The phosphatidic acid–binding, polybasic domain is responsible for the differences in the phosphoregulation of lipins 1 and 3
Lipins 1, 2, and 3 are Mg2+-dependent phosphatidic acid phosphatases and catalyze the penultimate step of triacylglycerol synthesis. We have previously investigated the biochemistry of lipins 1 and 2 and shown that di-anionic phosphatidic acid (PA) augments their activity and lipid binding and that...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2017-12, Vol.292 (50), p.20481-20493 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 20493 |
---|---|
container_issue | 50 |
container_start_page | 20481 |
container_title | The Journal of biological chemistry |
container_volume | 292 |
creator | Boroda, Salome Takkellapati, Sankeerth Lawrence, Robert T. Entwisle, Samuel W. Pearson, Jennifer M. Granade, Mitchell E. Mullins, Garrett R. Eaton, James M. Villén, Judit Harris, Thurl E. |
description | Lipins 1, 2, and 3 are Mg2+-dependent phosphatidic acid phosphatases and catalyze the penultimate step of triacylglycerol synthesis. We have previously investigated the biochemistry of lipins 1 and 2 and shown that di-anionic phosphatidic acid (PA) augments their activity and lipid binding and that lipin 1 activity is negatively regulated by phosphorylation. In the present study, we show that phosphorylation does not affect the catalytic activity of lipin 3 or its ability to associate with PA in vitro. The lipin proteins each contain a conserved polybasic domain (PBD) composed of nine lysine and arginine residues located between the conserved N- and C-terminal domains. In lipin 1, the PBD is the site of PA binding and sensing of the PA electrostatic charge. The specific arrangement and number of the lysines and arginines of the PBD vary among the lipins. We show that the different PBDs of lipins 1 and 3 are responsible for the presence of phosphoregulation on the former but not the latter enzyme. To do so, we generated lipin 1 that contained the PBD of lipin 3 and vice versa. The lipin 1 enzyme with the lipin 3 PBD lost its ability to be regulated by phosphorylation but remained downstream of phosphorylation by mammalian target of rapamycin. Conversely, the presence of the lipin 1 PBD in lipin 3 subjected the enzyme to negative intramolecular control by phosphorylation. These results indicate a mechanism for the observed differences in lipin phosphoregulation in vitro. |
doi_str_mv | 10.1074/jbc.M117.786574 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5733587</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820327848</els_id><sourcerecordid>S0021925820327848</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-a31d413e95313670c76deaf57c2eebd580d633c00f0e7bcd3c6a82a3165bc6783</originalsourceid><addsrcrecordid>eNp1kc9O3DAQxi1UBFvg3FvlB2gWO45j51KpQv2DRMUFJG6WY092B2XtyA5InOg79A37JPVqYdUemMsc5vt-o5mPkA-cLTlTzfl975Y_OVdLpVupmgOy4EyLSkh-944sGKt51dVSH5P3Od-zUk3Hj8hxrTtdd0ouyPPNGui0jnla2xk9Omod-j-_fvcYPIbVJzrF8am3uUx83FgMFDNNkKcYMvYj0CEmOheIx2GABMFBpkU177kxwephLPQYaBzoiBOGTDm1wVNxSg4HO2Y4e-kn5Pbb15uLH9XV9ffLiy9XlWsaMVdWcN9wAZ0UXLSKOdV6sINUrgbovdTMt0I4xgYGqndeuNbqurha2btWaXFCPu-400O_Ae8gzMmOZkq4senJRIvm_0nAtVnFRyOVEFKrAjjfAVyKOScY9l7OzDYLU7Iw2yzMLovi-Pjvyr3-9flF0O0EUA5_REgmO9w-0GMCNxsf8U34X7l6nWU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The phosphatidic acid–binding, polybasic domain is responsible for the differences in the phosphoregulation of lipins 1 and 3</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Boroda, Salome ; Takkellapati, Sankeerth ; Lawrence, Robert T. ; Entwisle, Samuel W. ; Pearson, Jennifer M. ; Granade, Mitchell E. ; Mullins, Garrett R. ; Eaton, James M. ; Villén, Judit ; Harris, Thurl E.</creator><creatorcontrib>Boroda, Salome ; Takkellapati, Sankeerth ; Lawrence, Robert T. ; Entwisle, Samuel W. ; Pearson, Jennifer M. ; Granade, Mitchell E. ; Mullins, Garrett R. ; Eaton, James M. ; Villén, Judit ; Harris, Thurl E.</creatorcontrib><description>Lipins 1, 2, and 3 are Mg2+-dependent phosphatidic acid phosphatases and catalyze the penultimate step of triacylglycerol synthesis. We have previously investigated the biochemistry of lipins 1 and 2 and shown that di-anionic phosphatidic acid (PA) augments their activity and lipid binding and that lipin 1 activity is negatively regulated by phosphorylation. In the present study, we show that phosphorylation does not affect the catalytic activity of lipin 3 or its ability to associate with PA in vitro. The lipin proteins each contain a conserved polybasic domain (PBD) composed of nine lysine and arginine residues located between the conserved N- and C-terminal domains. In lipin 1, the PBD is the site of PA binding and sensing of the PA electrostatic charge. The specific arrangement and number of the lysines and arginines of the PBD vary among the lipins. We show that the different PBDs of lipins 1 and 3 are responsible for the presence of phosphoregulation on the former but not the latter enzyme. To do so, we generated lipin 1 that contained the PBD of lipin 3 and vice versa. The lipin 1 enzyme with the lipin 3 PBD lost its ability to be regulated by phosphorylation but remained downstream of phosphorylation by mammalian target of rapamycin. Conversely, the presence of the lipin 1 PBD in lipin 3 subjected the enzyme to negative intramolecular control by phosphorylation. These results indicate a mechanism for the observed differences in lipin phosphoregulation in vitro.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M117.786574</identifier><identifier>PMID: 28982975</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>3T3-L1 Cells ; Amino Acid Sequence ; Amino Acid Substitution ; Animals ; Binding Sites ; Conserved Sequence ; di-anionic ; Enzymology ; HeLa Cells ; Humans ; Kinetics ; lipin ; Liposomes ; lpin1 ; lpin3 ; mammalian target of rapamycin (mTOR) ; Mice ; Micelles ; Mutation ; Nuclear Proteins - chemistry ; Nuclear Proteins - genetics ; Nuclear Proteins - metabolism ; phosphatase ; Phosphatidate Phosphatase - chemistry ; Phosphatidate Phosphatase - genetics ; Phosphatidate Phosphatase - metabolism ; phosphatidic acid ; Phosphatidic Acids - metabolism ; phosphatidylethanolamine ; Phosphorylation ; Protein Interaction Domains and Motifs ; Protein Processing, Post-Translational ; Recombinant Fusion Proteins - chemistry ; Recombinant Fusion Proteins - metabolism</subject><ispartof>The Journal of biological chemistry, 2017-12, Vol.292 (50), p.20481-20493</ispartof><rights>2017 © 2017 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2017 by The American Society for Biochemistry and Molecular Biology, Inc.</rights><rights>2017 by The American Society for Biochemistry and Molecular Biology, Inc. 2017 The American Society for Biochemistry and Molecular Biology, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-a31d413e95313670c76deaf57c2eebd580d633c00f0e7bcd3c6a82a3165bc6783</citedby><cites>FETCH-LOGICAL-c443t-a31d413e95313670c76deaf57c2eebd580d633c00f0e7bcd3c6a82a3165bc6783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5733587/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5733587/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,315,728,781,785,886,27929,27930,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28982975$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Boroda, Salome</creatorcontrib><creatorcontrib>Takkellapati, Sankeerth</creatorcontrib><creatorcontrib>Lawrence, Robert T.</creatorcontrib><creatorcontrib>Entwisle, Samuel W.</creatorcontrib><creatorcontrib>Pearson, Jennifer M.</creatorcontrib><creatorcontrib>Granade, Mitchell E.</creatorcontrib><creatorcontrib>Mullins, Garrett R.</creatorcontrib><creatorcontrib>Eaton, James M.</creatorcontrib><creatorcontrib>Villén, Judit</creatorcontrib><creatorcontrib>Harris, Thurl E.</creatorcontrib><title>The phosphatidic acid–binding, polybasic domain is responsible for the differences in the phosphoregulation of lipins 1 and 3</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Lipins 1, 2, and 3 are Mg2+-dependent phosphatidic acid phosphatases and catalyze the penultimate step of triacylglycerol synthesis. We have previously investigated the biochemistry of lipins 1 and 2 and shown that di-anionic phosphatidic acid (PA) augments their activity and lipid binding and that lipin 1 activity is negatively regulated by phosphorylation. In the present study, we show that phosphorylation does not affect the catalytic activity of lipin 3 or its ability to associate with PA in vitro. The lipin proteins each contain a conserved polybasic domain (PBD) composed of nine lysine and arginine residues located between the conserved N- and C-terminal domains. In lipin 1, the PBD is the site of PA binding and sensing of the PA electrostatic charge. The specific arrangement and number of the lysines and arginines of the PBD vary among the lipins. We show that the different PBDs of lipins 1 and 3 are responsible for the presence of phosphoregulation on the former but not the latter enzyme. To do so, we generated lipin 1 that contained the PBD of lipin 3 and vice versa. The lipin 1 enzyme with the lipin 3 PBD lost its ability to be regulated by phosphorylation but remained downstream of phosphorylation by mammalian target of rapamycin. Conversely, the presence of the lipin 1 PBD in lipin 3 subjected the enzyme to negative intramolecular control by phosphorylation. These results indicate a mechanism for the observed differences in lipin phosphoregulation in vitro.</description><subject>3T3-L1 Cells</subject><subject>Amino Acid Sequence</subject><subject>Amino Acid Substitution</subject><subject>Animals</subject><subject>Binding Sites</subject><subject>Conserved Sequence</subject><subject>di-anionic</subject><subject>Enzymology</subject><subject>HeLa Cells</subject><subject>Humans</subject><subject>Kinetics</subject><subject>lipin</subject><subject>Liposomes</subject><subject>lpin1</subject><subject>lpin3</subject><subject>mammalian target of rapamycin (mTOR)</subject><subject>Mice</subject><subject>Micelles</subject><subject>Mutation</subject><subject>Nuclear Proteins - chemistry</subject><subject>Nuclear Proteins - genetics</subject><subject>Nuclear Proteins - metabolism</subject><subject>phosphatase</subject><subject>Phosphatidate Phosphatase - chemistry</subject><subject>Phosphatidate Phosphatase - genetics</subject><subject>Phosphatidate Phosphatase - metabolism</subject><subject>phosphatidic acid</subject><subject>Phosphatidic Acids - metabolism</subject><subject>phosphatidylethanolamine</subject><subject>Phosphorylation</subject><subject>Protein Interaction Domains and Motifs</subject><subject>Protein Processing, Post-Translational</subject><subject>Recombinant Fusion Proteins - chemistry</subject><subject>Recombinant Fusion Proteins - metabolism</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc9O3DAQxi1UBFvg3FvlB2gWO45j51KpQv2DRMUFJG6WY092B2XtyA5InOg79A37JPVqYdUemMsc5vt-o5mPkA-cLTlTzfl975Y_OVdLpVupmgOy4EyLSkh-944sGKt51dVSH5P3Od-zUk3Hj8hxrTtdd0ouyPPNGui0jnla2xk9Omod-j-_fvcYPIbVJzrF8am3uUx83FgMFDNNkKcYMvYj0CEmOheIx2GABMFBpkU177kxwephLPQYaBzoiBOGTDm1wVNxSg4HO2Y4e-kn5Pbb15uLH9XV9ffLiy9XlWsaMVdWcN9wAZ0UXLSKOdV6sINUrgbovdTMt0I4xgYGqndeuNbqurha2btWaXFCPu-400O_Ae8gzMmOZkq4senJRIvm_0nAtVnFRyOVEFKrAjjfAVyKOScY9l7OzDYLU7Iw2yzMLovi-Pjvyr3-9flF0O0EUA5_REgmO9w-0GMCNxsf8U34X7l6nWU</recordid><startdate>20171215</startdate><enddate>20171215</enddate><creator>Boroda, Salome</creator><creator>Takkellapati, Sankeerth</creator><creator>Lawrence, Robert T.</creator><creator>Entwisle, Samuel W.</creator><creator>Pearson, Jennifer M.</creator><creator>Granade, Mitchell E.</creator><creator>Mullins, Garrett R.</creator><creator>Eaton, James M.</creator><creator>Villén, Judit</creator><creator>Harris, Thurl E.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20171215</creationdate><title>The phosphatidic acid–binding, polybasic domain is responsible for the differences in the phosphoregulation of lipins 1 and 3</title><author>Boroda, Salome ; Takkellapati, Sankeerth ; Lawrence, Robert T. ; Entwisle, Samuel W. ; Pearson, Jennifer M. ; Granade, Mitchell E. ; Mullins, Garrett R. ; Eaton, James M. ; Villén, Judit ; Harris, Thurl E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-a31d413e95313670c76deaf57c2eebd580d633c00f0e7bcd3c6a82a3165bc6783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>3T3-L1 Cells</topic><topic>Amino Acid Sequence</topic><topic>Amino Acid Substitution</topic><topic>Animals</topic><topic>Binding Sites</topic><topic>Conserved Sequence</topic><topic>di-anionic</topic><topic>Enzymology</topic><topic>HeLa Cells</topic><topic>Humans</topic><topic>Kinetics</topic><topic>lipin</topic><topic>Liposomes</topic><topic>lpin1</topic><topic>lpin3</topic><topic>mammalian target of rapamycin (mTOR)</topic><topic>Mice</topic><topic>Micelles</topic><topic>Mutation</topic><topic>Nuclear Proteins - chemistry</topic><topic>Nuclear Proteins - genetics</topic><topic>Nuclear Proteins - metabolism</topic><topic>phosphatase</topic><topic>Phosphatidate Phosphatase - chemistry</topic><topic>Phosphatidate Phosphatase - genetics</topic><topic>Phosphatidate Phosphatase - metabolism</topic><topic>phosphatidic acid</topic><topic>Phosphatidic Acids - metabolism</topic><topic>phosphatidylethanolamine</topic><topic>Phosphorylation</topic><topic>Protein Interaction Domains and Motifs</topic><topic>Protein Processing, Post-Translational</topic><topic>Recombinant Fusion Proteins - chemistry</topic><topic>Recombinant Fusion Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boroda, Salome</creatorcontrib><creatorcontrib>Takkellapati, Sankeerth</creatorcontrib><creatorcontrib>Lawrence, Robert T.</creatorcontrib><creatorcontrib>Entwisle, Samuel W.</creatorcontrib><creatorcontrib>Pearson, Jennifer M.</creatorcontrib><creatorcontrib>Granade, Mitchell E.</creatorcontrib><creatorcontrib>Mullins, Garrett R.</creatorcontrib><creatorcontrib>Eaton, James M.</creatorcontrib><creatorcontrib>Villén, Judit</creatorcontrib><creatorcontrib>Harris, Thurl E.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boroda, Salome</au><au>Takkellapati, Sankeerth</au><au>Lawrence, Robert T.</au><au>Entwisle, Samuel W.</au><au>Pearson, Jennifer M.</au><au>Granade, Mitchell E.</au><au>Mullins, Garrett R.</au><au>Eaton, James M.</au><au>Villén, Judit</au><au>Harris, Thurl E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The phosphatidic acid–binding, polybasic domain is responsible for the differences in the phosphoregulation of lipins 1 and 3</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2017-12-15</date><risdate>2017</risdate><volume>292</volume><issue>50</issue><spage>20481</spage><epage>20493</epage><pages>20481-20493</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Lipins 1, 2, and 3 are Mg2+-dependent phosphatidic acid phosphatases and catalyze the penultimate step of triacylglycerol synthesis. We have previously investigated the biochemistry of lipins 1 and 2 and shown that di-anionic phosphatidic acid (PA) augments their activity and lipid binding and that lipin 1 activity is negatively regulated by phosphorylation. In the present study, we show that phosphorylation does not affect the catalytic activity of lipin 3 or its ability to associate with PA in vitro. The lipin proteins each contain a conserved polybasic domain (PBD) composed of nine lysine and arginine residues located between the conserved N- and C-terminal domains. In lipin 1, the PBD is the site of PA binding and sensing of the PA electrostatic charge. The specific arrangement and number of the lysines and arginines of the PBD vary among the lipins. We show that the different PBDs of lipins 1 and 3 are responsible for the presence of phosphoregulation on the former but not the latter enzyme. To do so, we generated lipin 1 that contained the PBD of lipin 3 and vice versa. The lipin 1 enzyme with the lipin 3 PBD lost its ability to be regulated by phosphorylation but remained downstream of phosphorylation by mammalian target of rapamycin. Conversely, the presence of the lipin 1 PBD in lipin 3 subjected the enzyme to negative intramolecular control by phosphorylation. These results indicate a mechanism for the observed differences in lipin phosphoregulation in vitro.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>28982975</pmid><doi>10.1074/jbc.M117.786574</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2017-12, Vol.292 (50), p.20481-20493 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5733587 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection |
subjects | 3T3-L1 Cells Amino Acid Sequence Amino Acid Substitution Animals Binding Sites Conserved Sequence di-anionic Enzymology HeLa Cells Humans Kinetics lipin Liposomes lpin1 lpin3 mammalian target of rapamycin (mTOR) Mice Micelles Mutation Nuclear Proteins - chemistry Nuclear Proteins - genetics Nuclear Proteins - metabolism phosphatase Phosphatidate Phosphatase - chemistry Phosphatidate Phosphatase - genetics Phosphatidate Phosphatase - metabolism phosphatidic acid Phosphatidic Acids - metabolism phosphatidylethanolamine Phosphorylation Protein Interaction Domains and Motifs Protein Processing, Post-Translational Recombinant Fusion Proteins - chemistry Recombinant Fusion Proteins - metabolism |
title | The phosphatidic acid–binding, polybasic domain is responsible for the differences in the phosphoregulation of lipins 1 and 3 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T18%3A31%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20phosphatidic%20acid%E2%80%93binding,%20polybasic%20domain%20is%20responsible%20for%20the%20differences%20in%20the%20phosphoregulation%20of%20lipins%201%20and%203&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Boroda,%20Salome&rft.date=2017-12-15&rft.volume=292&rft.issue=50&rft.spage=20481&rft.epage=20493&rft.pages=20481-20493&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M117.786574&rft_dat=%3Celsevier_pubme%3ES0021925820327848%3C/elsevier_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/28982975&rft_els_id=S0021925820327848&rfr_iscdi=true |