Predicting substituent effects on activation energy changes by static catalytic fields
Catalytic fields illustrate topology of the optimal charge distribution of a molecular environment reducing the activation energy for any process involving barrier crossing, like chemical reaction, bond rotation etc. Until now, this technique has been successfully applied to predict catalytic effect...
Gespeichert in:
Veröffentlicht in: | Journal of molecular modeling 2018-01, Vol.24 (1), p.28-5, Article 28 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5 |
---|---|
container_issue | 1 |
container_start_page | 28 |
container_title | Journal of molecular modeling |
container_volume | 24 |
creator | Chojnacka, Martyna Feliks, Mikolaj Beker, Wiktor Sokalski, W. Andrzej |
description | Catalytic fields illustrate topology of the optimal charge distribution of a molecular environment reducing the activation energy for any process involving barrier crossing, like chemical reaction, bond rotation etc. Until now, this technique has been successfully applied to predict catalytic effects resulting from intermolecular interactions with individual water molecules constituting the first hydration shell, aminoacid mutations in enzymes or Si→Al substitutions in zeolites. In this contribution, hydrogen to fluorine (H→F) substitution effects for two model reactions have been examined indicating qualitative applicability of the catalytic field concept in the case of systems involving intramolecular interactions.
Graphical abstract
Hydrogen to fluorine (H→F) substitution effects on activation energy in [kcal/mol] |
doi_str_mv | 10.1007/s00894-017-3559-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5741779</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1979969924</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-cba4d58f8b63b2f17b979b3e63068959463c7d7943f8d5a8396ead4a4c3e3f773</originalsourceid><addsrcrecordid>eNp1kU9r3DAQxUVpaZY0H6CXYsglF6ej_9alEELSFALtoe1VyPJoo-C1U0le2G8fLZuGpNCTRrzfPM3oEfKRwjkF0J8zQGdEC1S3XErTqjdkBUZ0rQTG35IVVRRaZgQckZOc7wGAMqkkY-_JETNMi3pfkd8_Eg7Rlzitm7z0ucSy4FQaDAF9yc08Na6qW1diLXHCtN41_s5Na8xNv2tyqYpvvCtu3O2rEHEc8gfyLrgx48nTeUx-XV_9vLxpb79__XZ5cdt6oaG0vndikF3oesV7FqjujTY9R8VBdUYaobjXgzaCh26QruNGoRuEE54jD1rzY_Ll4Puw9BscfB09udE-pLhxaWdnF-1rZYp3dj1vrdSCam2qwdmTQZr_LJiL3cTscRzdhPOSLa0DGWUMExU9_Qe9n5c01fUq1YEymktaKXqgfJpzThieh6Fg98HZQ3C2Bmf3wVlVez693OK5429MFWAHIFepfn168fR_XR8B3EKktg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1980697351</pqid></control><display><type>article</type><title>Predicting substituent effects on activation energy changes by static catalytic fields</title><source>SpringerNature Journals</source><creator>Chojnacka, Martyna ; Feliks, Mikolaj ; Beker, Wiktor ; Sokalski, W. Andrzej</creator><creatorcontrib>Chojnacka, Martyna ; Feliks, Mikolaj ; Beker, Wiktor ; Sokalski, W. Andrzej</creatorcontrib><description>Catalytic fields illustrate topology of the optimal charge distribution of a molecular environment reducing the activation energy for any process involving barrier crossing, like chemical reaction, bond rotation etc. Until now, this technique has been successfully applied to predict catalytic effects resulting from intermolecular interactions with individual water molecules constituting the first hydration shell, aminoacid mutations in enzymes or Si→Al substitutions in zeolites. In this contribution, hydrogen to fluorine (H→F) substitution effects for two model reactions have been examined indicating qualitative applicability of the catalytic field concept in the case of systems involving intramolecular interactions.
Graphical abstract
Hydrogen to fluorine (H→F) substitution effects on activation energy in [kcal/mol]</description><identifier>ISSN: 1610-2940</identifier><identifier>EISSN: 0948-5023</identifier><identifier>DOI: 10.1007/s00894-017-3559-6</identifier><identifier>PMID: 29274012</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Activation energy ; Aluminum ; Catalysis ; Characterization and Evaluation of Materials ; Charge distribution ; Chemical reactions ; Chemistry ; Chemistry and Materials Science ; Computer Appl. in Life Sciences ; Computer Applications in Chemistry ; Fluorine ; Molecular Medicine ; Mutation ; Original Paper ; P. Politzer 80th Birthday Festschrift ; Substitution reactions ; Theoretical and Computational Chemistry ; Water chemistry ; Zeolites</subject><ispartof>Journal of molecular modeling, 2018-01, Vol.24 (1), p.28-5, Article 28</ispartof><rights>The Author(s) 2017</rights><rights>Copyright Springer Science & Business Media 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-cba4d58f8b63b2f17b979b3e63068959463c7d7943f8d5a8396ead4a4c3e3f773</citedby><cites>FETCH-LOGICAL-c470t-cba4d58f8b63b2f17b979b3e63068959463c7d7943f8d5a8396ead4a4c3e3f773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00894-017-3559-6$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00894-017-3559-6$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29274012$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chojnacka, Martyna</creatorcontrib><creatorcontrib>Feliks, Mikolaj</creatorcontrib><creatorcontrib>Beker, Wiktor</creatorcontrib><creatorcontrib>Sokalski, W. Andrzej</creatorcontrib><title>Predicting substituent effects on activation energy changes by static catalytic fields</title><title>Journal of molecular modeling</title><addtitle>J Mol Model</addtitle><addtitle>J Mol Model</addtitle><description>Catalytic fields illustrate topology of the optimal charge distribution of a molecular environment reducing the activation energy for any process involving barrier crossing, like chemical reaction, bond rotation etc. Until now, this technique has been successfully applied to predict catalytic effects resulting from intermolecular interactions with individual water molecules constituting the first hydration shell, aminoacid mutations in enzymes or Si→Al substitutions in zeolites. In this contribution, hydrogen to fluorine (H→F) substitution effects for two model reactions have been examined indicating qualitative applicability of the catalytic field concept in the case of systems involving intramolecular interactions.
Graphical abstract
Hydrogen to fluorine (H→F) substitution effects on activation energy in [kcal/mol]</description><subject>Activation energy</subject><subject>Aluminum</subject><subject>Catalysis</subject><subject>Characterization and Evaluation of Materials</subject><subject>Charge distribution</subject><subject>Chemical reactions</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Computer Appl. in Life Sciences</subject><subject>Computer Applications in Chemistry</subject><subject>Fluorine</subject><subject>Molecular Medicine</subject><subject>Mutation</subject><subject>Original Paper</subject><subject>P. Politzer 80th Birthday Festschrift</subject><subject>Substitution reactions</subject><subject>Theoretical and Computational Chemistry</subject><subject>Water chemistry</subject><subject>Zeolites</subject><issn>1610-2940</issn><issn>0948-5023</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp1kU9r3DAQxUVpaZY0H6CXYsglF6ej_9alEELSFALtoe1VyPJoo-C1U0le2G8fLZuGpNCTRrzfPM3oEfKRwjkF0J8zQGdEC1S3XErTqjdkBUZ0rQTG35IVVRRaZgQckZOc7wGAMqkkY-_JETNMi3pfkd8_Eg7Rlzitm7z0ucSy4FQaDAF9yc08Na6qW1diLXHCtN41_s5Na8xNv2tyqYpvvCtu3O2rEHEc8gfyLrgx48nTeUx-XV_9vLxpb79__XZ5cdt6oaG0vndikF3oesV7FqjujTY9R8VBdUYaobjXgzaCh26QruNGoRuEE54jD1rzY_Ll4Puw9BscfB09udE-pLhxaWdnF-1rZYp3dj1vrdSCam2qwdmTQZr_LJiL3cTscRzdhPOSLa0DGWUMExU9_Qe9n5c01fUq1YEymktaKXqgfJpzThieh6Fg98HZQ3C2Bmf3wVlVez693OK5429MFWAHIFepfn168fR_XR8B3EKktg</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Chojnacka, Martyna</creator><creator>Feliks, Mikolaj</creator><creator>Beker, Wiktor</creator><creator>Sokalski, W. Andrzej</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20180101</creationdate><title>Predicting substituent effects on activation energy changes by static catalytic fields</title><author>Chojnacka, Martyna ; Feliks, Mikolaj ; Beker, Wiktor ; Sokalski, W. Andrzej</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-cba4d58f8b63b2f17b979b3e63068959463c7d7943f8d5a8396ead4a4c3e3f773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Activation energy</topic><topic>Aluminum</topic><topic>Catalysis</topic><topic>Characterization and Evaluation of Materials</topic><topic>Charge distribution</topic><topic>Chemical reactions</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Computer Appl. in Life Sciences</topic><topic>Computer Applications in Chemistry</topic><topic>Fluorine</topic><topic>Molecular Medicine</topic><topic>Mutation</topic><topic>Original Paper</topic><topic>P. Politzer 80th Birthday Festschrift</topic><topic>Substitution reactions</topic><topic>Theoretical and Computational Chemistry</topic><topic>Water chemistry</topic><topic>Zeolites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chojnacka, Martyna</creatorcontrib><creatorcontrib>Feliks, Mikolaj</creatorcontrib><creatorcontrib>Beker, Wiktor</creatorcontrib><creatorcontrib>Sokalski, W. Andrzej</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of molecular modeling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chojnacka, Martyna</au><au>Feliks, Mikolaj</au><au>Beker, Wiktor</au><au>Sokalski, W. Andrzej</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting substituent effects on activation energy changes by static catalytic fields</atitle><jtitle>Journal of molecular modeling</jtitle><stitle>J Mol Model</stitle><addtitle>J Mol Model</addtitle><date>2018-01-01</date><risdate>2018</risdate><volume>24</volume><issue>1</issue><spage>28</spage><epage>5</epage><pages>28-5</pages><artnum>28</artnum><issn>1610-2940</issn><eissn>0948-5023</eissn><abstract>Catalytic fields illustrate topology of the optimal charge distribution of a molecular environment reducing the activation energy for any process involving barrier crossing, like chemical reaction, bond rotation etc. Until now, this technique has been successfully applied to predict catalytic effects resulting from intermolecular interactions with individual water molecules constituting the first hydration shell, aminoacid mutations in enzymes or Si→Al substitutions in zeolites. In this contribution, hydrogen to fluorine (H→F) substitution effects for two model reactions have been examined indicating qualitative applicability of the catalytic field concept in the case of systems involving intramolecular interactions.
Graphical abstract
Hydrogen to fluorine (H→F) substitution effects on activation energy in [kcal/mol]</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>29274012</pmid><doi>10.1007/s00894-017-3559-6</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1610-2940 |
ispartof | Journal of molecular modeling, 2018-01, Vol.24 (1), p.28-5, Article 28 |
issn | 1610-2940 0948-5023 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5741779 |
source | SpringerNature Journals |
subjects | Activation energy Aluminum Catalysis Characterization and Evaluation of Materials Charge distribution Chemical reactions Chemistry Chemistry and Materials Science Computer Appl. in Life Sciences Computer Applications in Chemistry Fluorine Molecular Medicine Mutation Original Paper P. Politzer 80th Birthday Festschrift Substitution reactions Theoretical and Computational Chemistry Water chemistry Zeolites |
title | Predicting substituent effects on activation energy changes by static catalytic fields |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T00%3A59%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20substituent%20effects%20on%20activation%20energy%20changes%20by%20static%20catalytic%20fields&rft.jtitle=Journal%20of%20molecular%20modeling&rft.au=Chojnacka,%20Martyna&rft.date=2018-01-01&rft.volume=24&rft.issue=1&rft.spage=28&rft.epage=5&rft.pages=28-5&rft.artnum=28&rft.issn=1610-2940&rft.eissn=0948-5023&rft_id=info:doi/10.1007/s00894-017-3559-6&rft_dat=%3Cproquest_pubme%3E1979969924%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1980697351&rft_id=info:pmid/29274012&rfr_iscdi=true |