Cystic Fibrosis Transmembrane Conductance Regulator Attaches Tumor Suppressor PTEN to the Membrane and Promotes Anti Pseudomonas aeruginosa Immunity
The tumor suppressor PTEN controls cell proliferation by regulating phosphatidylinositol-3-kinase (PI3K) activity, but the participation of PTEN in host defense against bacterial infection is less well understood. Anti-inflammatory PI3K-Akt signaling is suppressed in patients with cystic fibrosis (C...
Gespeichert in:
Veröffentlicht in: | Immunity (Cambridge, Mass.) Mass.), 2017-12, Vol.47 (6), p.1169-1181.e7 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1181.e7 |
---|---|
container_issue | 6 |
container_start_page | 1169 |
container_title | Immunity (Cambridge, Mass.) |
container_volume | 47 |
creator | Riquelme, Sebastián A. Hopkins, Benjamin D. Wolfe, Andrew L. DiMango, Emily Kitur, Kipyegon Parsons, Ramon Prince, Alice |
description | The tumor suppressor PTEN controls cell proliferation by regulating phosphatidylinositol-3-kinase (PI3K) activity, but the participation of PTEN in host defense against bacterial infection is less well understood. Anti-inflammatory PI3K-Akt signaling is suppressed in patients with cystic fibrosis (CF), a disease characterized by hyper-inflammatory responses to airway infection. We found that Ptenl−/− mice, which lack the NH2-amino terminal splice variant of PTEN, were unable to eradicate Pseudomonas aeruginosa from the airways and could not generate sufficient anti-inflammatory PI3K activity, similar to what is observed in CF. PTEN and the CF transmembrane conductance regulator (CFTR) interacted directly and this interaction was necessary to position PTEN at the membrane. CF patients under corrector-potentiator therapy, which enhances CFTR transport to the membrane, have increased PTEN amounts. These findings suggest that improved CFTR trafficking could enhance P. aeruginosa clearance from the CF airway by activating PTEN-mediated anti-bacterial responses and might represent a therapeutic strategy.
[Display omitted]
•CFTR interacts directly with PTEN•PTEN regulates secretion of inflammatory cytokines and P. aeruginosa killing•CFTR mutations that decrease trafficking to the plasma membrane reduce PTEN levels•PTEN deficiency contributes to cystic fibrosis inflammatory pathology
Anti-inflammatory PI3K-Akt signaling is suppressed in patients with cystic fibrosis (CF), a disease characterized by hyper-inflammatory responses to airway infection. Riquelme et al. find that CFTR channel directly interacts with tumor suppressor PTEN, which regulates PI3K activity. CFTR helps position PTEN at the membrane to promote PTEN function and host immunity against Pseudomonas aeruginosa infection. |
doi_str_mv | 10.1016/j.immuni.2017.11.010 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5738266</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1074761317304879</els_id><sourcerecordid>1977784141</sourcerecordid><originalsourceid>FETCH-LOGICAL-c491t-16301a140ba800f0b44ef39e6f5f1fcf92665d36a05a695721e3947dcaaa04893</originalsourceid><addsrcrecordid>eNp9kc1u1DAUhSMEoqXwBghZYsMmwTdxnGSDNBq1UKnACIa15Tg3Mx4l9uCfSvMePDAepi0_C1b32j732Mdflr0EWgAF_nZX6HmORhclhaYAKCjQR9k50K7JGbT08bFvWN5wqM6yZ97vKAVWd_RpdlZ2JeOMsfPsx_Lgg1bkSvfOeu3J2knjZ5z7VJEsrRmiCtIoJF9wEycZrCOLEKTaYhLHOS2_xv3eofepXa0vP5FgSdgi-XhvIs1AVs7ONqSRhQmarDzGIW0Y6YlEFzfaWC_J9a9A4fA8ezLKyeOLu3qRfbu6XC8_5Def318vFze5Yh2EHHhFQQKjvWwpHWnPGI5Vh3ysRxjV2JWc10PFJa0l7-qmBKw61gxKSklZ21UX2buT7z72Mw4KTXByEnunZ-kOwkot_j4xeis29lbUTdUm82Tw5s7A2e8RfRCz9gqnKcW20QvomqZpGTBI0tf_SHc2OpPiJVVbMVYDb5OKnVQq0fAOx4fHABVH7GInTtjFEbsAEAl7Gnv1Z5CHoXvOv5Ni-s5bjU54pTFRHbRDFcRg9f9v-AmztMO4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1983445168</pqid></control><display><type>article</type><title>Cystic Fibrosis Transmembrane Conductance Regulator Attaches Tumor Suppressor PTEN to the Membrane and Promotes Anti Pseudomonas aeruginosa Immunity</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Riquelme, Sebastián A. ; Hopkins, Benjamin D. ; Wolfe, Andrew L. ; DiMango, Emily ; Kitur, Kipyegon ; Parsons, Ramon ; Prince, Alice</creator><creatorcontrib>Riquelme, Sebastián A. ; Hopkins, Benjamin D. ; Wolfe, Andrew L. ; DiMango, Emily ; Kitur, Kipyegon ; Parsons, Ramon ; Prince, Alice</creatorcontrib><description>The tumor suppressor PTEN controls cell proliferation by regulating phosphatidylinositol-3-kinase (PI3K) activity, but the participation of PTEN in host defense against bacterial infection is less well understood. Anti-inflammatory PI3K-Akt signaling is suppressed in patients with cystic fibrosis (CF), a disease characterized by hyper-inflammatory responses to airway infection. We found that Ptenl−/− mice, which lack the NH2-amino terminal splice variant of PTEN, were unable to eradicate Pseudomonas aeruginosa from the airways and could not generate sufficient anti-inflammatory PI3K activity, similar to what is observed in CF. PTEN and the CF transmembrane conductance regulator (CFTR) interacted directly and this interaction was necessary to position PTEN at the membrane. CF patients under corrector-potentiator therapy, which enhances CFTR transport to the membrane, have increased PTEN amounts. These findings suggest that improved CFTR trafficking could enhance P. aeruginosa clearance from the CF airway by activating PTEN-mediated anti-bacterial responses and might represent a therapeutic strategy.
[Display omitted]
•CFTR interacts directly with PTEN•PTEN regulates secretion of inflammatory cytokines and P. aeruginosa killing•CFTR mutations that decrease trafficking to the plasma membrane reduce PTEN levels•PTEN deficiency contributes to cystic fibrosis inflammatory pathology
Anti-inflammatory PI3K-Akt signaling is suppressed in patients with cystic fibrosis (CF), a disease characterized by hyper-inflammatory responses to airway infection. Riquelme et al. find that CFTR channel directly interacts with tumor suppressor PTEN, which regulates PI3K activity. CFTR helps position PTEN at the membrane to promote PTEN function and host immunity against Pseudomonas aeruginosa infection.</description><identifier>ISSN: 1074-7613</identifier><identifier>EISSN: 1097-4180</identifier><identifier>DOI: 10.1016/j.immuni.2017.11.010</identifier><identifier>PMID: 29246444</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Aminophenols - pharmacology ; Aminopyridines - pharmacology ; Animals ; Antiinfectives and antibacterials ; Bacterial diseases ; Benzodioxoles - pharmacology ; Cell Membrane - drug effects ; Cell Membrane - immunology ; CFTR ; Cystic fibrosis ; Cystic Fibrosis - drug therapy ; Cystic Fibrosis - genetics ; Cystic Fibrosis - immunology ; Cystic Fibrosis - microbiology ; Cystic Fibrosis Transmembrane Conductance Regulator - genetics ; Cystic Fibrosis Transmembrane Conductance Regulator - immunology ; Gene Expression Regulation ; Humans ; Immune system ; Infections ; Inflammation ; Kinases ; Localization ; Membranes ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Models, Molecular ; Monocytes - drug effects ; Monocytes - immunology ; Monocytes - microbiology ; Mutation ; NF-κB ; Pathogens ; Phosphatase ; Phosphatidylinositol 3-Kinases - genetics ; Phosphatidylinositol 3-Kinases - immunology ; Phosphorylation ; PI3K ; Protein Binding ; Protein Conformation ; Protein Transport ; Proteins ; Proto-Oncogene Proteins c-akt - genetics ; Proto-Oncogene Proteins c-akt - immunology ; Pseudomonas aeruginosa ; Pseudomonas aeruginosa - immunology ; Pseudomonas Infections - genetics ; Pseudomonas Infections - immunology ; Pseudomonas Infections - microbiology ; PTEN ; PTEN Phosphohydrolase - deficiency ; PTEN Phosphohydrolase - genetics ; PTEN Phosphohydrolase - immunology ; Quinolones - pharmacology ; Regulation ; Signal Transduction ; Tumors</subject><ispartof>Immunity (Cambridge, Mass.), 2017-12, Vol.47 (6), p.1169-1181.e7</ispartof><rights>2017</rights><rights>Published by Elsevier Inc.</rights><rights>Copyright Elsevier Limited Dec 19, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c491t-16301a140ba800f0b44ef39e6f5f1fcf92665d36a05a695721e3947dcaaa04893</citedby><cites>FETCH-LOGICAL-c491t-16301a140ba800f0b44ef39e6f5f1fcf92665d36a05a695721e3947dcaaa04893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.immuni.2017.11.010$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3548,27922,27923,45993</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29246444$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Riquelme, Sebastián A.</creatorcontrib><creatorcontrib>Hopkins, Benjamin D.</creatorcontrib><creatorcontrib>Wolfe, Andrew L.</creatorcontrib><creatorcontrib>DiMango, Emily</creatorcontrib><creatorcontrib>Kitur, Kipyegon</creatorcontrib><creatorcontrib>Parsons, Ramon</creatorcontrib><creatorcontrib>Prince, Alice</creatorcontrib><title>Cystic Fibrosis Transmembrane Conductance Regulator Attaches Tumor Suppressor PTEN to the Membrane and Promotes Anti Pseudomonas aeruginosa Immunity</title><title>Immunity (Cambridge, Mass.)</title><addtitle>Immunity</addtitle><description>The tumor suppressor PTEN controls cell proliferation by regulating phosphatidylinositol-3-kinase (PI3K) activity, but the participation of PTEN in host defense against bacterial infection is less well understood. Anti-inflammatory PI3K-Akt signaling is suppressed in patients with cystic fibrosis (CF), a disease characterized by hyper-inflammatory responses to airway infection. We found that Ptenl−/− mice, which lack the NH2-amino terminal splice variant of PTEN, were unable to eradicate Pseudomonas aeruginosa from the airways and could not generate sufficient anti-inflammatory PI3K activity, similar to what is observed in CF. PTEN and the CF transmembrane conductance regulator (CFTR) interacted directly and this interaction was necessary to position PTEN at the membrane. CF patients under corrector-potentiator therapy, which enhances CFTR transport to the membrane, have increased PTEN amounts. These findings suggest that improved CFTR trafficking could enhance P. aeruginosa clearance from the CF airway by activating PTEN-mediated anti-bacterial responses and might represent a therapeutic strategy.
[Display omitted]
•CFTR interacts directly with PTEN•PTEN regulates secretion of inflammatory cytokines and P. aeruginosa killing•CFTR mutations that decrease trafficking to the plasma membrane reduce PTEN levels•PTEN deficiency contributes to cystic fibrosis inflammatory pathology
Anti-inflammatory PI3K-Akt signaling is suppressed in patients with cystic fibrosis (CF), a disease characterized by hyper-inflammatory responses to airway infection. Riquelme et al. find that CFTR channel directly interacts with tumor suppressor PTEN, which regulates PI3K activity. CFTR helps position PTEN at the membrane to promote PTEN function and host immunity against Pseudomonas aeruginosa infection.</description><subject>Aminophenols - pharmacology</subject><subject>Aminopyridines - pharmacology</subject><subject>Animals</subject><subject>Antiinfectives and antibacterials</subject><subject>Bacterial diseases</subject><subject>Benzodioxoles - pharmacology</subject><subject>Cell Membrane - drug effects</subject><subject>Cell Membrane - immunology</subject><subject>CFTR</subject><subject>Cystic fibrosis</subject><subject>Cystic Fibrosis - drug therapy</subject><subject>Cystic Fibrosis - genetics</subject><subject>Cystic Fibrosis - immunology</subject><subject>Cystic Fibrosis - microbiology</subject><subject>Cystic Fibrosis Transmembrane Conductance Regulator - genetics</subject><subject>Cystic Fibrosis Transmembrane Conductance Regulator - immunology</subject><subject>Gene Expression Regulation</subject><subject>Humans</subject><subject>Immune system</subject><subject>Infections</subject><subject>Inflammation</subject><subject>Kinases</subject><subject>Localization</subject><subject>Membranes</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Models, Molecular</subject><subject>Monocytes - drug effects</subject><subject>Monocytes - immunology</subject><subject>Monocytes - microbiology</subject><subject>Mutation</subject><subject>NF-κB</subject><subject>Pathogens</subject><subject>Phosphatase</subject><subject>Phosphatidylinositol 3-Kinases - genetics</subject><subject>Phosphatidylinositol 3-Kinases - immunology</subject><subject>Phosphorylation</subject><subject>PI3K</subject><subject>Protein Binding</subject><subject>Protein Conformation</subject><subject>Protein Transport</subject><subject>Proteins</subject><subject>Proto-Oncogene Proteins c-akt - genetics</subject><subject>Proto-Oncogene Proteins c-akt - immunology</subject><subject>Pseudomonas aeruginosa</subject><subject>Pseudomonas aeruginosa - immunology</subject><subject>Pseudomonas Infections - genetics</subject><subject>Pseudomonas Infections - immunology</subject><subject>Pseudomonas Infections - microbiology</subject><subject>PTEN</subject><subject>PTEN Phosphohydrolase - deficiency</subject><subject>PTEN Phosphohydrolase - genetics</subject><subject>PTEN Phosphohydrolase - immunology</subject><subject>Quinolones - pharmacology</subject><subject>Regulation</subject><subject>Signal Transduction</subject><subject>Tumors</subject><issn>1074-7613</issn><issn>1097-4180</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc1u1DAUhSMEoqXwBghZYsMmwTdxnGSDNBq1UKnACIa15Tg3Mx4l9uCfSvMePDAepi0_C1b32j732Mdflr0EWgAF_nZX6HmORhclhaYAKCjQR9k50K7JGbT08bFvWN5wqM6yZ97vKAVWd_RpdlZ2JeOMsfPsx_Lgg1bkSvfOeu3J2knjZ5z7VJEsrRmiCtIoJF9wEycZrCOLEKTaYhLHOS2_xv3eofepXa0vP5FgSdgi-XhvIs1AVs7ONqSRhQmarDzGIW0Y6YlEFzfaWC_J9a9A4fA8ezLKyeOLu3qRfbu6XC8_5Def318vFze5Yh2EHHhFQQKjvWwpHWnPGI5Vh3ysRxjV2JWc10PFJa0l7-qmBKw61gxKSklZ21UX2buT7z72Mw4KTXByEnunZ-kOwkot_j4xeis29lbUTdUm82Tw5s7A2e8RfRCz9gqnKcW20QvomqZpGTBI0tf_SHc2OpPiJVVbMVYDb5OKnVQq0fAOx4fHABVH7GInTtjFEbsAEAl7Gnv1Z5CHoXvOv5Ni-s5bjU54pTFRHbRDFcRg9f9v-AmztMO4</recordid><startdate>20171219</startdate><enddate>20171219</enddate><creator>Riquelme, Sebastián A.</creator><creator>Hopkins, Benjamin D.</creator><creator>Wolfe, Andrew L.</creator><creator>DiMango, Emily</creator><creator>Kitur, Kipyegon</creator><creator>Parsons, Ramon</creator><creator>Prince, Alice</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20171219</creationdate><title>Cystic Fibrosis Transmembrane Conductance Regulator Attaches Tumor Suppressor PTEN to the Membrane and Promotes Anti Pseudomonas aeruginosa Immunity</title><author>Riquelme, Sebastián A. ; Hopkins, Benjamin D. ; Wolfe, Andrew L. ; DiMango, Emily ; Kitur, Kipyegon ; Parsons, Ramon ; Prince, Alice</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c491t-16301a140ba800f0b44ef39e6f5f1fcf92665d36a05a695721e3947dcaaa04893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aminophenols - pharmacology</topic><topic>Aminopyridines - pharmacology</topic><topic>Animals</topic><topic>Antiinfectives and antibacterials</topic><topic>Bacterial diseases</topic><topic>Benzodioxoles - pharmacology</topic><topic>Cell Membrane - drug effects</topic><topic>Cell Membrane - immunology</topic><topic>CFTR</topic><topic>Cystic fibrosis</topic><topic>Cystic Fibrosis - drug therapy</topic><topic>Cystic Fibrosis - genetics</topic><topic>Cystic Fibrosis - immunology</topic><topic>Cystic Fibrosis - microbiology</topic><topic>Cystic Fibrosis Transmembrane Conductance Regulator - genetics</topic><topic>Cystic Fibrosis Transmembrane Conductance Regulator - immunology</topic><topic>Gene Expression Regulation</topic><topic>Humans</topic><topic>Immune system</topic><topic>Infections</topic><topic>Inflammation</topic><topic>Kinases</topic><topic>Localization</topic><topic>Membranes</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Models, Molecular</topic><topic>Monocytes - drug effects</topic><topic>Monocytes - immunology</topic><topic>Monocytes - microbiology</topic><topic>Mutation</topic><topic>NF-κB</topic><topic>Pathogens</topic><topic>Phosphatase</topic><topic>Phosphatidylinositol 3-Kinases - genetics</topic><topic>Phosphatidylinositol 3-Kinases - immunology</topic><topic>Phosphorylation</topic><topic>PI3K</topic><topic>Protein Binding</topic><topic>Protein Conformation</topic><topic>Protein Transport</topic><topic>Proteins</topic><topic>Proto-Oncogene Proteins c-akt - genetics</topic><topic>Proto-Oncogene Proteins c-akt - immunology</topic><topic>Pseudomonas aeruginosa</topic><topic>Pseudomonas aeruginosa - immunology</topic><topic>Pseudomonas Infections - genetics</topic><topic>Pseudomonas Infections - immunology</topic><topic>Pseudomonas Infections - microbiology</topic><topic>PTEN</topic><topic>PTEN Phosphohydrolase - deficiency</topic><topic>PTEN Phosphohydrolase - genetics</topic><topic>PTEN Phosphohydrolase - immunology</topic><topic>Quinolones - pharmacology</topic><topic>Regulation</topic><topic>Signal Transduction</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Riquelme, Sebastián A.</creatorcontrib><creatorcontrib>Hopkins, Benjamin D.</creatorcontrib><creatorcontrib>Wolfe, Andrew L.</creatorcontrib><creatorcontrib>DiMango, Emily</creatorcontrib><creatorcontrib>Kitur, Kipyegon</creatorcontrib><creatorcontrib>Parsons, Ramon</creatorcontrib><creatorcontrib>Prince, Alice</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Immunity (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Riquelme, Sebastián A.</au><au>Hopkins, Benjamin D.</au><au>Wolfe, Andrew L.</au><au>DiMango, Emily</au><au>Kitur, Kipyegon</au><au>Parsons, Ramon</au><au>Prince, Alice</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cystic Fibrosis Transmembrane Conductance Regulator Attaches Tumor Suppressor PTEN to the Membrane and Promotes Anti Pseudomonas aeruginosa Immunity</atitle><jtitle>Immunity (Cambridge, Mass.)</jtitle><addtitle>Immunity</addtitle><date>2017-12-19</date><risdate>2017</risdate><volume>47</volume><issue>6</issue><spage>1169</spage><epage>1181.e7</epage><pages>1169-1181.e7</pages><issn>1074-7613</issn><eissn>1097-4180</eissn><abstract>The tumor suppressor PTEN controls cell proliferation by regulating phosphatidylinositol-3-kinase (PI3K) activity, but the participation of PTEN in host defense against bacterial infection is less well understood. Anti-inflammatory PI3K-Akt signaling is suppressed in patients with cystic fibrosis (CF), a disease characterized by hyper-inflammatory responses to airway infection. We found that Ptenl−/− mice, which lack the NH2-amino terminal splice variant of PTEN, were unable to eradicate Pseudomonas aeruginosa from the airways and could not generate sufficient anti-inflammatory PI3K activity, similar to what is observed in CF. PTEN and the CF transmembrane conductance regulator (CFTR) interacted directly and this interaction was necessary to position PTEN at the membrane. CF patients under corrector-potentiator therapy, which enhances CFTR transport to the membrane, have increased PTEN amounts. These findings suggest that improved CFTR trafficking could enhance P. aeruginosa clearance from the CF airway by activating PTEN-mediated anti-bacterial responses and might represent a therapeutic strategy.
[Display omitted]
•CFTR interacts directly with PTEN•PTEN regulates secretion of inflammatory cytokines and P. aeruginosa killing•CFTR mutations that decrease trafficking to the plasma membrane reduce PTEN levels•PTEN deficiency contributes to cystic fibrosis inflammatory pathology
Anti-inflammatory PI3K-Akt signaling is suppressed in patients with cystic fibrosis (CF), a disease characterized by hyper-inflammatory responses to airway infection. Riquelme et al. find that CFTR channel directly interacts with tumor suppressor PTEN, which regulates PI3K activity. CFTR helps position PTEN at the membrane to promote PTEN function and host immunity against Pseudomonas aeruginosa infection.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>29246444</pmid><doi>10.1016/j.immuni.2017.11.010</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1074-7613 |
ispartof | Immunity (Cambridge, Mass.), 2017-12, Vol.47 (6), p.1169-1181.e7 |
issn | 1074-7613 1097-4180 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5738266 |
source | MEDLINE; Cell Press Free Archives; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; ScienceDirect Journals (5 years ago - present) |
subjects | Aminophenols - pharmacology Aminopyridines - pharmacology Animals Antiinfectives and antibacterials Bacterial diseases Benzodioxoles - pharmacology Cell Membrane - drug effects Cell Membrane - immunology CFTR Cystic fibrosis Cystic Fibrosis - drug therapy Cystic Fibrosis - genetics Cystic Fibrosis - immunology Cystic Fibrosis - microbiology Cystic Fibrosis Transmembrane Conductance Regulator - genetics Cystic Fibrosis Transmembrane Conductance Regulator - immunology Gene Expression Regulation Humans Immune system Infections Inflammation Kinases Localization Membranes Mice Mice, Inbred C57BL Mice, Knockout Models, Molecular Monocytes - drug effects Monocytes - immunology Monocytes - microbiology Mutation NF-κB Pathogens Phosphatase Phosphatidylinositol 3-Kinases - genetics Phosphatidylinositol 3-Kinases - immunology Phosphorylation PI3K Protein Binding Protein Conformation Protein Transport Proteins Proto-Oncogene Proteins c-akt - genetics Proto-Oncogene Proteins c-akt - immunology Pseudomonas aeruginosa Pseudomonas aeruginosa - immunology Pseudomonas Infections - genetics Pseudomonas Infections - immunology Pseudomonas Infections - microbiology PTEN PTEN Phosphohydrolase - deficiency PTEN Phosphohydrolase - genetics PTEN Phosphohydrolase - immunology Quinolones - pharmacology Regulation Signal Transduction Tumors |
title | Cystic Fibrosis Transmembrane Conductance Regulator Attaches Tumor Suppressor PTEN to the Membrane and Promotes Anti Pseudomonas aeruginosa Immunity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T02%3A56%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cystic%20Fibrosis%20Transmembrane%20Conductance%20Regulator%20Attaches%20Tumor%20Suppressor%20PTEN%20to%20the%20Membrane%20and%20Promotes%20Anti%20Pseudomonas%20aeruginosa%20Immunity&rft.jtitle=Immunity%20(Cambridge,%20Mass.)&rft.au=Riquelme,%20Sebasti%C3%A1n%20A.&rft.date=2017-12-19&rft.volume=47&rft.issue=6&rft.spage=1169&rft.epage=1181.e7&rft.pages=1169-1181.e7&rft.issn=1074-7613&rft.eissn=1097-4180&rft_id=info:doi/10.1016/j.immuni.2017.11.010&rft_dat=%3Cproquest_pubme%3E1977784141%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1983445168&rft_id=info:pmid/29246444&rft_els_id=S1074761317304879&rfr_iscdi=true |