Expansion microscopy of zebrafish for neuroscience and developmental biology studies

Expansion microscopy (ExM) allows scalable imaging of preserved 3D biological specimens with nanoscale resolution on fast diffraction-limited microscopes. Here, we explore the utility of ExM in the larval and embryonic zebrafish, an important model organism for the study of neuroscience and developm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2017-12, Vol.114 (50), p.E10799-E10808
Hauptverfasser: Freifeld, Limor, Odstrcil, Iris, Förster, Dominique, Ramirez, Alyson, Gagnon, James A., Randlett, Owen, Costa, Emma K., Asano, Shoh, Celiker, Orhan T., Gao, Ruixuan, Martin-Alarcon, Daniel A., Reginato, Paul, Dick, Cortni, Chen, Linlin, Schoppik, David, Engert, Florian, Baier, Herwig, Boyden, Edward S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page E10808
container_issue 50
container_start_page E10799
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 114
creator Freifeld, Limor
Odstrcil, Iris
Förster, Dominique
Ramirez, Alyson
Gagnon, James A.
Randlett, Owen
Costa, Emma K.
Asano, Shoh
Celiker, Orhan T.
Gao, Ruixuan
Martin-Alarcon, Daniel A.
Reginato, Paul
Dick, Cortni
Chen, Linlin
Schoppik, David
Engert, Florian
Baier, Herwig
Boyden, Edward S.
description Expansion microscopy (ExM) allows scalable imaging of preserved 3D biological specimens with nanoscale resolution on fast diffraction-limited microscopes. Here, we explore the utility of ExM in the larval and embryonic zebrafish, an important model organism for the study of neuroscience and development. Regarding neuroscience, we found that ExM enabled the tracing of fine processes of radial glia, which are not resolvable with diffraction-limited microscopy. ExM further resolved putative synaptic connections, as well as molecular differences between densely packed synapses. Finally, ExM could resolve subsynaptic protein organization, such as ring-like structures composed of glycine receptors. Regarding development, we used ExM to characterize the shapes of nuclear invaginations and channels, and to visualize cytoskeletal proteins nearby. We detected nuclear invagination channels at late prophase and telophase, potentially suggesting roles for such channels in cell division. Thus, ExM of the larval and embryonic zebrafish may enable systematic studies of how molecular components are configured in multiple contexts of interest to neuroscience and developmental biology.
doi_str_mv 10.1073/pnas.1706281114
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5740639</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26485833</jstor_id><sourcerecordid>26485833</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-765408e15af49456d364fc49927ef3f21b0467811deaac321432ac89c233814c3</originalsourceid><addsrcrecordid>eNpdkbtvFDEYxC0EIkegpgJZoqHZxK_1o0FCUXhIkWhCbfm8nxOfdu3F3o04_np8upAAlYv5eTTzDUKvKTmjRPHzObl6RhWRTFNKxRO0ocTQTgpDnqINIUx1WjBxgl7UuiOEmF6T5-iEGSqZNHKDri9_zi7VmBOeoi-5-jzvcQ74F2yLC7He4pALTrAetAjJA3ZpwAPcwZjnCdLiRryNecw3e1yXdYhQX6JnwY0VXt2_p-j7p8vriy_d1bfPXy8-XnW-J2bplOwF0UB7F4QRvRy4FMELY5iCwAOjWyKkasUGcM5zRgVnzmvjGeeaCs9P0Yej77xuJxh8C1PcaOcSJ1f2Nrto_1VSvLU3-c72ShDJTTN4f29Q8o8V6mKnWD2Mo0uQ12qpkUpIo3rd0Hf_obu8ltTqNUpLI6SmvFHnR-pwylogPIShxB4Ws4fF7ONi7cfbvzs88H8masCbI7CrSy6PuhS6xeL8N79ZnM4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1986946813</pqid></control><display><type>article</type><title>Expansion microscopy of zebrafish for neuroscience and developmental biology studies</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Freifeld, Limor ; Odstrcil, Iris ; Förster, Dominique ; Ramirez, Alyson ; Gagnon, James A. ; Randlett, Owen ; Costa, Emma K. ; Asano, Shoh ; Celiker, Orhan T. ; Gao, Ruixuan ; Martin-Alarcon, Daniel A. ; Reginato, Paul ; Dick, Cortni ; Chen, Linlin ; Schoppik, David ; Engert, Florian ; Baier, Herwig ; Boyden, Edward S.</creator><creatorcontrib>Freifeld, Limor ; Odstrcil, Iris ; Förster, Dominique ; Ramirez, Alyson ; Gagnon, James A. ; Randlett, Owen ; Costa, Emma K. ; Asano, Shoh ; Celiker, Orhan T. ; Gao, Ruixuan ; Martin-Alarcon, Daniel A. ; Reginato, Paul ; Dick, Cortni ; Chen, Linlin ; Schoppik, David ; Engert, Florian ; Baier, Herwig ; Boyden, Edward S.</creatorcontrib><description>Expansion microscopy (ExM) allows scalable imaging of preserved 3D biological specimens with nanoscale resolution on fast diffraction-limited microscopes. Here, we explore the utility of ExM in the larval and embryonic zebrafish, an important model organism for the study of neuroscience and development. Regarding neuroscience, we found that ExM enabled the tracing of fine processes of radial glia, which are not resolvable with diffraction-limited microscopy. ExM further resolved putative synaptic connections, as well as molecular differences between densely packed synapses. Finally, ExM could resolve subsynaptic protein organization, such as ring-like structures composed of glycine receptors. Regarding development, we used ExM to characterize the shapes of nuclear invaginations and channels, and to visualize cytoskeletal proteins nearby. We detected nuclear invagination channels at late prophase and telophase, potentially suggesting roles for such channels in cell division. Thus, ExM of the larval and embryonic zebrafish may enable systematic studies of how molecular components are configured in multiple contexts of interest to neuroscience and developmental biology.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1706281114</identifier><identifier>PMID: 29162696</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Biological Sciences ; Brain - ultrastructure ; Cell Nucleus - ultrastructure ; Cytoskeleton ; Danio rerio ; Developmental biology ; Developmental Biology - methods ; Larva - anatomy &amp; histology ; Microscopes ; Microscopy ; Microscopy - methods ; Neurosciences - methods ; PNAS Plus ; Proteins ; Synapses - ultrastructure ; Zebrafish ; Zebrafish - anatomy &amp; histology ; Zebrafish - embryology</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2017-12, Vol.114 (50), p.E10799-E10808</ispartof><rights>Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright © 2017 the Author(s). Published by PNAS.</rights><rights>Copyright National Academy of Sciences Dec 12, 2017</rights><rights>Copyright © 2017 the Author(s). Published by PNAS. 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-765408e15af49456d364fc49927ef3f21b0467811deaac321432ac89c233814c3</citedby><cites>FETCH-LOGICAL-c509t-765408e15af49456d364fc49927ef3f21b0467811deaac321432ac89c233814c3</cites><orcidid>0000-0002-0739-6947 ; 0000-0002-7821-6755</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26485833$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26485833$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27903,27904,53770,53772,57996,58229</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29162696$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Freifeld, Limor</creatorcontrib><creatorcontrib>Odstrcil, Iris</creatorcontrib><creatorcontrib>Förster, Dominique</creatorcontrib><creatorcontrib>Ramirez, Alyson</creatorcontrib><creatorcontrib>Gagnon, James A.</creatorcontrib><creatorcontrib>Randlett, Owen</creatorcontrib><creatorcontrib>Costa, Emma K.</creatorcontrib><creatorcontrib>Asano, Shoh</creatorcontrib><creatorcontrib>Celiker, Orhan T.</creatorcontrib><creatorcontrib>Gao, Ruixuan</creatorcontrib><creatorcontrib>Martin-Alarcon, Daniel A.</creatorcontrib><creatorcontrib>Reginato, Paul</creatorcontrib><creatorcontrib>Dick, Cortni</creatorcontrib><creatorcontrib>Chen, Linlin</creatorcontrib><creatorcontrib>Schoppik, David</creatorcontrib><creatorcontrib>Engert, Florian</creatorcontrib><creatorcontrib>Baier, Herwig</creatorcontrib><creatorcontrib>Boyden, Edward S.</creatorcontrib><title>Expansion microscopy of zebrafish for neuroscience and developmental biology studies</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Expansion microscopy (ExM) allows scalable imaging of preserved 3D biological specimens with nanoscale resolution on fast diffraction-limited microscopes. Here, we explore the utility of ExM in the larval and embryonic zebrafish, an important model organism for the study of neuroscience and development. Regarding neuroscience, we found that ExM enabled the tracing of fine processes of radial glia, which are not resolvable with diffraction-limited microscopy. ExM further resolved putative synaptic connections, as well as molecular differences between densely packed synapses. Finally, ExM could resolve subsynaptic protein organization, such as ring-like structures composed of glycine receptors. Regarding development, we used ExM to characterize the shapes of nuclear invaginations and channels, and to visualize cytoskeletal proteins nearby. We detected nuclear invagination channels at late prophase and telophase, potentially suggesting roles for such channels in cell division. Thus, ExM of the larval and embryonic zebrafish may enable systematic studies of how molecular components are configured in multiple contexts of interest to neuroscience and developmental biology.</description><subject>Animals</subject><subject>Biological Sciences</subject><subject>Brain - ultrastructure</subject><subject>Cell Nucleus - ultrastructure</subject><subject>Cytoskeleton</subject><subject>Danio rerio</subject><subject>Developmental biology</subject><subject>Developmental Biology - methods</subject><subject>Larva - anatomy &amp; histology</subject><subject>Microscopes</subject><subject>Microscopy</subject><subject>Microscopy - methods</subject><subject>Neurosciences - methods</subject><subject>PNAS Plus</subject><subject>Proteins</subject><subject>Synapses - ultrastructure</subject><subject>Zebrafish</subject><subject>Zebrafish - anatomy &amp; histology</subject><subject>Zebrafish - embryology</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkbtvFDEYxC0EIkegpgJZoqHZxK_1o0FCUXhIkWhCbfm8nxOfdu3F3o04_np8upAAlYv5eTTzDUKvKTmjRPHzObl6RhWRTFNKxRO0ocTQTgpDnqINIUx1WjBxgl7UuiOEmF6T5-iEGSqZNHKDri9_zi7VmBOeoi-5-jzvcQ74F2yLC7He4pALTrAetAjJA3ZpwAPcwZjnCdLiRryNecw3e1yXdYhQX6JnwY0VXt2_p-j7p8vriy_d1bfPXy8-XnW-J2bplOwF0UB7F4QRvRy4FMELY5iCwAOjWyKkasUGcM5zRgVnzmvjGeeaCs9P0Yej77xuJxh8C1PcaOcSJ1f2Nrto_1VSvLU3-c72ShDJTTN4f29Q8o8V6mKnWD2Mo0uQ12qpkUpIo3rd0Hf_obu8ltTqNUpLI6SmvFHnR-pwylogPIShxB4Ws4fF7ONi7cfbvzs88H8masCbI7CrSy6PuhS6xeL8N79ZnM4</recordid><startdate>20171212</startdate><enddate>20171212</enddate><creator>Freifeld, Limor</creator><creator>Odstrcil, Iris</creator><creator>Förster, Dominique</creator><creator>Ramirez, Alyson</creator><creator>Gagnon, James A.</creator><creator>Randlett, Owen</creator><creator>Costa, Emma K.</creator><creator>Asano, Shoh</creator><creator>Celiker, Orhan T.</creator><creator>Gao, Ruixuan</creator><creator>Martin-Alarcon, Daniel A.</creator><creator>Reginato, Paul</creator><creator>Dick, Cortni</creator><creator>Chen, Linlin</creator><creator>Schoppik, David</creator><creator>Engert, Florian</creator><creator>Baier, Herwig</creator><creator>Boyden, Edward S.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0739-6947</orcidid><orcidid>https://orcid.org/0000-0002-7821-6755</orcidid></search><sort><creationdate>20171212</creationdate><title>Expansion microscopy of zebrafish for neuroscience and developmental biology studies</title><author>Freifeld, Limor ; Odstrcil, Iris ; Förster, Dominique ; Ramirez, Alyson ; Gagnon, James A. ; Randlett, Owen ; Costa, Emma K. ; Asano, Shoh ; Celiker, Orhan T. ; Gao, Ruixuan ; Martin-Alarcon, Daniel A. ; Reginato, Paul ; Dick, Cortni ; Chen, Linlin ; Schoppik, David ; Engert, Florian ; Baier, Herwig ; Boyden, Edward S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-765408e15af49456d364fc49927ef3f21b0467811deaac321432ac89c233814c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Biological Sciences</topic><topic>Brain - ultrastructure</topic><topic>Cell Nucleus - ultrastructure</topic><topic>Cytoskeleton</topic><topic>Danio rerio</topic><topic>Developmental biology</topic><topic>Developmental Biology - methods</topic><topic>Larva - anatomy &amp; histology</topic><topic>Microscopes</topic><topic>Microscopy</topic><topic>Microscopy - methods</topic><topic>Neurosciences - methods</topic><topic>PNAS Plus</topic><topic>Proteins</topic><topic>Synapses - ultrastructure</topic><topic>Zebrafish</topic><topic>Zebrafish - anatomy &amp; histology</topic><topic>Zebrafish - embryology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Freifeld, Limor</creatorcontrib><creatorcontrib>Odstrcil, Iris</creatorcontrib><creatorcontrib>Förster, Dominique</creatorcontrib><creatorcontrib>Ramirez, Alyson</creatorcontrib><creatorcontrib>Gagnon, James A.</creatorcontrib><creatorcontrib>Randlett, Owen</creatorcontrib><creatorcontrib>Costa, Emma K.</creatorcontrib><creatorcontrib>Asano, Shoh</creatorcontrib><creatorcontrib>Celiker, Orhan T.</creatorcontrib><creatorcontrib>Gao, Ruixuan</creatorcontrib><creatorcontrib>Martin-Alarcon, Daniel A.</creatorcontrib><creatorcontrib>Reginato, Paul</creatorcontrib><creatorcontrib>Dick, Cortni</creatorcontrib><creatorcontrib>Chen, Linlin</creatorcontrib><creatorcontrib>Schoppik, David</creatorcontrib><creatorcontrib>Engert, Florian</creatorcontrib><creatorcontrib>Baier, Herwig</creatorcontrib><creatorcontrib>Boyden, Edward S.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Freifeld, Limor</au><au>Odstrcil, Iris</au><au>Förster, Dominique</au><au>Ramirez, Alyson</au><au>Gagnon, James A.</au><au>Randlett, Owen</au><au>Costa, Emma K.</au><au>Asano, Shoh</au><au>Celiker, Orhan T.</au><au>Gao, Ruixuan</au><au>Martin-Alarcon, Daniel A.</au><au>Reginato, Paul</au><au>Dick, Cortni</au><au>Chen, Linlin</au><au>Schoppik, David</au><au>Engert, Florian</au><au>Baier, Herwig</au><au>Boyden, Edward S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Expansion microscopy of zebrafish for neuroscience and developmental biology studies</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2017-12-12</date><risdate>2017</risdate><volume>114</volume><issue>50</issue><spage>E10799</spage><epage>E10808</epage><pages>E10799-E10808</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Expansion microscopy (ExM) allows scalable imaging of preserved 3D biological specimens with nanoscale resolution on fast diffraction-limited microscopes. Here, we explore the utility of ExM in the larval and embryonic zebrafish, an important model organism for the study of neuroscience and development. Regarding neuroscience, we found that ExM enabled the tracing of fine processes of radial glia, which are not resolvable with diffraction-limited microscopy. ExM further resolved putative synaptic connections, as well as molecular differences between densely packed synapses. Finally, ExM could resolve subsynaptic protein organization, such as ring-like structures composed of glycine receptors. Regarding development, we used ExM to characterize the shapes of nuclear invaginations and channels, and to visualize cytoskeletal proteins nearby. We detected nuclear invagination channels at late prophase and telophase, potentially suggesting roles for such channels in cell division. Thus, ExM of the larval and embryonic zebrafish may enable systematic studies of how molecular components are configured in multiple contexts of interest to neuroscience and developmental biology.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>29162696</pmid><doi>10.1073/pnas.1706281114</doi><orcidid>https://orcid.org/0000-0002-0739-6947</orcidid><orcidid>https://orcid.org/0000-0002-7821-6755</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2017-12, Vol.114 (50), p.E10799-E10808
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5740639
source MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Animals
Biological Sciences
Brain - ultrastructure
Cell Nucleus - ultrastructure
Cytoskeleton
Danio rerio
Developmental biology
Developmental Biology - methods
Larva - anatomy & histology
Microscopes
Microscopy
Microscopy - methods
Neurosciences - methods
PNAS Plus
Proteins
Synapses - ultrastructure
Zebrafish
Zebrafish - anatomy & histology
Zebrafish - embryology
title Expansion microscopy of zebrafish for neuroscience and developmental biology studies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T06%3A28%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Expansion%20microscopy%20of%20zebrafish%20for%20neuroscience%20and%20developmental%20biology%20studies&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Freifeld,%20Limor&rft.date=2017-12-12&rft.volume=114&rft.issue=50&rft.spage=E10799&rft.epage=E10808&rft.pages=E10799-E10808&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1706281114&rft_dat=%3Cjstor_pubme%3E26485833%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1986946813&rft_id=info:pmid/29162696&rft_jstor_id=26485833&rfr_iscdi=true