Cystic Fibrosis Transmembrane Conductance Regulator Attaches Tumor Suppressor PTEN to the Membrane and Promotes Anti Pseudomonas aeruginosa Immunity

The tumor suppressor PTEN controls cell proliferation by regulating phosphatidylinositol-3-kinase (PI3K) activity, but the participation of PTEN in host defense against bacterial infection is less well understood. Anti-inflammatory PI3K-Akt signaling is suppressed in patients with cystic fibrosis (C...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Immunity (Cambridge, Mass.) Mass.), 2017-12, Vol.47 (6), p.1169-1181.e7
Hauptverfasser: Riquelme, Sebastián A., Hopkins, Benjamin D., Wolfe, Andrew L., DiMango, Emily, Kitur, Kipyegon, Parsons, Ramon, Prince, Alice
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1181.e7
container_issue 6
container_start_page 1169
container_title Immunity (Cambridge, Mass.)
container_volume 47
creator Riquelme, Sebastián A.
Hopkins, Benjamin D.
Wolfe, Andrew L.
DiMango, Emily
Kitur, Kipyegon
Parsons, Ramon
Prince, Alice
description The tumor suppressor PTEN controls cell proliferation by regulating phosphatidylinositol-3-kinase (PI3K) activity, but the participation of PTEN in host defense against bacterial infection is less well understood. Anti-inflammatory PI3K-Akt signaling is suppressed in patients with cystic fibrosis (CF), a disease characterized by hyper-inflammatory responses to airway infection. We found that Ptenl−/− mice, which lack the NH2-amino terminal splice variant of PTEN, were unable to eradicate Pseudomonas aeruginosa from the airways and could not generate sufficient anti-inflammatory PI3K activity, similar to what is observed in CF. PTEN and the CF transmembrane conductance regulator (CFTR) interacted directly and this interaction was necessary to position PTEN at the membrane. CF patients under corrector-potentiator therapy, which enhances CFTR transport to the membrane, have increased PTEN amounts. These findings suggest that improved CFTR trafficking could enhance P. aeruginosa clearance from the CF airway by activating PTEN-mediated anti-bacterial responses and might represent a therapeutic strategy. [Display omitted] •CFTR interacts directly with PTEN•PTEN regulates secretion of inflammatory cytokines and P. aeruginosa killing•CFTR mutations that decrease trafficking to the plasma membrane reduce PTEN levels•PTEN deficiency contributes to cystic fibrosis inflammatory pathology Anti-inflammatory PI3K-Akt signaling is suppressed in patients with cystic fibrosis (CF), a disease characterized by hyper-inflammatory responses to airway infection. Riquelme et al. find that CFTR channel directly interacts with tumor suppressor PTEN, which regulates PI3K activity. CFTR helps position PTEN at the membrane to promote PTEN function and host immunity against Pseudomonas aeruginosa infection.
doi_str_mv 10.1016/j.immuni.2017.11.010
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5738266</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1074761317304879</els_id><sourcerecordid>1977784141</sourcerecordid><originalsourceid>FETCH-LOGICAL-c491t-16301a140ba800f0b44ef39e6f5f1fcf92665d36a05a695721e3947dcaaa04893</originalsourceid><addsrcrecordid>eNp9kc1u1DAUhSMEoqXwBghZYsMmwTdxnGSDNBq1UKnACIa15Tg3Mx4l9uCfSvMePDAepi0_C1b32j732Mdflr0EWgAF_nZX6HmORhclhaYAKCjQR9k50K7JGbT08bFvWN5wqM6yZ97vKAVWd_RpdlZ2JeOMsfPsx_Lgg1bkSvfOeu3J2knjZ5z7VJEsrRmiCtIoJF9wEycZrCOLEKTaYhLHOS2_xv3eofepXa0vP5FgSdgi-XhvIs1AVs7ONqSRhQmarDzGIW0Y6YlEFzfaWC_J9a9A4fA8ezLKyeOLu3qRfbu6XC8_5Def318vFze5Yh2EHHhFQQKjvWwpHWnPGI5Vh3ysRxjV2JWc10PFJa0l7-qmBKw61gxKSklZ21UX2buT7z72Mw4KTXByEnunZ-kOwkot_j4xeis29lbUTdUm82Tw5s7A2e8RfRCz9gqnKcW20QvomqZpGTBI0tf_SHc2OpPiJVVbMVYDb5OKnVQq0fAOx4fHABVH7GInTtjFEbsAEAl7Gnv1Z5CHoXvOv5Ni-s5bjU54pTFRHbRDFcRg9f9v-AmztMO4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1983445168</pqid></control><display><type>article</type><title>Cystic Fibrosis Transmembrane Conductance Regulator Attaches Tumor Suppressor PTEN to the Membrane and Promotes Anti Pseudomonas aeruginosa Immunity</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Riquelme, Sebastián A. ; Hopkins, Benjamin D. ; Wolfe, Andrew L. ; DiMango, Emily ; Kitur, Kipyegon ; Parsons, Ramon ; Prince, Alice</creator><creatorcontrib>Riquelme, Sebastián A. ; Hopkins, Benjamin D. ; Wolfe, Andrew L. ; DiMango, Emily ; Kitur, Kipyegon ; Parsons, Ramon ; Prince, Alice</creatorcontrib><description>The tumor suppressor PTEN controls cell proliferation by regulating phosphatidylinositol-3-kinase (PI3K) activity, but the participation of PTEN in host defense against bacterial infection is less well understood. Anti-inflammatory PI3K-Akt signaling is suppressed in patients with cystic fibrosis (CF), a disease characterized by hyper-inflammatory responses to airway infection. We found that Ptenl−/− mice, which lack the NH2-amino terminal splice variant of PTEN, were unable to eradicate Pseudomonas aeruginosa from the airways and could not generate sufficient anti-inflammatory PI3K activity, similar to what is observed in CF. PTEN and the CF transmembrane conductance regulator (CFTR) interacted directly and this interaction was necessary to position PTEN at the membrane. CF patients under corrector-potentiator therapy, which enhances CFTR transport to the membrane, have increased PTEN amounts. These findings suggest that improved CFTR trafficking could enhance P. aeruginosa clearance from the CF airway by activating PTEN-mediated anti-bacterial responses and might represent a therapeutic strategy. [Display omitted] •CFTR interacts directly with PTEN•PTEN regulates secretion of inflammatory cytokines and P. aeruginosa killing•CFTR mutations that decrease trafficking to the plasma membrane reduce PTEN levels•PTEN deficiency contributes to cystic fibrosis inflammatory pathology Anti-inflammatory PI3K-Akt signaling is suppressed in patients with cystic fibrosis (CF), a disease characterized by hyper-inflammatory responses to airway infection. Riquelme et al. find that CFTR channel directly interacts with tumor suppressor PTEN, which regulates PI3K activity. CFTR helps position PTEN at the membrane to promote PTEN function and host immunity against Pseudomonas aeruginosa infection.</description><identifier>ISSN: 1074-7613</identifier><identifier>EISSN: 1097-4180</identifier><identifier>DOI: 10.1016/j.immuni.2017.11.010</identifier><identifier>PMID: 29246444</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Aminophenols - pharmacology ; Aminopyridines - pharmacology ; Animals ; Antiinfectives and antibacterials ; Bacterial diseases ; Benzodioxoles - pharmacology ; Cell Membrane - drug effects ; Cell Membrane - immunology ; CFTR ; Cystic fibrosis ; Cystic Fibrosis - drug therapy ; Cystic Fibrosis - genetics ; Cystic Fibrosis - immunology ; Cystic Fibrosis - microbiology ; Cystic Fibrosis Transmembrane Conductance Regulator - genetics ; Cystic Fibrosis Transmembrane Conductance Regulator - immunology ; Gene Expression Regulation ; Humans ; Immune system ; Infections ; Inflammation ; Kinases ; Localization ; Membranes ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Models, Molecular ; Monocytes - drug effects ; Monocytes - immunology ; Monocytes - microbiology ; Mutation ; NF-κB ; Pathogens ; Phosphatase ; Phosphatidylinositol 3-Kinases - genetics ; Phosphatidylinositol 3-Kinases - immunology ; Phosphorylation ; PI3K ; Protein Binding ; Protein Conformation ; Protein Transport ; Proteins ; Proto-Oncogene Proteins c-akt - genetics ; Proto-Oncogene Proteins c-akt - immunology ; Pseudomonas aeruginosa ; Pseudomonas aeruginosa - immunology ; Pseudomonas Infections - genetics ; Pseudomonas Infections - immunology ; Pseudomonas Infections - microbiology ; PTEN ; PTEN Phosphohydrolase - deficiency ; PTEN Phosphohydrolase - genetics ; PTEN Phosphohydrolase - immunology ; Quinolones - pharmacology ; Regulation ; Signal Transduction ; Tumors</subject><ispartof>Immunity (Cambridge, Mass.), 2017-12, Vol.47 (6), p.1169-1181.e7</ispartof><rights>2017</rights><rights>Published by Elsevier Inc.</rights><rights>Copyright Elsevier Limited Dec 19, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c491t-16301a140ba800f0b44ef39e6f5f1fcf92665d36a05a695721e3947dcaaa04893</citedby><cites>FETCH-LOGICAL-c491t-16301a140ba800f0b44ef39e6f5f1fcf92665d36a05a695721e3947dcaaa04893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.immuni.2017.11.010$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3548,27922,27923,45993</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29246444$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Riquelme, Sebastián A.</creatorcontrib><creatorcontrib>Hopkins, Benjamin D.</creatorcontrib><creatorcontrib>Wolfe, Andrew L.</creatorcontrib><creatorcontrib>DiMango, Emily</creatorcontrib><creatorcontrib>Kitur, Kipyegon</creatorcontrib><creatorcontrib>Parsons, Ramon</creatorcontrib><creatorcontrib>Prince, Alice</creatorcontrib><title>Cystic Fibrosis Transmembrane Conductance Regulator Attaches Tumor Suppressor PTEN to the Membrane and Promotes Anti Pseudomonas aeruginosa Immunity</title><title>Immunity (Cambridge, Mass.)</title><addtitle>Immunity</addtitle><description>The tumor suppressor PTEN controls cell proliferation by regulating phosphatidylinositol-3-kinase (PI3K) activity, but the participation of PTEN in host defense against bacterial infection is less well understood. Anti-inflammatory PI3K-Akt signaling is suppressed in patients with cystic fibrosis (CF), a disease characterized by hyper-inflammatory responses to airway infection. We found that Ptenl−/− mice, which lack the NH2-amino terminal splice variant of PTEN, were unable to eradicate Pseudomonas aeruginosa from the airways and could not generate sufficient anti-inflammatory PI3K activity, similar to what is observed in CF. PTEN and the CF transmembrane conductance regulator (CFTR) interacted directly and this interaction was necessary to position PTEN at the membrane. CF patients under corrector-potentiator therapy, which enhances CFTR transport to the membrane, have increased PTEN amounts. These findings suggest that improved CFTR trafficking could enhance P. aeruginosa clearance from the CF airway by activating PTEN-mediated anti-bacterial responses and might represent a therapeutic strategy. [Display omitted] •CFTR interacts directly with PTEN•PTEN regulates secretion of inflammatory cytokines and P. aeruginosa killing•CFTR mutations that decrease trafficking to the plasma membrane reduce PTEN levels•PTEN deficiency contributes to cystic fibrosis inflammatory pathology Anti-inflammatory PI3K-Akt signaling is suppressed in patients with cystic fibrosis (CF), a disease characterized by hyper-inflammatory responses to airway infection. Riquelme et al. find that CFTR channel directly interacts with tumor suppressor PTEN, which regulates PI3K activity. CFTR helps position PTEN at the membrane to promote PTEN function and host immunity against Pseudomonas aeruginosa infection.</description><subject>Aminophenols - pharmacology</subject><subject>Aminopyridines - pharmacology</subject><subject>Animals</subject><subject>Antiinfectives and antibacterials</subject><subject>Bacterial diseases</subject><subject>Benzodioxoles - pharmacology</subject><subject>Cell Membrane - drug effects</subject><subject>Cell Membrane - immunology</subject><subject>CFTR</subject><subject>Cystic fibrosis</subject><subject>Cystic Fibrosis - drug therapy</subject><subject>Cystic Fibrosis - genetics</subject><subject>Cystic Fibrosis - immunology</subject><subject>Cystic Fibrosis - microbiology</subject><subject>Cystic Fibrosis Transmembrane Conductance Regulator - genetics</subject><subject>Cystic Fibrosis Transmembrane Conductance Regulator - immunology</subject><subject>Gene Expression Regulation</subject><subject>Humans</subject><subject>Immune system</subject><subject>Infections</subject><subject>Inflammation</subject><subject>Kinases</subject><subject>Localization</subject><subject>Membranes</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Models, Molecular</subject><subject>Monocytes - drug effects</subject><subject>Monocytes - immunology</subject><subject>Monocytes - microbiology</subject><subject>Mutation</subject><subject>NF-κB</subject><subject>Pathogens</subject><subject>Phosphatase</subject><subject>Phosphatidylinositol 3-Kinases - genetics</subject><subject>Phosphatidylinositol 3-Kinases - immunology</subject><subject>Phosphorylation</subject><subject>PI3K</subject><subject>Protein Binding</subject><subject>Protein Conformation</subject><subject>Protein Transport</subject><subject>Proteins</subject><subject>Proto-Oncogene Proteins c-akt - genetics</subject><subject>Proto-Oncogene Proteins c-akt - immunology</subject><subject>Pseudomonas aeruginosa</subject><subject>Pseudomonas aeruginosa - immunology</subject><subject>Pseudomonas Infections - genetics</subject><subject>Pseudomonas Infections - immunology</subject><subject>Pseudomonas Infections - microbiology</subject><subject>PTEN</subject><subject>PTEN Phosphohydrolase - deficiency</subject><subject>PTEN Phosphohydrolase - genetics</subject><subject>PTEN Phosphohydrolase - immunology</subject><subject>Quinolones - pharmacology</subject><subject>Regulation</subject><subject>Signal Transduction</subject><subject>Tumors</subject><issn>1074-7613</issn><issn>1097-4180</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc1u1DAUhSMEoqXwBghZYsMmwTdxnGSDNBq1UKnACIa15Tg3Mx4l9uCfSvMePDAepi0_C1b32j732Mdflr0EWgAF_nZX6HmORhclhaYAKCjQR9k50K7JGbT08bFvWN5wqM6yZ97vKAVWd_RpdlZ2JeOMsfPsx_Lgg1bkSvfOeu3J2knjZ5z7VJEsrRmiCtIoJF9wEycZrCOLEKTaYhLHOS2_xv3eofepXa0vP5FgSdgi-XhvIs1AVs7ONqSRhQmarDzGIW0Y6YlEFzfaWC_J9a9A4fA8ezLKyeOLu3qRfbu6XC8_5Def318vFze5Yh2EHHhFQQKjvWwpHWnPGI5Vh3ysRxjV2JWc10PFJa0l7-qmBKw61gxKSklZ21UX2buT7z72Mw4KTXByEnunZ-kOwkot_j4xeis29lbUTdUm82Tw5s7A2e8RfRCz9gqnKcW20QvomqZpGTBI0tf_SHc2OpPiJVVbMVYDb5OKnVQq0fAOx4fHABVH7GInTtjFEbsAEAl7Gnv1Z5CHoXvOv5Ni-s5bjU54pTFRHbRDFcRg9f9v-AmztMO4</recordid><startdate>20171219</startdate><enddate>20171219</enddate><creator>Riquelme, Sebastián A.</creator><creator>Hopkins, Benjamin D.</creator><creator>Wolfe, Andrew L.</creator><creator>DiMango, Emily</creator><creator>Kitur, Kipyegon</creator><creator>Parsons, Ramon</creator><creator>Prince, Alice</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20171219</creationdate><title>Cystic Fibrosis Transmembrane Conductance Regulator Attaches Tumor Suppressor PTEN to the Membrane and Promotes Anti Pseudomonas aeruginosa Immunity</title><author>Riquelme, Sebastián A. ; Hopkins, Benjamin D. ; Wolfe, Andrew L. ; DiMango, Emily ; Kitur, Kipyegon ; Parsons, Ramon ; Prince, Alice</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c491t-16301a140ba800f0b44ef39e6f5f1fcf92665d36a05a695721e3947dcaaa04893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aminophenols - pharmacology</topic><topic>Aminopyridines - pharmacology</topic><topic>Animals</topic><topic>Antiinfectives and antibacterials</topic><topic>Bacterial diseases</topic><topic>Benzodioxoles - pharmacology</topic><topic>Cell Membrane - drug effects</topic><topic>Cell Membrane - immunology</topic><topic>CFTR</topic><topic>Cystic fibrosis</topic><topic>Cystic Fibrosis - drug therapy</topic><topic>Cystic Fibrosis - genetics</topic><topic>Cystic Fibrosis - immunology</topic><topic>Cystic Fibrosis - microbiology</topic><topic>Cystic Fibrosis Transmembrane Conductance Regulator - genetics</topic><topic>Cystic Fibrosis Transmembrane Conductance Regulator - immunology</topic><topic>Gene Expression Regulation</topic><topic>Humans</topic><topic>Immune system</topic><topic>Infections</topic><topic>Inflammation</topic><topic>Kinases</topic><topic>Localization</topic><topic>Membranes</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Models, Molecular</topic><topic>Monocytes - drug effects</topic><topic>Monocytes - immunology</topic><topic>Monocytes - microbiology</topic><topic>Mutation</topic><topic>NF-κB</topic><topic>Pathogens</topic><topic>Phosphatase</topic><topic>Phosphatidylinositol 3-Kinases - genetics</topic><topic>Phosphatidylinositol 3-Kinases - immunology</topic><topic>Phosphorylation</topic><topic>PI3K</topic><topic>Protein Binding</topic><topic>Protein Conformation</topic><topic>Protein Transport</topic><topic>Proteins</topic><topic>Proto-Oncogene Proteins c-akt - genetics</topic><topic>Proto-Oncogene Proteins c-akt - immunology</topic><topic>Pseudomonas aeruginosa</topic><topic>Pseudomonas aeruginosa - immunology</topic><topic>Pseudomonas Infections - genetics</topic><topic>Pseudomonas Infections - immunology</topic><topic>Pseudomonas Infections - microbiology</topic><topic>PTEN</topic><topic>PTEN Phosphohydrolase - deficiency</topic><topic>PTEN Phosphohydrolase - genetics</topic><topic>PTEN Phosphohydrolase - immunology</topic><topic>Quinolones - pharmacology</topic><topic>Regulation</topic><topic>Signal Transduction</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Riquelme, Sebastián A.</creatorcontrib><creatorcontrib>Hopkins, Benjamin D.</creatorcontrib><creatorcontrib>Wolfe, Andrew L.</creatorcontrib><creatorcontrib>DiMango, Emily</creatorcontrib><creatorcontrib>Kitur, Kipyegon</creatorcontrib><creatorcontrib>Parsons, Ramon</creatorcontrib><creatorcontrib>Prince, Alice</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Immunity (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Riquelme, Sebastián A.</au><au>Hopkins, Benjamin D.</au><au>Wolfe, Andrew L.</au><au>DiMango, Emily</au><au>Kitur, Kipyegon</au><au>Parsons, Ramon</au><au>Prince, Alice</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cystic Fibrosis Transmembrane Conductance Regulator Attaches Tumor Suppressor PTEN to the Membrane and Promotes Anti Pseudomonas aeruginosa Immunity</atitle><jtitle>Immunity (Cambridge, Mass.)</jtitle><addtitle>Immunity</addtitle><date>2017-12-19</date><risdate>2017</risdate><volume>47</volume><issue>6</issue><spage>1169</spage><epage>1181.e7</epage><pages>1169-1181.e7</pages><issn>1074-7613</issn><eissn>1097-4180</eissn><abstract>The tumor suppressor PTEN controls cell proliferation by regulating phosphatidylinositol-3-kinase (PI3K) activity, but the participation of PTEN in host defense against bacterial infection is less well understood. Anti-inflammatory PI3K-Akt signaling is suppressed in patients with cystic fibrosis (CF), a disease characterized by hyper-inflammatory responses to airway infection. We found that Ptenl−/− mice, which lack the NH2-amino terminal splice variant of PTEN, were unable to eradicate Pseudomonas aeruginosa from the airways and could not generate sufficient anti-inflammatory PI3K activity, similar to what is observed in CF. PTEN and the CF transmembrane conductance regulator (CFTR) interacted directly and this interaction was necessary to position PTEN at the membrane. CF patients under corrector-potentiator therapy, which enhances CFTR transport to the membrane, have increased PTEN amounts. These findings suggest that improved CFTR trafficking could enhance P. aeruginosa clearance from the CF airway by activating PTEN-mediated anti-bacterial responses and might represent a therapeutic strategy. [Display omitted] •CFTR interacts directly with PTEN•PTEN regulates secretion of inflammatory cytokines and P. aeruginosa killing•CFTR mutations that decrease trafficking to the plasma membrane reduce PTEN levels•PTEN deficiency contributes to cystic fibrosis inflammatory pathology Anti-inflammatory PI3K-Akt signaling is suppressed in patients with cystic fibrosis (CF), a disease characterized by hyper-inflammatory responses to airway infection. Riquelme et al. find that CFTR channel directly interacts with tumor suppressor PTEN, which regulates PI3K activity. CFTR helps position PTEN at the membrane to promote PTEN function and host immunity against Pseudomonas aeruginosa infection.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>29246444</pmid><doi>10.1016/j.immuni.2017.11.010</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1074-7613
ispartof Immunity (Cambridge, Mass.), 2017-12, Vol.47 (6), p.1169-1181.e7
issn 1074-7613
1097-4180
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5738266
source MEDLINE; Cell Press Free Archives; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; ScienceDirect Journals (5 years ago - present)
subjects Aminophenols - pharmacology
Aminopyridines - pharmacology
Animals
Antiinfectives and antibacterials
Bacterial diseases
Benzodioxoles - pharmacology
Cell Membrane - drug effects
Cell Membrane - immunology
CFTR
Cystic fibrosis
Cystic Fibrosis - drug therapy
Cystic Fibrosis - genetics
Cystic Fibrosis - immunology
Cystic Fibrosis - microbiology
Cystic Fibrosis Transmembrane Conductance Regulator - genetics
Cystic Fibrosis Transmembrane Conductance Regulator - immunology
Gene Expression Regulation
Humans
Immune system
Infections
Inflammation
Kinases
Localization
Membranes
Mice
Mice, Inbred C57BL
Mice, Knockout
Models, Molecular
Monocytes - drug effects
Monocytes - immunology
Monocytes - microbiology
Mutation
NF-κB
Pathogens
Phosphatase
Phosphatidylinositol 3-Kinases - genetics
Phosphatidylinositol 3-Kinases - immunology
Phosphorylation
PI3K
Protein Binding
Protein Conformation
Protein Transport
Proteins
Proto-Oncogene Proteins c-akt - genetics
Proto-Oncogene Proteins c-akt - immunology
Pseudomonas aeruginosa
Pseudomonas aeruginosa - immunology
Pseudomonas Infections - genetics
Pseudomonas Infections - immunology
Pseudomonas Infections - microbiology
PTEN
PTEN Phosphohydrolase - deficiency
PTEN Phosphohydrolase - genetics
PTEN Phosphohydrolase - immunology
Quinolones - pharmacology
Regulation
Signal Transduction
Tumors
title Cystic Fibrosis Transmembrane Conductance Regulator Attaches Tumor Suppressor PTEN to the Membrane and Promotes Anti Pseudomonas aeruginosa Immunity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T02%3A56%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cystic%20Fibrosis%20Transmembrane%20Conductance%20Regulator%20Attaches%20Tumor%20Suppressor%20PTEN%20to%20the%20Membrane%20and%20Promotes%20Anti%20Pseudomonas%20aeruginosa%20Immunity&rft.jtitle=Immunity%20(Cambridge,%20Mass.)&rft.au=Riquelme,%20Sebasti%C3%A1n%20A.&rft.date=2017-12-19&rft.volume=47&rft.issue=6&rft.spage=1169&rft.epage=1181.e7&rft.pages=1169-1181.e7&rft.issn=1074-7613&rft.eissn=1097-4180&rft_id=info:doi/10.1016/j.immuni.2017.11.010&rft_dat=%3Cproquest_pubme%3E1977784141%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1983445168&rft_id=info:pmid/29246444&rft_els_id=S1074761317304879&rfr_iscdi=true