Expansion microscopy of zebrafish for neuroscience and developmental biology studies
Expansion microscopy (ExM) allows scalable imaging of preserved 3D biological specimens with nanoscale resolution on fast diffraction-limited microscopes. Here, we explore the utility of ExM in the larval and embryonic zebrafish, an important model organism for the study of neuroscience and developm...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2017-12, Vol.114 (50), p.E10799-E10808 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | E10808 |
---|---|
container_issue | 50 |
container_start_page | E10799 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 114 |
creator | Freifeld, Limor Odstrcil, Iris Förster, Dominique Ramirez, Alyson Gagnon, James A. Randlett, Owen Costa, Emma K. Asano, Shoh Celiker, Orhan T. Gao, Ruixuan Martin-Alarcon, Daniel A. Reginato, Paul Dick, Cortni Chen, Linlin Schoppik, David Engert, Florian Baier, Herwig Boyden, Edward S. |
description | Expansion microscopy (ExM) allows scalable imaging of preserved 3D biological specimens with nanoscale resolution on fast diffraction-limited microscopes. Here, we explore the utility of ExM in the larval and embryonic zebrafish, an important model organism for the study of neuroscience and development. Regarding neuroscience, we found that ExM enabled the tracing of fine processes of radial glia, which are not resolvable with diffraction-limited microscopy. ExM further resolved putative synaptic connections, as well as molecular differences between densely packed synapses. Finally, ExM could resolve subsynaptic protein organization, such as ring-like structures composed of glycine receptors. Regarding development, we used ExM to characterize the shapes of nuclear invaginations and channels, and to visualize cytoskeletal proteins nearby. We detected nuclear invagination channels at late prophase and telophase, potentially suggesting roles for such channels in cell division. Thus, ExM of the larval and embryonic zebrafish may enable systematic studies of how molecular components are configured in multiple contexts of interest to neuroscience and developmental biology. |
doi_str_mv | 10.1073/pnas.1706281114 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5740639</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26485833</jstor_id><sourcerecordid>26485833</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-765408e15af49456d364fc49927ef3f21b0467811deaac321432ac89c233814c3</originalsourceid><addsrcrecordid>eNpdkbtvFDEYxC0EIkegpgJZoqHZxK_1o0FCUXhIkWhCbfm8nxOfdu3F3o04_np8upAAlYv5eTTzDUKvKTmjRPHzObl6RhWRTFNKxRO0ocTQTgpDnqINIUx1WjBxgl7UuiOEmF6T5-iEGSqZNHKDri9_zi7VmBOeoi-5-jzvcQ74F2yLC7He4pALTrAetAjJA3ZpwAPcwZjnCdLiRryNecw3e1yXdYhQX6JnwY0VXt2_p-j7p8vriy_d1bfPXy8-XnW-J2bplOwF0UB7F4QRvRy4FMELY5iCwAOjWyKkasUGcM5zRgVnzmvjGeeaCs9P0Yej77xuJxh8C1PcaOcSJ1f2Nrto_1VSvLU3-c72ShDJTTN4f29Q8o8V6mKnWD2Mo0uQ12qpkUpIo3rd0Hf_obu8ltTqNUpLI6SmvFHnR-pwylogPIShxB4Ws4fF7ONi7cfbvzs88H8masCbI7CrSy6PuhS6xeL8N79ZnM4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1986946813</pqid></control><display><type>article</type><title>Expansion microscopy of zebrafish for neuroscience and developmental biology studies</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Freifeld, Limor ; Odstrcil, Iris ; Förster, Dominique ; Ramirez, Alyson ; Gagnon, James A. ; Randlett, Owen ; Costa, Emma K. ; Asano, Shoh ; Celiker, Orhan T. ; Gao, Ruixuan ; Martin-Alarcon, Daniel A. ; Reginato, Paul ; Dick, Cortni ; Chen, Linlin ; Schoppik, David ; Engert, Florian ; Baier, Herwig ; Boyden, Edward S.</creator><creatorcontrib>Freifeld, Limor ; Odstrcil, Iris ; Förster, Dominique ; Ramirez, Alyson ; Gagnon, James A. ; Randlett, Owen ; Costa, Emma K. ; Asano, Shoh ; Celiker, Orhan T. ; Gao, Ruixuan ; Martin-Alarcon, Daniel A. ; Reginato, Paul ; Dick, Cortni ; Chen, Linlin ; Schoppik, David ; Engert, Florian ; Baier, Herwig ; Boyden, Edward S.</creatorcontrib><description>Expansion microscopy (ExM) allows scalable imaging of preserved 3D biological specimens with nanoscale resolution on fast diffraction-limited microscopes. Here, we explore the utility of ExM in the larval and embryonic zebrafish, an important model organism for the study of neuroscience and development. Regarding neuroscience, we found that ExM enabled the tracing of fine processes of radial glia, which are not resolvable with diffraction-limited microscopy. ExM further resolved putative synaptic connections, as well as molecular differences between densely packed synapses. Finally, ExM could resolve subsynaptic protein organization, such as ring-like structures composed of glycine receptors. Regarding development, we used ExM to characterize the shapes of nuclear invaginations and channels, and to visualize cytoskeletal proteins nearby. We detected nuclear invagination channels at late prophase and telophase, potentially suggesting roles for such channels in cell division. Thus, ExM of the larval and embryonic zebrafish may enable systematic studies of how molecular components are configured in multiple contexts of interest to neuroscience and developmental biology.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1706281114</identifier><identifier>PMID: 29162696</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Biological Sciences ; Brain - ultrastructure ; Cell Nucleus - ultrastructure ; Cytoskeleton ; Danio rerio ; Developmental biology ; Developmental Biology - methods ; Larva - anatomy & histology ; Microscopes ; Microscopy ; Microscopy - methods ; Neurosciences - methods ; PNAS Plus ; Proteins ; Synapses - ultrastructure ; Zebrafish ; Zebrafish - anatomy & histology ; Zebrafish - embryology</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2017-12, Vol.114 (50), p.E10799-E10808</ispartof><rights>Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright © 2017 the Author(s). Published by PNAS.</rights><rights>Copyright National Academy of Sciences Dec 12, 2017</rights><rights>Copyright © 2017 the Author(s). Published by PNAS. 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-765408e15af49456d364fc49927ef3f21b0467811deaac321432ac89c233814c3</citedby><cites>FETCH-LOGICAL-c509t-765408e15af49456d364fc49927ef3f21b0467811deaac321432ac89c233814c3</cites><orcidid>0000-0002-0739-6947 ; 0000-0002-7821-6755</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26485833$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26485833$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27903,27904,53770,53772,57996,58229</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29162696$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Freifeld, Limor</creatorcontrib><creatorcontrib>Odstrcil, Iris</creatorcontrib><creatorcontrib>Förster, Dominique</creatorcontrib><creatorcontrib>Ramirez, Alyson</creatorcontrib><creatorcontrib>Gagnon, James A.</creatorcontrib><creatorcontrib>Randlett, Owen</creatorcontrib><creatorcontrib>Costa, Emma K.</creatorcontrib><creatorcontrib>Asano, Shoh</creatorcontrib><creatorcontrib>Celiker, Orhan T.</creatorcontrib><creatorcontrib>Gao, Ruixuan</creatorcontrib><creatorcontrib>Martin-Alarcon, Daniel A.</creatorcontrib><creatorcontrib>Reginato, Paul</creatorcontrib><creatorcontrib>Dick, Cortni</creatorcontrib><creatorcontrib>Chen, Linlin</creatorcontrib><creatorcontrib>Schoppik, David</creatorcontrib><creatorcontrib>Engert, Florian</creatorcontrib><creatorcontrib>Baier, Herwig</creatorcontrib><creatorcontrib>Boyden, Edward S.</creatorcontrib><title>Expansion microscopy of zebrafish for neuroscience and developmental biology studies</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Expansion microscopy (ExM) allows scalable imaging of preserved 3D biological specimens with nanoscale resolution on fast diffraction-limited microscopes. Here, we explore the utility of ExM in the larval and embryonic zebrafish, an important model organism for the study of neuroscience and development. Regarding neuroscience, we found that ExM enabled the tracing of fine processes of radial glia, which are not resolvable with diffraction-limited microscopy. ExM further resolved putative synaptic connections, as well as molecular differences between densely packed synapses. Finally, ExM could resolve subsynaptic protein organization, such as ring-like structures composed of glycine receptors. Regarding development, we used ExM to characterize the shapes of nuclear invaginations and channels, and to visualize cytoskeletal proteins nearby. We detected nuclear invagination channels at late prophase and telophase, potentially suggesting roles for such channels in cell division. Thus, ExM of the larval and embryonic zebrafish may enable systematic studies of how molecular components are configured in multiple contexts of interest to neuroscience and developmental biology.</description><subject>Animals</subject><subject>Biological Sciences</subject><subject>Brain - ultrastructure</subject><subject>Cell Nucleus - ultrastructure</subject><subject>Cytoskeleton</subject><subject>Danio rerio</subject><subject>Developmental biology</subject><subject>Developmental Biology - methods</subject><subject>Larva - anatomy & histology</subject><subject>Microscopes</subject><subject>Microscopy</subject><subject>Microscopy - methods</subject><subject>Neurosciences - methods</subject><subject>PNAS Plus</subject><subject>Proteins</subject><subject>Synapses - ultrastructure</subject><subject>Zebrafish</subject><subject>Zebrafish - anatomy & histology</subject><subject>Zebrafish - embryology</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkbtvFDEYxC0EIkegpgJZoqHZxK_1o0FCUXhIkWhCbfm8nxOfdu3F3o04_np8upAAlYv5eTTzDUKvKTmjRPHzObl6RhWRTFNKxRO0ocTQTgpDnqINIUx1WjBxgl7UuiOEmF6T5-iEGSqZNHKDri9_zi7VmBOeoi-5-jzvcQ74F2yLC7He4pALTrAetAjJA3ZpwAPcwZjnCdLiRryNecw3e1yXdYhQX6JnwY0VXt2_p-j7p8vriy_d1bfPXy8-XnW-J2bplOwF0UB7F4QRvRy4FMELY5iCwAOjWyKkasUGcM5zRgVnzmvjGeeaCs9P0Yej77xuJxh8C1PcaOcSJ1f2Nrto_1VSvLU3-c72ShDJTTN4f29Q8o8V6mKnWD2Mo0uQ12qpkUpIo3rd0Hf_obu8ltTqNUpLI6SmvFHnR-pwylogPIShxB4Ws4fF7ONi7cfbvzs88H8masCbI7CrSy6PuhS6xeL8N79ZnM4</recordid><startdate>20171212</startdate><enddate>20171212</enddate><creator>Freifeld, Limor</creator><creator>Odstrcil, Iris</creator><creator>Förster, Dominique</creator><creator>Ramirez, Alyson</creator><creator>Gagnon, James A.</creator><creator>Randlett, Owen</creator><creator>Costa, Emma K.</creator><creator>Asano, Shoh</creator><creator>Celiker, Orhan T.</creator><creator>Gao, Ruixuan</creator><creator>Martin-Alarcon, Daniel A.</creator><creator>Reginato, Paul</creator><creator>Dick, Cortni</creator><creator>Chen, Linlin</creator><creator>Schoppik, David</creator><creator>Engert, Florian</creator><creator>Baier, Herwig</creator><creator>Boyden, Edward S.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0739-6947</orcidid><orcidid>https://orcid.org/0000-0002-7821-6755</orcidid></search><sort><creationdate>20171212</creationdate><title>Expansion microscopy of zebrafish for neuroscience and developmental biology studies</title><author>Freifeld, Limor ; Odstrcil, Iris ; Förster, Dominique ; Ramirez, Alyson ; Gagnon, James A. ; Randlett, Owen ; Costa, Emma K. ; Asano, Shoh ; Celiker, Orhan T. ; Gao, Ruixuan ; Martin-Alarcon, Daniel A. ; Reginato, Paul ; Dick, Cortni ; Chen, Linlin ; Schoppik, David ; Engert, Florian ; Baier, Herwig ; Boyden, Edward S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-765408e15af49456d364fc49927ef3f21b0467811deaac321432ac89c233814c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Biological Sciences</topic><topic>Brain - ultrastructure</topic><topic>Cell Nucleus - ultrastructure</topic><topic>Cytoskeleton</topic><topic>Danio rerio</topic><topic>Developmental biology</topic><topic>Developmental Biology - methods</topic><topic>Larva - anatomy & histology</topic><topic>Microscopes</topic><topic>Microscopy</topic><topic>Microscopy - methods</topic><topic>Neurosciences - methods</topic><topic>PNAS Plus</topic><topic>Proteins</topic><topic>Synapses - ultrastructure</topic><topic>Zebrafish</topic><topic>Zebrafish - anatomy & histology</topic><topic>Zebrafish - embryology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Freifeld, Limor</creatorcontrib><creatorcontrib>Odstrcil, Iris</creatorcontrib><creatorcontrib>Förster, Dominique</creatorcontrib><creatorcontrib>Ramirez, Alyson</creatorcontrib><creatorcontrib>Gagnon, James A.</creatorcontrib><creatorcontrib>Randlett, Owen</creatorcontrib><creatorcontrib>Costa, Emma K.</creatorcontrib><creatorcontrib>Asano, Shoh</creatorcontrib><creatorcontrib>Celiker, Orhan T.</creatorcontrib><creatorcontrib>Gao, Ruixuan</creatorcontrib><creatorcontrib>Martin-Alarcon, Daniel A.</creatorcontrib><creatorcontrib>Reginato, Paul</creatorcontrib><creatorcontrib>Dick, Cortni</creatorcontrib><creatorcontrib>Chen, Linlin</creatorcontrib><creatorcontrib>Schoppik, David</creatorcontrib><creatorcontrib>Engert, Florian</creatorcontrib><creatorcontrib>Baier, Herwig</creatorcontrib><creatorcontrib>Boyden, Edward S.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Freifeld, Limor</au><au>Odstrcil, Iris</au><au>Förster, Dominique</au><au>Ramirez, Alyson</au><au>Gagnon, James A.</au><au>Randlett, Owen</au><au>Costa, Emma K.</au><au>Asano, Shoh</au><au>Celiker, Orhan T.</au><au>Gao, Ruixuan</au><au>Martin-Alarcon, Daniel A.</au><au>Reginato, Paul</au><au>Dick, Cortni</au><au>Chen, Linlin</au><au>Schoppik, David</au><au>Engert, Florian</au><au>Baier, Herwig</au><au>Boyden, Edward S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Expansion microscopy of zebrafish for neuroscience and developmental biology studies</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2017-12-12</date><risdate>2017</risdate><volume>114</volume><issue>50</issue><spage>E10799</spage><epage>E10808</epage><pages>E10799-E10808</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Expansion microscopy (ExM) allows scalable imaging of preserved 3D biological specimens with nanoscale resolution on fast diffraction-limited microscopes. Here, we explore the utility of ExM in the larval and embryonic zebrafish, an important model organism for the study of neuroscience and development. Regarding neuroscience, we found that ExM enabled the tracing of fine processes of radial glia, which are not resolvable with diffraction-limited microscopy. ExM further resolved putative synaptic connections, as well as molecular differences between densely packed synapses. Finally, ExM could resolve subsynaptic protein organization, such as ring-like structures composed of glycine receptors. Regarding development, we used ExM to characterize the shapes of nuclear invaginations and channels, and to visualize cytoskeletal proteins nearby. We detected nuclear invagination channels at late prophase and telophase, potentially suggesting roles for such channels in cell division. Thus, ExM of the larval and embryonic zebrafish may enable systematic studies of how molecular components are configured in multiple contexts of interest to neuroscience and developmental biology.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>29162696</pmid><doi>10.1073/pnas.1706281114</doi><orcidid>https://orcid.org/0000-0002-0739-6947</orcidid><orcidid>https://orcid.org/0000-0002-7821-6755</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2017-12, Vol.114 (50), p.E10799-E10808 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5740639 |
source | MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Animals Biological Sciences Brain - ultrastructure Cell Nucleus - ultrastructure Cytoskeleton Danio rerio Developmental biology Developmental Biology - methods Larva - anatomy & histology Microscopes Microscopy Microscopy - methods Neurosciences - methods PNAS Plus Proteins Synapses - ultrastructure Zebrafish Zebrafish - anatomy & histology Zebrafish - embryology |
title | Expansion microscopy of zebrafish for neuroscience and developmental biology studies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T06%3A28%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Expansion%20microscopy%20of%20zebrafish%20for%20neuroscience%20and%20developmental%20biology%20studies&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Freifeld,%20Limor&rft.date=2017-12-12&rft.volume=114&rft.issue=50&rft.spage=E10799&rft.epage=E10808&rft.pages=E10799-E10808&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1706281114&rft_dat=%3Cjstor_pubme%3E26485833%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1986946813&rft_id=info:pmid/29162696&rft_jstor_id=26485833&rfr_iscdi=true |