Rheological Droplet Interface Bilayers (rheo-DIBs): Probing the Unstirred Water Layer Effect on Membrane Permeability via Spinning Disk Induced Shear Stress

A new rheological droplet interface bilayer (rheo-DIB) device is presented as a tool to apply shear stress on biological lipid membranes. Despite their exciting potential for affecting high-throughput membrane translocation studies, permeability assays conducted using DIBs have neglected the effect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2017-12, Vol.7 (1), p.17551-12, Article 17551
Hauptverfasser: Barlow, Nathan E., Bolognesi, Guido, Haylock, Stuart, Flemming, Anthony J., Brooks, Nicholas J., Barter, Laura M. C., Ces, Oscar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue 1
container_start_page 17551
container_title Scientific reports
container_volume 7
creator Barlow, Nathan E.
Bolognesi, Guido
Haylock, Stuart
Flemming, Anthony J.
Brooks, Nicholas J.
Barter, Laura M. C.
Ces, Oscar
description A new rheological droplet interface bilayer (rheo-DIB) device is presented as a tool to apply shear stress on biological lipid membranes. Despite their exciting potential for affecting high-throughput membrane translocation studies, permeability assays conducted using DIBs have neglected the effect of the unstirred water layer (UWL). However as demonstrated in this study, neglecting this phenomenon can cause significant underestimates in membrane permeability measurements which in turn limits their ability to predict key processes such as drug translocation rates across lipid membranes. With the use of the rheo-DIB chip, the effective bilayer permeability can be modulated by applying shear stress to the droplet interfaces, inducing flow parallel to the DIB membranes. By analysing the relation between the effective membrane permeability and the applied stress, both the intrinsic membrane permeability and UWL thickness can be determined for the first time using this model membrane approach, thereby unlocking the potential of DIBs for undertaking diffusion assays. The results are also validated with numerical simulations.
doi_str_mv 10.1038/s41598-017-17883-0
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5730560</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1983425742</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-607db38f2f42f7d6e40d27ecd13b8a2d4ad9a5c6ee7c585babd4673fd34a30dc3</originalsourceid><addsrcrecordid>eNp1kc9u1DAQxiMEolXpC3BAlriUQ8DxnzjhgNR2C6y0iIql4mg59mTXJbEX26m078LD4mVLtSDhy1ia33wzn76ieF7h1xWmzZvIKt42Ja5EWYmmoSV-VBwTzHhJKCGPD_5HxWmMtzg_TlpWtU-LI9ISRngrjoufX9bgB7-yWg1oFvxmgITmLkHolQZ0YQe1hRDRWchcOZtfxFdv0XXwnXUrlNaAblxMNgQw6JvKU2ix49FV34NOyDv0CcYuKAfoGsIIqrODTVt0ZxVabqxzO5mZjd_zTjPprLJcgwpomQLE-Kx40qshwul9PSlu3l99vfxYLj5_mF-eL0rNGU5ljYXpaNOTnpFemBoYNkSANhXtGkUMU6ZVXNcAQvOGd6ozrBa0N5Qpio2mJ8W7ve5m6kYwGlwKapCbYEcVttIrK__uOLuWK38nuaCY1zgLnN0LBP9jgpjkaKOGYcjG_RRl1QohGiI4y-jLf9BbPwWX7WWqoTkWwUimyJ7SwccYoH84psJyl7_c5y9z_vJ3_nJ3xYtDGw8jf9LOAN0DMbfcCsLB7v_L_gLIvL4n</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1983425742</pqid></control><display><type>article</type><title>Rheological Droplet Interface Bilayers (rheo-DIBs): Probing the Unstirred Water Layer Effect on Membrane Permeability via Spinning Disk Induced Shear Stress</title><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature OA Free Journals</source><creator>Barlow, Nathan E. ; Bolognesi, Guido ; Haylock, Stuart ; Flemming, Anthony J. ; Brooks, Nicholas J. ; Barter, Laura M. C. ; Ces, Oscar</creator><creatorcontrib>Barlow, Nathan E. ; Bolognesi, Guido ; Haylock, Stuart ; Flemming, Anthony J. ; Brooks, Nicholas J. ; Barter, Laura M. C. ; Ces, Oscar</creatorcontrib><description>A new rheological droplet interface bilayer (rheo-DIB) device is presented as a tool to apply shear stress on biological lipid membranes. Despite their exciting potential for affecting high-throughput membrane translocation studies, permeability assays conducted using DIBs have neglected the effect of the unstirred water layer (UWL). However as demonstrated in this study, neglecting this phenomenon can cause significant underestimates in membrane permeability measurements which in turn limits their ability to predict key processes such as drug translocation rates across lipid membranes. With the use of the rheo-DIB chip, the effective bilayer permeability can be modulated by applying shear stress to the droplet interfaces, inducing flow parallel to the DIB membranes. By analysing the relation between the effective membrane permeability and the applied stress, both the intrinsic membrane permeability and UWL thickness can be determined for the first time using this model membrane approach, thereby unlocking the potential of DIBs for undertaking diffusion assays. The results are also validated with numerical simulations.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-017-17883-0</identifier><identifier>PMID: 29242597</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/62 ; 14/34 ; 14/63 ; 631/57/2270 ; 639/638/92/314 ; 9/10 ; Humanities and Social Sciences ; Interfaces ; Lipid membranes ; Membrane permeability ; Membranes ; multidisciplinary ; Permeability ; Rheology ; Science ; Science (multidisciplinary) ; Shear stress ; Translocation</subject><ispartof>Scientific reports, 2017-12, Vol.7 (1), p.17551-12, Article 17551</ispartof><rights>The Author(s) 2017</rights><rights>2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-607db38f2f42f7d6e40d27ecd13b8a2d4ad9a5c6ee7c585babd4673fd34a30dc3</citedby><cites>FETCH-LOGICAL-c540t-607db38f2f42f7d6e40d27ecd13b8a2d4ad9a5c6ee7c585babd4673fd34a30dc3</cites><orcidid>0000-0002-1346-9559 ; 0000-0002-2380-0794</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5730560/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5730560/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29242597$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Barlow, Nathan E.</creatorcontrib><creatorcontrib>Bolognesi, Guido</creatorcontrib><creatorcontrib>Haylock, Stuart</creatorcontrib><creatorcontrib>Flemming, Anthony J.</creatorcontrib><creatorcontrib>Brooks, Nicholas J.</creatorcontrib><creatorcontrib>Barter, Laura M. C.</creatorcontrib><creatorcontrib>Ces, Oscar</creatorcontrib><title>Rheological Droplet Interface Bilayers (rheo-DIBs): Probing the Unstirred Water Layer Effect on Membrane Permeability via Spinning Disk Induced Shear Stress</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>A new rheological droplet interface bilayer (rheo-DIB) device is presented as a tool to apply shear stress on biological lipid membranes. Despite their exciting potential for affecting high-throughput membrane translocation studies, permeability assays conducted using DIBs have neglected the effect of the unstirred water layer (UWL). However as demonstrated in this study, neglecting this phenomenon can cause significant underestimates in membrane permeability measurements which in turn limits their ability to predict key processes such as drug translocation rates across lipid membranes. With the use of the rheo-DIB chip, the effective bilayer permeability can be modulated by applying shear stress to the droplet interfaces, inducing flow parallel to the DIB membranes. By analysing the relation between the effective membrane permeability and the applied stress, both the intrinsic membrane permeability and UWL thickness can be determined for the first time using this model membrane approach, thereby unlocking the potential of DIBs for undertaking diffusion assays. The results are also validated with numerical simulations.</description><subject>13/62</subject><subject>14/34</subject><subject>14/63</subject><subject>631/57/2270</subject><subject>639/638/92/314</subject><subject>9/10</subject><subject>Humanities and Social Sciences</subject><subject>Interfaces</subject><subject>Lipid membranes</subject><subject>Membrane permeability</subject><subject>Membranes</subject><subject>multidisciplinary</subject><subject>Permeability</subject><subject>Rheology</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Shear stress</subject><subject>Translocation</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kc9u1DAQxiMEolXpC3BAlriUQ8DxnzjhgNR2C6y0iIql4mg59mTXJbEX26m078LD4mVLtSDhy1ia33wzn76ieF7h1xWmzZvIKt42Ja5EWYmmoSV-VBwTzHhJKCGPD_5HxWmMtzg_TlpWtU-LI9ISRngrjoufX9bgB7-yWg1oFvxmgITmLkHolQZ0YQe1hRDRWchcOZtfxFdv0XXwnXUrlNaAblxMNgQw6JvKU2ix49FV34NOyDv0CcYuKAfoGsIIqrODTVt0ZxVabqxzO5mZjd_zTjPprLJcgwpomQLE-Kx40qshwul9PSlu3l99vfxYLj5_mF-eL0rNGU5ljYXpaNOTnpFemBoYNkSANhXtGkUMU6ZVXNcAQvOGd6ozrBa0N5Qpio2mJ8W7ve5m6kYwGlwKapCbYEcVttIrK__uOLuWK38nuaCY1zgLnN0LBP9jgpjkaKOGYcjG_RRl1QohGiI4y-jLf9BbPwWX7WWqoTkWwUimyJ7SwccYoH84psJyl7_c5y9z_vJ3_nJ3xYtDGw8jf9LOAN0DMbfcCsLB7v_L_gLIvL4n</recordid><startdate>20171214</startdate><enddate>20171214</enddate><creator>Barlow, Nathan E.</creator><creator>Bolognesi, Guido</creator><creator>Haylock, Stuart</creator><creator>Flemming, Anthony J.</creator><creator>Brooks, Nicholas J.</creator><creator>Barter, Laura M. C.</creator><creator>Ces, Oscar</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1346-9559</orcidid><orcidid>https://orcid.org/0000-0002-2380-0794</orcidid></search><sort><creationdate>20171214</creationdate><title>Rheological Droplet Interface Bilayers (rheo-DIBs): Probing the Unstirred Water Layer Effect on Membrane Permeability via Spinning Disk Induced Shear Stress</title><author>Barlow, Nathan E. ; Bolognesi, Guido ; Haylock, Stuart ; Flemming, Anthony J. ; Brooks, Nicholas J. ; Barter, Laura M. C. ; Ces, Oscar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-607db38f2f42f7d6e40d27ecd13b8a2d4ad9a5c6ee7c585babd4673fd34a30dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>13/62</topic><topic>14/34</topic><topic>14/63</topic><topic>631/57/2270</topic><topic>639/638/92/314</topic><topic>9/10</topic><topic>Humanities and Social Sciences</topic><topic>Interfaces</topic><topic>Lipid membranes</topic><topic>Membrane permeability</topic><topic>Membranes</topic><topic>multidisciplinary</topic><topic>Permeability</topic><topic>Rheology</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Shear stress</topic><topic>Translocation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barlow, Nathan E.</creatorcontrib><creatorcontrib>Bolognesi, Guido</creatorcontrib><creatorcontrib>Haylock, Stuart</creatorcontrib><creatorcontrib>Flemming, Anthony J.</creatorcontrib><creatorcontrib>Brooks, Nicholas J.</creatorcontrib><creatorcontrib>Barter, Laura M. C.</creatorcontrib><creatorcontrib>Ces, Oscar</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barlow, Nathan E.</au><au>Bolognesi, Guido</au><au>Haylock, Stuart</au><au>Flemming, Anthony J.</au><au>Brooks, Nicholas J.</au><au>Barter, Laura M. C.</au><au>Ces, Oscar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rheological Droplet Interface Bilayers (rheo-DIBs): Probing the Unstirred Water Layer Effect on Membrane Permeability via Spinning Disk Induced Shear Stress</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2017-12-14</date><risdate>2017</risdate><volume>7</volume><issue>1</issue><spage>17551</spage><epage>12</epage><pages>17551-12</pages><artnum>17551</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>A new rheological droplet interface bilayer (rheo-DIB) device is presented as a tool to apply shear stress on biological lipid membranes. Despite their exciting potential for affecting high-throughput membrane translocation studies, permeability assays conducted using DIBs have neglected the effect of the unstirred water layer (UWL). However as demonstrated in this study, neglecting this phenomenon can cause significant underestimates in membrane permeability measurements which in turn limits their ability to predict key processes such as drug translocation rates across lipid membranes. With the use of the rheo-DIB chip, the effective bilayer permeability can be modulated by applying shear stress to the droplet interfaces, inducing flow parallel to the DIB membranes. By analysing the relation between the effective membrane permeability and the applied stress, both the intrinsic membrane permeability and UWL thickness can be determined for the first time using this model membrane approach, thereby unlocking the potential of DIBs for undertaking diffusion assays. The results are also validated with numerical simulations.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>29242597</pmid><doi>10.1038/s41598-017-17883-0</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-1346-9559</orcidid><orcidid>https://orcid.org/0000-0002-2380-0794</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2017-12, Vol.7 (1), p.17551-12, Article 17551
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5730560
source Nature Free; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; Springer Nature OA Free Journals
subjects 13/62
14/34
14/63
631/57/2270
639/638/92/314
9/10
Humanities and Social Sciences
Interfaces
Lipid membranes
Membrane permeability
Membranes
multidisciplinary
Permeability
Rheology
Science
Science (multidisciplinary)
Shear stress
Translocation
title Rheological Droplet Interface Bilayers (rheo-DIBs): Probing the Unstirred Water Layer Effect on Membrane Permeability via Spinning Disk Induced Shear Stress
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T03%3A19%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rheological%20Droplet%20Interface%20Bilayers%20(rheo-DIBs):%20Probing%20the%20Unstirred%20Water%20Layer%20Effect%20on%20Membrane%20Permeability%20via%20Spinning%20Disk%20Induced%20Shear%20Stress&rft.jtitle=Scientific%20reports&rft.au=Barlow,%20Nathan%20E.&rft.date=2017-12-14&rft.volume=7&rft.issue=1&rft.spage=17551&rft.epage=12&rft.pages=17551-12&rft.artnum=17551&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-017-17883-0&rft_dat=%3Cproquest_pubme%3E1983425742%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1983425742&rft_id=info:pmid/29242597&rfr_iscdi=true