-5023&rft_id=info:doi/10.1007/s00894-017-3559-6&rft_dat=%3Cproquest_pubme%3E1979969924%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1980697351&rft_id=info:pmid/29274012&rfr_iscdi=true