Comparison of five protein engineering strategies to stabilize an α/β-hydrolase

A review of previous stabilization of α/β-hydrolase fold enzymes revealed many different strategies, but no comparison of strategies on the same enzyme. For this reason, we compared five strategies to identify stabilizing mutations in a model α/β-hydrolase-fold enzyme, salicylic acid binding protein...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemistry (Easton) 2017-11, Vol.56 (50), p.6521-6532
Hauptverfasser: Jones, Bryan J., Lim, Huey Yee, Huang, Jun, Kazlauskas, Romas J.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6532
container_issue 50
container_start_page 6521
container_title Biochemistry (Easton)
container_volume 56
creator Jones, Bryan J.
Lim, Huey Yee
Huang, Jun
Kazlauskas, Romas J.
description A review of previous stabilization of α/β-hydrolase fold enzymes revealed many different strategies, but no comparison of strategies on the same enzyme. For this reason, we compared five strategies to identify stabilizing mutations in a model α/β-hydrolase-fold enzyme, salicylic acid binding protein 2, SABP2, to reversible denaturation by urea and to irreversible denaturation by heat. The five strategies included and one location-agnostic approach (random mutagenesis using error-prone PCR), two structure-based approaches (computational design (Rosetta, FoldX) and mutation of flexible regions) and two sequence-based approaches (addition of proline at locations where a more stable homolog has proline and mutation to consensus). All strategies identified stabilizing mutations, but the best balance of success rate, degree of stabilization, and ease of implementation was mutation to consensus. A web-based automated program that predicts substitutions needed to mutate to consensus is available at http://kazlab.umn.edu .
doi_str_mv 10.1021/acs.biochem.7b00571
format Article
fullrecord <record><control><sourceid>pubmedcentral</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5736438</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>pubmedcentral_primary_oai_pubmedcentral_nih_gov_5736438</sourcerecordid><originalsourceid>FETCH-pubmedcentral_primary_oai_pubmedcentral_nih_gov_57364383</originalsourceid><addsrcrecordid>eNqljDFugzAUQK2oUUKSnqCLLwD5Boxh6RK16lqpu2XIB34FNrJppPRW7UFypjJ06dzp6elJj7EHAYmAVBxNE5KaXNPjmKgaQCqxYpGQKcR5Vck7FgFAEadVAVu2C-F90RxUvmHbtIJSiVJG7PXkxsl4Cs5y1_KWLsgn72Yky9F2ZBE92Y6H2ZsZO8LAZ7eYqWmgT-TG8tvX8fYd99ezd4MJeGDr1gwB73-5Z4_PT2-nl3j6qEc8N2iX1aAnT6PxV-0M6b_FUq87d9FSZUWeldm_Bz-L4mMf</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Comparison of five protein engineering strategies to stabilize an α/β-hydrolase</title><source>ACS Publications</source><creator>Jones, Bryan J. ; Lim, Huey Yee ; Huang, Jun ; Kazlauskas, Romas J.</creator><creatorcontrib>Jones, Bryan J. ; Lim, Huey Yee ; Huang, Jun ; Kazlauskas, Romas J.</creatorcontrib><description>A review of previous stabilization of α/β-hydrolase fold enzymes revealed many different strategies, but no comparison of strategies on the same enzyme. For this reason, we compared five strategies to identify stabilizing mutations in a model α/β-hydrolase-fold enzyme, salicylic acid binding protein 2, SABP2, to reversible denaturation by urea and to irreversible denaturation by heat. The five strategies included and one location-agnostic approach (random mutagenesis using error-prone PCR), two structure-based approaches (computational design (Rosetta, FoldX) and mutation of flexible regions) and two sequence-based approaches (addition of proline at locations where a more stable homolog has proline and mutation to consensus). All strategies identified stabilizing mutations, but the best balance of success rate, degree of stabilization, and ease of implementation was mutation to consensus. A web-based automated program that predicts substitutions needed to mutate to consensus is available at http://kazlab.umn.edu .</description><identifier>ISSN: 0006-2960</identifier><identifier>EISSN: 1520-4995</identifier><identifier>DOI: 10.1021/acs.biochem.7b00571</identifier><identifier>PMID: 29087185</identifier><language>eng</language><ispartof>Biochemistry (Easton), 2017-11, Vol.56 (50), p.6521-6532</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids></links><search><creatorcontrib>Jones, Bryan J.</creatorcontrib><creatorcontrib>Lim, Huey Yee</creatorcontrib><creatorcontrib>Huang, Jun</creatorcontrib><creatorcontrib>Kazlauskas, Romas J.</creatorcontrib><title>Comparison of five protein engineering strategies to stabilize an α/β-hydrolase</title><title>Biochemistry (Easton)</title><description>A review of previous stabilization of α/β-hydrolase fold enzymes revealed many different strategies, but no comparison of strategies on the same enzyme. For this reason, we compared five strategies to identify stabilizing mutations in a model α/β-hydrolase-fold enzyme, salicylic acid binding protein 2, SABP2, to reversible denaturation by urea and to irreversible denaturation by heat. The five strategies included and one location-agnostic approach (random mutagenesis using error-prone PCR), two structure-based approaches (computational design (Rosetta, FoldX) and mutation of flexible regions) and two sequence-based approaches (addition of proline at locations where a more stable homolog has proline and mutation to consensus). All strategies identified stabilizing mutations, but the best balance of success rate, degree of stabilization, and ease of implementation was mutation to consensus. A web-based automated program that predicts substitutions needed to mutate to consensus is available at http://kazlab.umn.edu .</description><issn>0006-2960</issn><issn>1520-4995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqljDFugzAUQK2oUUKSnqCLLwD5Boxh6RK16lqpu2XIB34FNrJppPRW7UFypjJ06dzp6elJj7EHAYmAVBxNE5KaXNPjmKgaQCqxYpGQKcR5Vck7FgFAEadVAVu2C-F90RxUvmHbtIJSiVJG7PXkxsl4Cs5y1_KWLsgn72Yky9F2ZBE92Y6H2ZsZO8LAZ7eYqWmgT-TG8tvX8fYd99ezd4MJeGDr1gwB73-5Z4_PT2-nl3j6qEc8N2iX1aAnT6PxV-0M6b_FUq87d9FSZUWeldm_Bz-L4mMf</recordid><startdate>20171114</startdate><enddate>20171114</enddate><creator>Jones, Bryan J.</creator><creator>Lim, Huey Yee</creator><creator>Huang, Jun</creator><creator>Kazlauskas, Romas J.</creator><scope>5PM</scope></search><sort><creationdate>20171114</creationdate><title>Comparison of five protein engineering strategies to stabilize an α/β-hydrolase</title><author>Jones, Bryan J. ; Lim, Huey Yee ; Huang, Jun ; Kazlauskas, Romas J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-pubmedcentral_primary_oai_pubmedcentral_nih_gov_57364383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jones, Bryan J.</creatorcontrib><creatorcontrib>Lim, Huey Yee</creatorcontrib><creatorcontrib>Huang, Jun</creatorcontrib><creatorcontrib>Kazlauskas, Romas J.</creatorcontrib><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biochemistry (Easton)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jones, Bryan J.</au><au>Lim, Huey Yee</au><au>Huang, Jun</au><au>Kazlauskas, Romas J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of five protein engineering strategies to stabilize an α/β-hydrolase</atitle><jtitle>Biochemistry (Easton)</jtitle><date>2017-11-14</date><risdate>2017</risdate><volume>56</volume><issue>50</issue><spage>6521</spage><epage>6532</epage><pages>6521-6532</pages><issn>0006-2960</issn><eissn>1520-4995</eissn><abstract>A review of previous stabilization of α/β-hydrolase fold enzymes revealed many different strategies, but no comparison of strategies on the same enzyme. For this reason, we compared five strategies to identify stabilizing mutations in a model α/β-hydrolase-fold enzyme, salicylic acid binding protein 2, SABP2, to reversible denaturation by urea and to irreversible denaturation by heat. The five strategies included and one location-agnostic approach (random mutagenesis using error-prone PCR), two structure-based approaches (computational design (Rosetta, FoldX) and mutation of flexible regions) and two sequence-based approaches (addition of proline at locations where a more stable homolog has proline and mutation to consensus). All strategies identified stabilizing mutations, but the best balance of success rate, degree of stabilization, and ease of implementation was mutation to consensus. A web-based automated program that predicts substitutions needed to mutate to consensus is available at http://kazlab.umn.edu .</abstract><pmid>29087185</pmid><doi>10.1021/acs.biochem.7b00571</doi></addata></record>
fulltext fulltext
identifier ISSN: 0006-2960
ispartof Biochemistry (Easton), 2017-11, Vol.56 (50), p.6521-6532
issn 0006-2960
1520-4995
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5736438
source ACS Publications
title Comparison of five protein engineering strategies to stabilize an α/β-hydrolase
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T19%3A35%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmedcentral&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20five%20protein%20engineering%20strategies%20to%20stabilize%20an%20%CE%B1/%CE%B2-hydrolase&rft.jtitle=Biochemistry%20(Easton)&rft.au=Jones,%20Bryan%20J.&rft.date=2017-11-14&rft.volume=56&rft.issue=50&rft.spage=6521&rft.epage=6532&rft.pages=6521-6532&rft.issn=0006-2960&rft.eissn=1520-4995&rft_id=info:doi/10.1021/acs.biochem.7b00571&rft_dat=%3Cpubmedcentral%3Epubmedcentral_primary_oai_pubmedcentral_nih_gov_5736438%3C/pubmedcentral%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/29087185&rfr_iscdi=true