The phosphatidic acid–binding, polybasic domain is responsible for the differences in the phosphoregulation of lipins 1 and 3

Lipins 1, 2, and 3 are Mg2+-dependent phosphatidic acid phosphatases and catalyze the penultimate step of triacylglycerol synthesis. We have previously investigated the biochemistry of lipins 1 and 2 and shown that di-anionic phosphatidic acid (PA) augments their activity and lipid binding and that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2017-12, Vol.292 (50), p.20481-20493
Hauptverfasser: Boroda, Salome, Takkellapati, Sankeerth, Lawrence, Robert T., Entwisle, Samuel W., Pearson, Jennifer M., Granade, Mitchell E., Mullins, Garrett R., Eaton, James M., Villén, Judit, Harris, Thurl E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20493
container_issue 50
container_start_page 20481
container_title The Journal of biological chemistry
container_volume 292
creator Boroda, Salome
Takkellapati, Sankeerth
Lawrence, Robert T.
Entwisle, Samuel W.
Pearson, Jennifer M.
Granade, Mitchell E.
Mullins, Garrett R.
Eaton, James M.
Villén, Judit
Harris, Thurl E.
description Lipins 1, 2, and 3 are Mg2+-dependent phosphatidic acid phosphatases and catalyze the penultimate step of triacylglycerol synthesis. We have previously investigated the biochemistry of lipins 1 and 2 and shown that di-anionic phosphatidic acid (PA) augments their activity and lipid binding and that lipin 1 activity is negatively regulated by phosphorylation. In the present study, we show that phosphorylation does not affect the catalytic activity of lipin 3 or its ability to associate with PA in vitro. The lipin proteins each contain a conserved polybasic domain (PBD) composed of nine lysine and arginine residues located between the conserved N- and C-terminal domains. In lipin 1, the PBD is the site of PA binding and sensing of the PA electrostatic charge. The specific arrangement and number of the lysines and arginines of the PBD vary among the lipins. We show that the different PBDs of lipins 1 and 3 are responsible for the presence of phosphoregulation on the former but not the latter enzyme. To do so, we generated lipin 1 that contained the PBD of lipin 3 and vice versa. The lipin 1 enzyme with the lipin 3 PBD lost its ability to be regulated by phosphorylation but remained downstream of phosphorylation by mammalian target of rapamycin. Conversely, the presence of the lipin 1 PBD in lipin 3 subjected the enzyme to negative intramolecular control by phosphorylation. These results indicate a mechanism for the observed differences in lipin phosphoregulation in vitro.
doi_str_mv 10.1074/jbc.M117.786574
format Article
fullrecord <record><control><sourceid>elsevier_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5733587</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820327848</els_id><sourcerecordid>S0021925820327848</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-a31d413e95313670c76deaf57c2eebd580d633c00f0e7bcd3c6a82a3165bc6783</originalsourceid><addsrcrecordid>eNp1kc9O3DAQxi1UBFvg3FvlB2gWO45j51KpQv2DRMUFJG6WY092B2XtyA5InOg79A37JPVqYdUemMsc5vt-o5mPkA-cLTlTzfl975Y_OVdLpVupmgOy4EyLSkh-944sGKt51dVSH5P3Od-zUk3Hj8hxrTtdd0ouyPPNGui0jnla2xk9Omod-j-_fvcYPIbVJzrF8am3uUx83FgMFDNNkKcYMvYj0CEmOheIx2GABMFBpkU177kxwephLPQYaBzoiBOGTDm1wVNxSg4HO2Y4e-kn5Pbb15uLH9XV9ffLiy9XlWsaMVdWcN9wAZ0UXLSKOdV6sINUrgbovdTMt0I4xgYGqndeuNbqurha2btWaXFCPu-400O_Ae8gzMmOZkq4senJRIvm_0nAtVnFRyOVEFKrAjjfAVyKOScY9l7OzDYLU7Iw2yzMLovi-Pjvyr3-9flF0O0EUA5_REgmO9w-0GMCNxsf8U34X7l6nWU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The phosphatidic acid–binding, polybasic domain is responsible for the differences in the phosphoregulation of lipins 1 and 3</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Boroda, Salome ; Takkellapati, Sankeerth ; Lawrence, Robert T. ; Entwisle, Samuel W. ; Pearson, Jennifer M. ; Granade, Mitchell E. ; Mullins, Garrett R. ; Eaton, James M. ; Villén, Judit ; Harris, Thurl E.</creator><creatorcontrib>Boroda, Salome ; Takkellapati, Sankeerth ; Lawrence, Robert T. ; Entwisle, Samuel W. ; Pearson, Jennifer M. ; Granade, Mitchell E. ; Mullins, Garrett R. ; Eaton, James M. ; Villén, Judit ; Harris, Thurl E.</creatorcontrib><description>Lipins 1, 2, and 3 are Mg2+-dependent phosphatidic acid phosphatases and catalyze the penultimate step of triacylglycerol synthesis. We have previously investigated the biochemistry of lipins 1 and 2 and shown that di-anionic phosphatidic acid (PA) augments their activity and lipid binding and that lipin 1 activity is negatively regulated by phosphorylation. In the present study, we show that phosphorylation does not affect the catalytic activity of lipin 3 or its ability to associate with PA in vitro. The lipin proteins each contain a conserved polybasic domain (PBD) composed of nine lysine and arginine residues located between the conserved N- and C-terminal domains. In lipin 1, the PBD is the site of PA binding and sensing of the PA electrostatic charge. The specific arrangement and number of the lysines and arginines of the PBD vary among the lipins. We show that the different PBDs of lipins 1 and 3 are responsible for the presence of phosphoregulation on the former but not the latter enzyme. To do so, we generated lipin 1 that contained the PBD of lipin 3 and vice versa. The lipin 1 enzyme with the lipin 3 PBD lost its ability to be regulated by phosphorylation but remained downstream of phosphorylation by mammalian target of rapamycin. Conversely, the presence of the lipin 1 PBD in lipin 3 subjected the enzyme to negative intramolecular control by phosphorylation. These results indicate a mechanism for the observed differences in lipin phosphoregulation in vitro.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M117.786574</identifier><identifier>PMID: 28982975</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>3T3-L1 Cells ; Amino Acid Sequence ; Amino Acid Substitution ; Animals ; Binding Sites ; Conserved Sequence ; di-anionic ; Enzymology ; HeLa Cells ; Humans ; Kinetics ; lipin ; Liposomes ; lpin1 ; lpin3 ; mammalian target of rapamycin (mTOR) ; Mice ; Micelles ; Mutation ; Nuclear Proteins - chemistry ; Nuclear Proteins - genetics ; Nuclear Proteins - metabolism ; phosphatase ; Phosphatidate Phosphatase - chemistry ; Phosphatidate Phosphatase - genetics ; Phosphatidate Phosphatase - metabolism ; phosphatidic acid ; Phosphatidic Acids - metabolism ; phosphatidylethanolamine ; Phosphorylation ; Protein Interaction Domains and Motifs ; Protein Processing, Post-Translational ; Recombinant Fusion Proteins - chemistry ; Recombinant Fusion Proteins - metabolism</subject><ispartof>The Journal of biological chemistry, 2017-12, Vol.292 (50), p.20481-20493</ispartof><rights>2017 © 2017 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2017 by The American Society for Biochemistry and Molecular Biology, Inc.</rights><rights>2017 by The American Society for Biochemistry and Molecular Biology, Inc. 2017 The American Society for Biochemistry and Molecular Biology, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-a31d413e95313670c76deaf57c2eebd580d633c00f0e7bcd3c6a82a3165bc6783</citedby><cites>FETCH-LOGICAL-c443t-a31d413e95313670c76deaf57c2eebd580d633c00f0e7bcd3c6a82a3165bc6783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5733587/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5733587/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,315,728,781,785,886,27929,27930,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28982975$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Boroda, Salome</creatorcontrib><creatorcontrib>Takkellapati, Sankeerth</creatorcontrib><creatorcontrib>Lawrence, Robert T.</creatorcontrib><creatorcontrib>Entwisle, Samuel W.</creatorcontrib><creatorcontrib>Pearson, Jennifer M.</creatorcontrib><creatorcontrib>Granade, Mitchell E.</creatorcontrib><creatorcontrib>Mullins, Garrett R.</creatorcontrib><creatorcontrib>Eaton, James M.</creatorcontrib><creatorcontrib>Villén, Judit</creatorcontrib><creatorcontrib>Harris, Thurl E.</creatorcontrib><title>The phosphatidic acid–binding, polybasic domain is responsible for the differences in the phosphoregulation of lipins 1 and 3</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Lipins 1, 2, and 3 are Mg2+-dependent phosphatidic acid phosphatases and catalyze the penultimate step of triacylglycerol synthesis. We have previously investigated the biochemistry of lipins 1 and 2 and shown that di-anionic phosphatidic acid (PA) augments their activity and lipid binding and that lipin 1 activity is negatively regulated by phosphorylation. In the present study, we show that phosphorylation does not affect the catalytic activity of lipin 3 or its ability to associate with PA in vitro. The lipin proteins each contain a conserved polybasic domain (PBD) composed of nine lysine and arginine residues located between the conserved N- and C-terminal domains. In lipin 1, the PBD is the site of PA binding and sensing of the PA electrostatic charge. The specific arrangement and number of the lysines and arginines of the PBD vary among the lipins. We show that the different PBDs of lipins 1 and 3 are responsible for the presence of phosphoregulation on the former but not the latter enzyme. To do so, we generated lipin 1 that contained the PBD of lipin 3 and vice versa. The lipin 1 enzyme with the lipin 3 PBD lost its ability to be regulated by phosphorylation but remained downstream of phosphorylation by mammalian target of rapamycin. Conversely, the presence of the lipin 1 PBD in lipin 3 subjected the enzyme to negative intramolecular control by phosphorylation. These results indicate a mechanism for the observed differences in lipin phosphoregulation in vitro.</description><subject>3T3-L1 Cells</subject><subject>Amino Acid Sequence</subject><subject>Amino Acid Substitution</subject><subject>Animals</subject><subject>Binding Sites</subject><subject>Conserved Sequence</subject><subject>di-anionic</subject><subject>Enzymology</subject><subject>HeLa Cells</subject><subject>Humans</subject><subject>Kinetics</subject><subject>lipin</subject><subject>Liposomes</subject><subject>lpin1</subject><subject>lpin3</subject><subject>mammalian target of rapamycin (mTOR)</subject><subject>Mice</subject><subject>Micelles</subject><subject>Mutation</subject><subject>Nuclear Proteins - chemistry</subject><subject>Nuclear Proteins - genetics</subject><subject>Nuclear Proteins - metabolism</subject><subject>phosphatase</subject><subject>Phosphatidate Phosphatase - chemistry</subject><subject>Phosphatidate Phosphatase - genetics</subject><subject>Phosphatidate Phosphatase - metabolism</subject><subject>phosphatidic acid</subject><subject>Phosphatidic Acids - metabolism</subject><subject>phosphatidylethanolamine</subject><subject>Phosphorylation</subject><subject>Protein Interaction Domains and Motifs</subject><subject>Protein Processing, Post-Translational</subject><subject>Recombinant Fusion Proteins - chemistry</subject><subject>Recombinant Fusion Proteins - metabolism</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc9O3DAQxi1UBFvg3FvlB2gWO45j51KpQv2DRMUFJG6WY092B2XtyA5InOg79A37JPVqYdUemMsc5vt-o5mPkA-cLTlTzfl975Y_OVdLpVupmgOy4EyLSkh-944sGKt51dVSH5P3Od-zUk3Hj8hxrTtdd0ouyPPNGui0jnla2xk9Omod-j-_fvcYPIbVJzrF8am3uUx83FgMFDNNkKcYMvYj0CEmOheIx2GABMFBpkU177kxwephLPQYaBzoiBOGTDm1wVNxSg4HO2Y4e-kn5Pbb15uLH9XV9ffLiy9XlWsaMVdWcN9wAZ0UXLSKOdV6sINUrgbovdTMt0I4xgYGqndeuNbqurha2btWaXFCPu-400O_Ae8gzMmOZkq4senJRIvm_0nAtVnFRyOVEFKrAjjfAVyKOScY9l7OzDYLU7Iw2yzMLovi-Pjvyr3-9flF0O0EUA5_REgmO9w-0GMCNxsf8U34X7l6nWU</recordid><startdate>20171215</startdate><enddate>20171215</enddate><creator>Boroda, Salome</creator><creator>Takkellapati, Sankeerth</creator><creator>Lawrence, Robert T.</creator><creator>Entwisle, Samuel W.</creator><creator>Pearson, Jennifer M.</creator><creator>Granade, Mitchell E.</creator><creator>Mullins, Garrett R.</creator><creator>Eaton, James M.</creator><creator>Villén, Judit</creator><creator>Harris, Thurl E.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20171215</creationdate><title>The phosphatidic acid–binding, polybasic domain is responsible for the differences in the phosphoregulation of lipins 1 and 3</title><author>Boroda, Salome ; Takkellapati, Sankeerth ; Lawrence, Robert T. ; Entwisle, Samuel W. ; Pearson, Jennifer M. ; Granade, Mitchell E. ; Mullins, Garrett R. ; Eaton, James M. ; Villén, Judit ; Harris, Thurl E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-a31d413e95313670c76deaf57c2eebd580d633c00f0e7bcd3c6a82a3165bc6783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>3T3-L1 Cells</topic><topic>Amino Acid Sequence</topic><topic>Amino Acid Substitution</topic><topic>Animals</topic><topic>Binding Sites</topic><topic>Conserved Sequence</topic><topic>di-anionic</topic><topic>Enzymology</topic><topic>HeLa Cells</topic><topic>Humans</topic><topic>Kinetics</topic><topic>lipin</topic><topic>Liposomes</topic><topic>lpin1</topic><topic>lpin3</topic><topic>mammalian target of rapamycin (mTOR)</topic><topic>Mice</topic><topic>Micelles</topic><topic>Mutation</topic><topic>Nuclear Proteins - chemistry</topic><topic>Nuclear Proteins - genetics</topic><topic>Nuclear Proteins - metabolism</topic><topic>phosphatase</topic><topic>Phosphatidate Phosphatase - chemistry</topic><topic>Phosphatidate Phosphatase - genetics</topic><topic>Phosphatidate Phosphatase - metabolism</topic><topic>phosphatidic acid</topic><topic>Phosphatidic Acids - metabolism</topic><topic>phosphatidylethanolamine</topic><topic>Phosphorylation</topic><topic>Protein Interaction Domains and Motifs</topic><topic>Protein Processing, Post-Translational</topic><topic>Recombinant Fusion Proteins - chemistry</topic><topic>Recombinant Fusion Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boroda, Salome</creatorcontrib><creatorcontrib>Takkellapati, Sankeerth</creatorcontrib><creatorcontrib>Lawrence, Robert T.</creatorcontrib><creatorcontrib>Entwisle, Samuel W.</creatorcontrib><creatorcontrib>Pearson, Jennifer M.</creatorcontrib><creatorcontrib>Granade, Mitchell E.</creatorcontrib><creatorcontrib>Mullins, Garrett R.</creatorcontrib><creatorcontrib>Eaton, James M.</creatorcontrib><creatorcontrib>Villén, Judit</creatorcontrib><creatorcontrib>Harris, Thurl E.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boroda, Salome</au><au>Takkellapati, Sankeerth</au><au>Lawrence, Robert T.</au><au>Entwisle, Samuel W.</au><au>Pearson, Jennifer M.</au><au>Granade, Mitchell E.</au><au>Mullins, Garrett R.</au><au>Eaton, James M.</au><au>Villén, Judit</au><au>Harris, Thurl E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The phosphatidic acid–binding, polybasic domain is responsible for the differences in the phosphoregulation of lipins 1 and 3</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2017-12-15</date><risdate>2017</risdate><volume>292</volume><issue>50</issue><spage>20481</spage><epage>20493</epage><pages>20481-20493</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Lipins 1, 2, and 3 are Mg2+-dependent phosphatidic acid phosphatases and catalyze the penultimate step of triacylglycerol synthesis. We have previously investigated the biochemistry of lipins 1 and 2 and shown that di-anionic phosphatidic acid (PA) augments their activity and lipid binding and that lipin 1 activity is negatively regulated by phosphorylation. In the present study, we show that phosphorylation does not affect the catalytic activity of lipin 3 or its ability to associate with PA in vitro. The lipin proteins each contain a conserved polybasic domain (PBD) composed of nine lysine and arginine residues located between the conserved N- and C-terminal domains. In lipin 1, the PBD is the site of PA binding and sensing of the PA electrostatic charge. The specific arrangement and number of the lysines and arginines of the PBD vary among the lipins. We show that the different PBDs of lipins 1 and 3 are responsible for the presence of phosphoregulation on the former but not the latter enzyme. To do so, we generated lipin 1 that contained the PBD of lipin 3 and vice versa. The lipin 1 enzyme with the lipin 3 PBD lost its ability to be regulated by phosphorylation but remained downstream of phosphorylation by mammalian target of rapamycin. Conversely, the presence of the lipin 1 PBD in lipin 3 subjected the enzyme to negative intramolecular control by phosphorylation. These results indicate a mechanism for the observed differences in lipin phosphoregulation in vitro.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>28982975</pmid><doi>10.1074/jbc.M117.786574</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2017-12, Vol.292 (50), p.20481-20493
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5733587
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection
subjects 3T3-L1 Cells
Amino Acid Sequence
Amino Acid Substitution
Animals
Binding Sites
Conserved Sequence
di-anionic
Enzymology
HeLa Cells
Humans
Kinetics
lipin
Liposomes
lpin1
lpin3
mammalian target of rapamycin (mTOR)
Mice
Micelles
Mutation
Nuclear Proteins - chemistry
Nuclear Proteins - genetics
Nuclear Proteins - metabolism
phosphatase
Phosphatidate Phosphatase - chemistry
Phosphatidate Phosphatase - genetics
Phosphatidate Phosphatase - metabolism
phosphatidic acid
Phosphatidic Acids - metabolism
phosphatidylethanolamine
Phosphorylation
Protein Interaction Domains and Motifs
Protein Processing, Post-Translational
Recombinant Fusion Proteins - chemistry
Recombinant Fusion Proteins - metabolism
title The phosphatidic acid–binding, polybasic domain is responsible for the differences in the phosphoregulation of lipins 1 and 3
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T18%3A31%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20phosphatidic%20acid%E2%80%93binding,%20polybasic%20domain%20is%20responsible%20for%20the%20differences%20in%20the%20phosphoregulation%20of%20lipins%201%20and%203&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Boroda,%20Salome&rft.date=2017-12-15&rft.volume=292&rft.issue=50&rft.spage=20481&rft.epage=20493&rft.pages=20481-20493&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M117.786574&rft_dat=%3Celsevier_pubme%3ES0021925820327848%3C/elsevier_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/28982975&rft_els_id=S0021925820327848&rfr_iscdi=true