Tumor image-derived texture features are associated with CD3 T-cell infiltration status in glioblastoma
This study analyzed magnetic resonance imaging (MRI) scans of Glioblastoma (GB) patients to develop an imaging-derived predictive model for assessing the extent of intratumoral CD3 T-cell infiltration. Pre-surgical T1-weighted post-contrast and T2-weighted Fluid-Attenuated-Inversion-Recovery (FLAIR)...
Gespeichert in:
Veröffentlicht in: | Oncotarget 2017-11, Vol.8 (60), p.101244-101254 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 101254 |
---|---|
container_issue | 60 |
container_start_page | 101244 |
container_title | Oncotarget |
container_volume | 8 |
creator | Narang, Shivali Kim, Donnie Aithala, Sathvik Heimberger, Amy B Ahmed, Salmaan Rao, Dinesh Rao, Ganesh Rao, Arvind |
description | This study analyzed magnetic resonance imaging (MRI) scans of Glioblastoma (GB) patients to develop an imaging-derived predictive model for assessing the extent of intratumoral CD3 T-cell infiltration. Pre-surgical T1-weighted post-contrast and T2-weighted Fluid-Attenuated-Inversion-Recovery (FLAIR) MRI scans, with corresponding mRNA expression of CD3D/E/G were obtained through The Cancer Genome Atlas (TCGA) for 79 GB patients. The tumor region was contoured and 86 image-derived features were extracted across the T1-post contrast and FLAIR images. Six imaging features-kurtosis, contrast, small zone size emphasis, low gray level zone size emphasis, high gray level zone size emphasis, small zone high gray level emphasis-were found associated with CD3 activity and used to build a predictive model for CD3 infiltration in an independent data set of 69 GB patients (using a 50-50 split for training and testing). For the training set, the image-based prediction model for CD3 infiltration achieved accuracy of 97.1% and area under the curve (AUC) of 0.993. For the test set, the model achieved accuracy of 76.5% and AUC of 0.847. This suggests a relationship between image-derived textural features and CD3 T-cell infiltration enabling the non-invasive inference of intratumoral CD3 T-cell infiltration in GB patients, with potential value for the radiological assessment of response to immune therapeutics. |
doi_str_mv | 10.18632/oncotarget.20643 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5731870</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1978720888</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-b883b8d389e08fade7d88544866e3f9a522be03816a634567b2460f2dfc82e5c3</originalsourceid><addsrcrecordid>eNpVUctOxCAUJUajZvQD3BiWbqo8CqUbEzM-ExM345rQ9rZi2jICHfXvxfE1sjlcLufcc3MQOqLklCrJ2ZkbaxeN7yCeMiJzvoX2aZmXGROCb2_c99BhCM8kHZEXipW7aI-VTORUkn3ULabBeWwH00HWgLcraHCEtzh5wC2YTwzYpMKE4GprYuq_2viE55ccL7Ia-h7bsbV99CZaN-IQEymkN9z11lW9CdEN5gDttKYPcPiNM_R4fbWY32b3Dzd384v7rOZCxqxSileq4aoEolrTQNEoJfJcSQm8LY1grALCFZVG8lzIomK5JC1r2loxEDWfofMv3eVUDdDUMCZfvV76tKF_185Y_b8z2ifduZUWBaeqIEng5FvAu5cJQtSDDZ9bmhHcFDQtC1UwopLRGaJfX2vvQvDQ_o6hRK8z0n8Z6XVGiXO86e-X8ZMI_wBxUpJY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1978720888</pqid></control><display><type>article</type><title>Tumor image-derived texture features are associated with CD3 T-cell infiltration status in glioblastoma</title><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free E- Journals</source><source>PubMed Central Open Access</source><creator>Narang, Shivali ; Kim, Donnie ; Aithala, Sathvik ; Heimberger, Amy B ; Ahmed, Salmaan ; Rao, Dinesh ; Rao, Ganesh ; Rao, Arvind</creator><creatorcontrib>Narang, Shivali ; Kim, Donnie ; Aithala, Sathvik ; Heimberger, Amy B ; Ahmed, Salmaan ; Rao, Dinesh ; Rao, Ganesh ; Rao, Arvind</creatorcontrib><description>This study analyzed magnetic resonance imaging (MRI) scans of Glioblastoma (GB) patients to develop an imaging-derived predictive model for assessing the extent of intratumoral CD3 T-cell infiltration. Pre-surgical T1-weighted post-contrast and T2-weighted Fluid-Attenuated-Inversion-Recovery (FLAIR) MRI scans, with corresponding mRNA expression of CD3D/E/G were obtained through The Cancer Genome Atlas (TCGA) for 79 GB patients. The tumor region was contoured and 86 image-derived features were extracted across the T1-post contrast and FLAIR images. Six imaging features-kurtosis, contrast, small zone size emphasis, low gray level zone size emphasis, high gray level zone size emphasis, small zone high gray level emphasis-were found associated with CD3 activity and used to build a predictive model for CD3 infiltration in an independent data set of 69 GB patients (using a 50-50 split for training and testing). For the training set, the image-based prediction model for CD3 infiltration achieved accuracy of 97.1% and area under the curve (AUC) of 0.993. For the test set, the model achieved accuracy of 76.5% and AUC of 0.847. This suggests a relationship between image-derived textural features and CD3 T-cell infiltration enabling the non-invasive inference of intratumoral CD3 T-cell infiltration in GB patients, with potential value for the radiological assessment of response to immune therapeutics.</description><identifier>ISSN: 1949-2553</identifier><identifier>EISSN: 1949-2553</identifier><identifier>DOI: 10.18632/oncotarget.20643</identifier><identifier>PMID: 29254160</identifier><language>eng</language><publisher>United States: Impact Journals LLC</publisher><subject>Research Paper</subject><ispartof>Oncotarget, 2017-11, Vol.8 (60), p.101244-101254</ispartof><rights>Copyright: © 2017 Narang et al. 2017</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-b883b8d389e08fade7d88544866e3f9a522be03816a634567b2460f2dfc82e5c3</citedby><cites>FETCH-LOGICAL-c356t-b883b8d389e08fade7d88544866e3f9a522be03816a634567b2460f2dfc82e5c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5731870/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5731870/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29254160$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Narang, Shivali</creatorcontrib><creatorcontrib>Kim, Donnie</creatorcontrib><creatorcontrib>Aithala, Sathvik</creatorcontrib><creatorcontrib>Heimberger, Amy B</creatorcontrib><creatorcontrib>Ahmed, Salmaan</creatorcontrib><creatorcontrib>Rao, Dinesh</creatorcontrib><creatorcontrib>Rao, Ganesh</creatorcontrib><creatorcontrib>Rao, Arvind</creatorcontrib><title>Tumor image-derived texture features are associated with CD3 T-cell infiltration status in glioblastoma</title><title>Oncotarget</title><addtitle>Oncotarget</addtitle><description>This study analyzed magnetic resonance imaging (MRI) scans of Glioblastoma (GB) patients to develop an imaging-derived predictive model for assessing the extent of intratumoral CD3 T-cell infiltration. Pre-surgical T1-weighted post-contrast and T2-weighted Fluid-Attenuated-Inversion-Recovery (FLAIR) MRI scans, with corresponding mRNA expression of CD3D/E/G were obtained through The Cancer Genome Atlas (TCGA) for 79 GB patients. The tumor region was contoured and 86 image-derived features were extracted across the T1-post contrast and FLAIR images. Six imaging features-kurtosis, contrast, small zone size emphasis, low gray level zone size emphasis, high gray level zone size emphasis, small zone high gray level emphasis-were found associated with CD3 activity and used to build a predictive model for CD3 infiltration in an independent data set of 69 GB patients (using a 50-50 split for training and testing). For the training set, the image-based prediction model for CD3 infiltration achieved accuracy of 97.1% and area under the curve (AUC) of 0.993. For the test set, the model achieved accuracy of 76.5% and AUC of 0.847. This suggests a relationship between image-derived textural features and CD3 T-cell infiltration enabling the non-invasive inference of intratumoral CD3 T-cell infiltration in GB patients, with potential value for the radiological assessment of response to immune therapeutics.</description><subject>Research Paper</subject><issn>1949-2553</issn><issn>1949-2553</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpVUctOxCAUJUajZvQD3BiWbqo8CqUbEzM-ExM345rQ9rZi2jICHfXvxfE1sjlcLufcc3MQOqLklCrJ2ZkbaxeN7yCeMiJzvoX2aZmXGROCb2_c99BhCM8kHZEXipW7aI-VTORUkn3ULabBeWwH00HWgLcraHCEtzh5wC2YTwzYpMKE4GprYuq_2viE55ccL7Ia-h7bsbV99CZaN-IQEymkN9z11lW9CdEN5gDttKYPcPiNM_R4fbWY32b3Dzd384v7rOZCxqxSileq4aoEolrTQNEoJfJcSQm8LY1grALCFZVG8lzIomK5JC1r2loxEDWfofMv3eVUDdDUMCZfvV76tKF_185Y_b8z2ifduZUWBaeqIEng5FvAu5cJQtSDDZ9bmhHcFDQtC1UwopLRGaJfX2vvQvDQ_o6hRK8z0n8Z6XVGiXO86e-X8ZMI_wBxUpJY</recordid><startdate>20171124</startdate><enddate>20171124</enddate><creator>Narang, Shivali</creator><creator>Kim, Donnie</creator><creator>Aithala, Sathvik</creator><creator>Heimberger, Amy B</creator><creator>Ahmed, Salmaan</creator><creator>Rao, Dinesh</creator><creator>Rao, Ganesh</creator><creator>Rao, Arvind</creator><general>Impact Journals LLC</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20171124</creationdate><title>Tumor image-derived texture features are associated with CD3 T-cell infiltration status in glioblastoma</title><author>Narang, Shivali ; Kim, Donnie ; Aithala, Sathvik ; Heimberger, Amy B ; Ahmed, Salmaan ; Rao, Dinesh ; Rao, Ganesh ; Rao, Arvind</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-b883b8d389e08fade7d88544866e3f9a522be03816a634567b2460f2dfc82e5c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Research Paper</topic><toplevel>online_resources</toplevel><creatorcontrib>Narang, Shivali</creatorcontrib><creatorcontrib>Kim, Donnie</creatorcontrib><creatorcontrib>Aithala, Sathvik</creatorcontrib><creatorcontrib>Heimberger, Amy B</creatorcontrib><creatorcontrib>Ahmed, Salmaan</creatorcontrib><creatorcontrib>Rao, Dinesh</creatorcontrib><creatorcontrib>Rao, Ganesh</creatorcontrib><creatorcontrib>Rao, Arvind</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Oncotarget</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Narang, Shivali</au><au>Kim, Donnie</au><au>Aithala, Sathvik</au><au>Heimberger, Amy B</au><au>Ahmed, Salmaan</au><au>Rao, Dinesh</au><au>Rao, Ganesh</au><au>Rao, Arvind</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tumor image-derived texture features are associated with CD3 T-cell infiltration status in glioblastoma</atitle><jtitle>Oncotarget</jtitle><addtitle>Oncotarget</addtitle><date>2017-11-24</date><risdate>2017</risdate><volume>8</volume><issue>60</issue><spage>101244</spage><epage>101254</epage><pages>101244-101254</pages><issn>1949-2553</issn><eissn>1949-2553</eissn><abstract>This study analyzed magnetic resonance imaging (MRI) scans of Glioblastoma (GB) patients to develop an imaging-derived predictive model for assessing the extent of intratumoral CD3 T-cell infiltration. Pre-surgical T1-weighted post-contrast and T2-weighted Fluid-Attenuated-Inversion-Recovery (FLAIR) MRI scans, with corresponding mRNA expression of CD3D/E/G were obtained through The Cancer Genome Atlas (TCGA) for 79 GB patients. The tumor region was contoured and 86 image-derived features were extracted across the T1-post contrast and FLAIR images. Six imaging features-kurtosis, contrast, small zone size emphasis, low gray level zone size emphasis, high gray level zone size emphasis, small zone high gray level emphasis-were found associated with CD3 activity and used to build a predictive model for CD3 infiltration in an independent data set of 69 GB patients (using a 50-50 split for training and testing). For the training set, the image-based prediction model for CD3 infiltration achieved accuracy of 97.1% and area under the curve (AUC) of 0.993. For the test set, the model achieved accuracy of 76.5% and AUC of 0.847. This suggests a relationship between image-derived textural features and CD3 T-cell infiltration enabling the non-invasive inference of intratumoral CD3 T-cell infiltration in GB patients, with potential value for the radiological assessment of response to immune therapeutics.</abstract><cop>United States</cop><pub>Impact Journals LLC</pub><pmid>29254160</pmid><doi>10.18632/oncotarget.20643</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1949-2553 |
ispartof | Oncotarget, 2017-11, Vol.8 (60), p.101244-101254 |
issn | 1949-2553 1949-2553 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5731870 |
source | EZB-FREE-00999 freely available EZB journals; PubMed Central; Free E- Journals; PubMed Central Open Access |
subjects | Research Paper |
title | Tumor image-derived texture features are associated with CD3 T-cell infiltration status in glioblastoma |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T13%3A31%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tumor%20image-derived%20texture%20features%20are%20associated%20with%20CD3%20T-cell%20infiltration%20status%20in%20glioblastoma&rft.jtitle=Oncotarget&rft.au=Narang,%20Shivali&rft.date=2017-11-24&rft.volume=8&rft.issue=60&rft.spage=101244&rft.epage=101254&rft.pages=101244-101254&rft.issn=1949-2553&rft.eissn=1949-2553&rft_id=info:doi/10.18632/oncotarget.20643&rft_dat=%3Cproquest_pubme%3E1978720888%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1978720888&rft_id=info:pmid/29254160&rfr_iscdi=true |