In Silico" Characterization of 3-Phytase A and 3-Phytase B from Aspergillus niger

Phytases are used for feeding monogastric animals, because they hydrolyze phytic acid generating inorganic phosphate. Aspergillus niger 3-phytase A (PDB: 3K4Q) and 3-phytase B (PDB: 1QFX) were characterized using bioinformatic tools. Results showed that both enzymes have highly conserved catalytic p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Enzyme Research 2017, Vol.2017, p.1-23-007
Hauptverfasser: Doris C. Niño-Gómez, Claudia M. Rivera-Hoyos, Edwin D. Morales-Álvarez, Edgar A. Reyes-Montaño, Nury E. Vargas-Alejo, Ingrid N. Ramírez-Casallas, Kübra Erkan Türkmen, Homero Sáenz-Suárez, José A. Sáenz-Moreno, Raúl A. Poutou-Piñales, Janneth González-Santos, Azucena Arévalo-Galvis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 23-007
container_issue
container_start_page 1
container_title Enzyme Research
container_volume 2017
creator Doris C. Niño-Gómez
Claudia M. Rivera-Hoyos
Edwin D. Morales-Álvarez
Edgar A. Reyes-Montaño
Nury E. Vargas-Alejo
Ingrid N. Ramírez-Casallas
Kübra Erkan Türkmen
Homero Sáenz-Suárez
José A. Sáenz-Moreno
Raúl A. Poutou-Piñales
Janneth González-Santos
Azucena Arévalo-Galvis
description Phytases are used for feeding monogastric animals, because they hydrolyze phytic acid generating inorganic phosphate. Aspergillus niger 3-phytase A (PDB: 3K4Q) and 3-phytase B (PDB: 1QFX) were characterized using bioinformatic tools. Results showed that both enzymes have highly conserved catalytic pockets, supporting their classification as histidine acid phosphatases. 2D structures consist of 43% alpha-helix, 12% beta-sheet, and 45% others and 38% alpha-helix, 12% beta-sheet, and 50% others, respectively, and pI 4.94 and 4.60, aliphatic index 72.25 and 70.26 and average hydrophobicity of −0,304 and −0.330, respectively, suggesting aqueous media interaction. Glycosylation and glycation sites allowed detecting zones that can affect folding and biological activity, suggesting fragmentation. Docking showed that H59 and H63 act as nucleophiles and that D339 and D319 are proton donor residues. MW of 3K4Q (48.84 kDa) and 1QFX (50.78 kDa) is similar; 1QFX forms homodimers which will originate homotetramers with several catalytic center accessible to the ligand. 3K4Q is less stable (instability index 45.41) than 1QFX (instability index 33.66), but the estimated lifespan for 3K4Q is superior. Van der Waals interactions generate hydrogen bonds between the active center and O2 or H of the phytic acid phosphate groups, providing greater stability to these temporal molecular interactions.
doi_str_mv 10.1155/2017/9746191
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5733987</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A553759595</galeid><airiti_id>P20151207001_201712_201808220011_201808220011_1_23_007</airiti_id><sourcerecordid>A553759595</sourcerecordid><originalsourceid>FETCH-LOGICAL-a462t-88c8974b84400852b45d68a4284d76ad5acaa39f0bc732fa2f09d28ff5a4f6563</originalsourceid><addsrcrecordid>eNqFkltrFDEUxwdRbKl981kGfBF02lwnyYuwXbwUKhaqz-HsTLKbMpOsyYxSH_1cfie_ghl3XXdFMBeSk_zOPznJKYrHGJ1hzPk5QVicK8FqrPC94pgghSrEMLu_Nz8qTlO6RblQlVv9sDgiijKZ-3Fxc-nLG9e5Jvz4_q2cryBCM5jovsLggi-DLWl1vbobIJlyVoJv9-yL0sbQl7O0NnHpum5MpXdLEx8VDyx0yZxux5Pi4-tXH-Zvq6v3by7ns6sKWE2GSspG5qsvJGMISU4WjLe1BEYka0UNLYcGgCqLFo2gxAKxSLVEWsuB2ZrX9KR4udFdj4vetI3xQ4ROr6PrId7pAE4f7ni30svwWXNBqZIiCzzbCsTwaTRp0L1Ljek68CaMSWMlFVdEMZ7Rp3-ht2GMPoeXKUE5pjj3HbWEzmjnbcjnNpOonnFOBc9yk9bZP6hcW9Pnj_DGurx-4PBi49DEkFI0dhcjRnrKAz3lgd7mQcaf7L_LDv796xl4vgFWzrfwxf1P7t2GBhfd4P4Efp0xjgkSCOFfLphMg0SSkLyED41sUo2QoD8BB2XMrg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1973513151</pqid></control><display><type>article</type><title>In Silico" Characterization of 3-Phytase A and 3-Phytase B from Aspergillus niger</title><source>Wiley Online Library Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>PubMed Central Open Access</source><creator>Doris C. Niño-Gómez ; Claudia M. Rivera-Hoyos ; Edwin D. Morales-Álvarez ; Edgar A. Reyes-Montaño ; Nury E. Vargas-Alejo ; Ingrid N. Ramírez-Casallas ; Kübra Erkan Türkmen ; Homero Sáenz-Suárez ; José A. Sáenz-Moreno ; Raúl A. Poutou-Piñales ; Janneth González-Santos ; Azucena Arévalo-Galvis</creator><contributor>Chan, Sunney I.</contributor><creatorcontrib>Doris C. Niño-Gómez ; Claudia M. Rivera-Hoyos ; Edwin D. Morales-Álvarez ; Edgar A. Reyes-Montaño ; Nury E. Vargas-Alejo ; Ingrid N. Ramírez-Casallas ; Kübra Erkan Türkmen ; Homero Sáenz-Suárez ; José A. Sáenz-Moreno ; Raúl A. Poutou-Piñales ; Janneth González-Santos ; Azucena Arévalo-Galvis ; Chan, Sunney I.</creatorcontrib><description>Phytases are used for feeding monogastric animals, because they hydrolyze phytic acid generating inorganic phosphate. Aspergillus niger 3-phytase A (PDB: 3K4Q) and 3-phytase B (PDB: 1QFX) were characterized using bioinformatic tools. Results showed that both enzymes have highly conserved catalytic pockets, supporting their classification as histidine acid phosphatases. 2D structures consist of 43% alpha-helix, 12% beta-sheet, and 45% others and 38% alpha-helix, 12% beta-sheet, and 50% others, respectively, and pI 4.94 and 4.60, aliphatic index 72.25 and 70.26 and average hydrophobicity of −0,304 and −0.330, respectively, suggesting aqueous media interaction. Glycosylation and glycation sites allowed detecting zones that can affect folding and biological activity, suggesting fragmentation. Docking showed that H59 and H63 act as nucleophiles and that D339 and D319 are proton donor residues. MW of 3K4Q (48.84 kDa) and 1QFX (50.78 kDa) is similar; 1QFX forms homodimers which will originate homotetramers with several catalytic center accessible to the ligand. 3K4Q is less stable (instability index 45.41) than 1QFX (instability index 33.66), but the estimated lifespan for 3K4Q is superior. Van der Waals interactions generate hydrogen bonds between the active center and O2 or H of the phytic acid phosphate groups, providing greater stability to these temporal molecular interactions.</description><identifier>ISSN: 2090-0414</identifier><identifier>ISSN: 2090-0406</identifier><identifier>EISSN: 2090-0414</identifier><identifier>DOI: 10.1155/2017/9746191</identifier><identifier>PMID: 29348934</identifier><language>eng</language><publisher>United States: Hindawi Limiteds</publisher><subject>3-Phytase ; Acids ; Aliphatic compounds ; Animals ; Biological activity ; Catalysis ; Chemical bonds ; Docking ; Enzymes ; Eutrophication ; Fungi ; Glycosylation ; Histidine ; Hydrogen bonding ; Hydrogen bonds ; Hydrophobicity ; Life span ; Microorganisms ; Mineralization ; Molecular interactions ; Nucleophiles ; Phosphatases ; Phosphates ; Phosphorus ; Phytase ; Phytic acid ; Poultry ; Stability</subject><ispartof>Enzyme Research, 2017, Vol.2017, p.1-23-007</ispartof><rights>Copyright © 2017 Doris C. Niño-Gómez et al.</rights><rights>COPYRIGHT 2017 John Wiley &amp; Sons, Inc.</rights><rights>Copyright © 2017 Doris C. Niño-Gómez et al.; This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><rights>Copyright © 2017 Doris C. Niño-Gómez et al. 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a462t-88c8974b84400852b45d68a4284d76ad5acaa39f0bc732fa2f09d28ff5a4f6563</citedby><cites>FETCH-LOGICAL-a462t-88c8974b84400852b45d68a4284d76ad5acaa39f0bc732fa2f09d28ff5a4f6563</cites><orcidid>0000-0003-0921-2125 ; 0000-0001-8841-2357</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5733987/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5733987/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,4010,27900,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29348934$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Chan, Sunney I.</contributor><creatorcontrib>Doris C. Niño-Gómez</creatorcontrib><creatorcontrib>Claudia M. Rivera-Hoyos</creatorcontrib><creatorcontrib>Edwin D. Morales-Álvarez</creatorcontrib><creatorcontrib>Edgar A. Reyes-Montaño</creatorcontrib><creatorcontrib>Nury E. Vargas-Alejo</creatorcontrib><creatorcontrib>Ingrid N. Ramírez-Casallas</creatorcontrib><creatorcontrib>Kübra Erkan Türkmen</creatorcontrib><creatorcontrib>Homero Sáenz-Suárez</creatorcontrib><creatorcontrib>José A. Sáenz-Moreno</creatorcontrib><creatorcontrib>Raúl A. Poutou-Piñales</creatorcontrib><creatorcontrib>Janneth González-Santos</creatorcontrib><creatorcontrib>Azucena Arévalo-Galvis</creatorcontrib><title>In Silico" Characterization of 3-Phytase A and 3-Phytase B from Aspergillus niger</title><title>Enzyme Research</title><addtitle>Enzyme Res</addtitle><description>Phytases are used for feeding monogastric animals, because they hydrolyze phytic acid generating inorganic phosphate. Aspergillus niger 3-phytase A (PDB: 3K4Q) and 3-phytase B (PDB: 1QFX) were characterized using bioinformatic tools. Results showed that both enzymes have highly conserved catalytic pockets, supporting their classification as histidine acid phosphatases. 2D structures consist of 43% alpha-helix, 12% beta-sheet, and 45% others and 38% alpha-helix, 12% beta-sheet, and 50% others, respectively, and pI 4.94 and 4.60, aliphatic index 72.25 and 70.26 and average hydrophobicity of −0,304 and −0.330, respectively, suggesting aqueous media interaction. Glycosylation and glycation sites allowed detecting zones that can affect folding and biological activity, suggesting fragmentation. Docking showed that H59 and H63 act as nucleophiles and that D339 and D319 are proton donor residues. MW of 3K4Q (48.84 kDa) and 1QFX (50.78 kDa) is similar; 1QFX forms homodimers which will originate homotetramers with several catalytic center accessible to the ligand. 3K4Q is less stable (instability index 45.41) than 1QFX (instability index 33.66), but the estimated lifespan for 3K4Q is superior. Van der Waals interactions generate hydrogen bonds between the active center and O2 or H of the phytic acid phosphate groups, providing greater stability to these temporal molecular interactions.</description><subject>3-Phytase</subject><subject>Acids</subject><subject>Aliphatic compounds</subject><subject>Animals</subject><subject>Biological activity</subject><subject>Catalysis</subject><subject>Chemical bonds</subject><subject>Docking</subject><subject>Enzymes</subject><subject>Eutrophication</subject><subject>Fungi</subject><subject>Glycosylation</subject><subject>Histidine</subject><subject>Hydrogen bonding</subject><subject>Hydrogen bonds</subject><subject>Hydrophobicity</subject><subject>Life span</subject><subject>Microorganisms</subject><subject>Mineralization</subject><subject>Molecular interactions</subject><subject>Nucleophiles</subject><subject>Phosphatases</subject><subject>Phosphates</subject><subject>Phosphorus</subject><subject>Phytase</subject><subject>Phytic acid</subject><subject>Poultry</subject><subject>Stability</subject><issn>2090-0414</issn><issn>2090-0406</issn><issn>2090-0414</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkltrFDEUxwdRbKl981kGfBF02lwnyYuwXbwUKhaqz-HsTLKbMpOsyYxSH_1cfie_ghl3XXdFMBeSk_zOPznJKYrHGJ1hzPk5QVicK8FqrPC94pgghSrEMLu_Nz8qTlO6RblQlVv9sDgiijKZ-3Fxc-nLG9e5Jvz4_q2cryBCM5jovsLggi-DLWl1vbobIJlyVoJv9-yL0sbQl7O0NnHpum5MpXdLEx8VDyx0yZxux5Pi4-tXH-Zvq6v3by7ns6sKWE2GSspG5qsvJGMISU4WjLe1BEYka0UNLYcGgCqLFo2gxAKxSLVEWsuB2ZrX9KR4udFdj4vetI3xQ4ROr6PrId7pAE4f7ni30svwWXNBqZIiCzzbCsTwaTRp0L1Ljek68CaMSWMlFVdEMZ7Rp3-ht2GMPoeXKUE5pjj3HbWEzmjnbcjnNpOonnFOBc9yk9bZP6hcW9Pnj_DGurx-4PBi49DEkFI0dhcjRnrKAz3lgd7mQcaf7L_LDv796xl4vgFWzrfwxf1P7t2GBhfd4P4Efp0xjgkSCOFfLphMg0SSkLyED41sUo2QoD8BB2XMrg</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>Doris C. Niño-Gómez</creator><creator>Claudia M. Rivera-Hoyos</creator><creator>Edwin D. Morales-Álvarez</creator><creator>Edgar A. Reyes-Montaño</creator><creator>Nury E. Vargas-Alejo</creator><creator>Ingrid N. Ramírez-Casallas</creator><creator>Kübra Erkan Türkmen</creator><creator>Homero Sáenz-Suárez</creator><creator>José A. Sáenz-Moreno</creator><creator>Raúl A. Poutou-Piñales</creator><creator>Janneth González-Santos</creator><creator>Azucena Arévalo-Galvis</creator><general>Hindawi Limiteds</general><general>Hindawi</general><general>John Wiley &amp; Sons, Inc</general><general>Hindawi Limited</general><scope>188</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>LK8</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0921-2125</orcidid><orcidid>https://orcid.org/0000-0001-8841-2357</orcidid></search><sort><creationdate>2017</creationdate><title>In Silico" Characterization of 3-Phytase A and 3-Phytase B from Aspergillus niger</title><author>Doris C. Niño-Gómez ; Claudia M. Rivera-Hoyos ; Edwin D. Morales-Álvarez ; Edgar A. Reyes-Montaño ; Nury E. Vargas-Alejo ; Ingrid N. Ramírez-Casallas ; Kübra Erkan Türkmen ; Homero Sáenz-Suárez ; José A. Sáenz-Moreno ; Raúl A. Poutou-Piñales ; Janneth González-Santos ; Azucena Arévalo-Galvis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a462t-88c8974b84400852b45d68a4284d76ad5acaa39f0bc732fa2f09d28ff5a4f6563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>3-Phytase</topic><topic>Acids</topic><topic>Aliphatic compounds</topic><topic>Animals</topic><topic>Biological activity</topic><topic>Catalysis</topic><topic>Chemical bonds</topic><topic>Docking</topic><topic>Enzymes</topic><topic>Eutrophication</topic><topic>Fungi</topic><topic>Glycosylation</topic><topic>Histidine</topic><topic>Hydrogen bonding</topic><topic>Hydrogen bonds</topic><topic>Hydrophobicity</topic><topic>Life span</topic><topic>Microorganisms</topic><topic>Mineralization</topic><topic>Molecular interactions</topic><topic>Nucleophiles</topic><topic>Phosphatases</topic><topic>Phosphates</topic><topic>Phosphorus</topic><topic>Phytase</topic><topic>Phytic acid</topic><topic>Poultry</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Doris C. Niño-Gómez</creatorcontrib><creatorcontrib>Claudia M. Rivera-Hoyos</creatorcontrib><creatorcontrib>Edwin D. Morales-Álvarez</creatorcontrib><creatorcontrib>Edgar A. Reyes-Montaño</creatorcontrib><creatorcontrib>Nury E. Vargas-Alejo</creatorcontrib><creatorcontrib>Ingrid N. Ramírez-Casallas</creatorcontrib><creatorcontrib>Kübra Erkan Türkmen</creatorcontrib><creatorcontrib>Homero Sáenz-Suárez</creatorcontrib><creatorcontrib>José A. Sáenz-Moreno</creatorcontrib><creatorcontrib>Raúl A. Poutou-Piñales</creatorcontrib><creatorcontrib>Janneth González-Santos</creatorcontrib><creatorcontrib>Azucena Arévalo-Galvis</creatorcontrib><collection>Airiti Library</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Enzyme Research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Doris C. Niño-Gómez</au><au>Claudia M. Rivera-Hoyos</au><au>Edwin D. Morales-Álvarez</au><au>Edgar A. Reyes-Montaño</au><au>Nury E. Vargas-Alejo</au><au>Ingrid N. Ramírez-Casallas</au><au>Kübra Erkan Türkmen</au><au>Homero Sáenz-Suárez</au><au>José A. Sáenz-Moreno</au><au>Raúl A. Poutou-Piñales</au><au>Janneth González-Santos</au><au>Azucena Arévalo-Galvis</au><au>Chan, Sunney I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In Silico" Characterization of 3-Phytase A and 3-Phytase B from Aspergillus niger</atitle><jtitle>Enzyme Research</jtitle><addtitle>Enzyme Res</addtitle><date>2017</date><risdate>2017</risdate><volume>2017</volume><spage>1</spage><epage>23-007</epage><pages>1-23-007</pages><issn>2090-0414</issn><issn>2090-0406</issn><eissn>2090-0414</eissn><abstract>Phytases are used for feeding monogastric animals, because they hydrolyze phytic acid generating inorganic phosphate. Aspergillus niger 3-phytase A (PDB: 3K4Q) and 3-phytase B (PDB: 1QFX) were characterized using bioinformatic tools. Results showed that both enzymes have highly conserved catalytic pockets, supporting their classification as histidine acid phosphatases. 2D structures consist of 43% alpha-helix, 12% beta-sheet, and 45% others and 38% alpha-helix, 12% beta-sheet, and 50% others, respectively, and pI 4.94 and 4.60, aliphatic index 72.25 and 70.26 and average hydrophobicity of −0,304 and −0.330, respectively, suggesting aqueous media interaction. Glycosylation and glycation sites allowed detecting zones that can affect folding and biological activity, suggesting fragmentation. Docking showed that H59 and H63 act as nucleophiles and that D339 and D319 are proton donor residues. MW of 3K4Q (48.84 kDa) and 1QFX (50.78 kDa) is similar; 1QFX forms homodimers which will originate homotetramers with several catalytic center accessible to the ligand. 3K4Q is less stable (instability index 45.41) than 1QFX (instability index 33.66), but the estimated lifespan for 3K4Q is superior. Van der Waals interactions generate hydrogen bonds between the active center and O2 or H of the phytic acid phosphate groups, providing greater stability to these temporal molecular interactions.</abstract><cop>United States</cop><pub>Hindawi Limiteds</pub><pmid>29348934</pmid><doi>10.1155/2017/9746191</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0003-0921-2125</orcidid><orcidid>https://orcid.org/0000-0001-8841-2357</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2090-0414
ispartof Enzyme Research, 2017, Vol.2017, p.1-23-007
issn 2090-0414
2090-0406
2090-0414
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5733987
source Wiley Online Library Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection; PubMed Central Open Access
subjects 3-Phytase
Acids
Aliphatic compounds
Animals
Biological activity
Catalysis
Chemical bonds
Docking
Enzymes
Eutrophication
Fungi
Glycosylation
Histidine
Hydrogen bonding
Hydrogen bonds
Hydrophobicity
Life span
Microorganisms
Mineralization
Molecular interactions
Nucleophiles
Phosphatases
Phosphates
Phosphorus
Phytase
Phytic acid
Poultry
Stability
title In Silico" Characterization of 3-Phytase A and 3-Phytase B from Aspergillus niger
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T21%3A27%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20Silico%EF%BC%82%20Characterization%20of%203-Phytase%20A%20and%203-Phytase%20B%20from%20Aspergillus%20niger&rft.jtitle=Enzyme%20Research&rft.au=Doris%20C.%20Ni%C3%B1o-G%C3%B3mez&rft.date=2017&rft.volume=2017&rft.spage=1&rft.epage=23-007&rft.pages=1-23-007&rft.issn=2090-0414&rft.eissn=2090-0414&rft_id=info:doi/10.1155/2017/9746191&rft_dat=%3Cgale_pubme%3EA553759595%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1973513151&rft_id=info:pmid/29348934&rft_galeid=A553759595&rft_airiti_id=P20151207001_201712_201808220011_201808220011_1_23_007&rfr_iscdi=true