MetaNetter 2: A Cytoscape plugin for ab initio network analysis and metabolite feature classification

•An update to the ab-initio network construction tool MetaNetter has been produced.•The tool creates networks of masses from high resolution mass spectrometry data.•The new plugin provides both chemical transformation and adduct mapping.•Tables mapping adduct and transform counts across samples can...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chromatography. B, Analytical technologies in the biomedical and life sciences Analytical technologies in the biomedical and life sciences, 2017-12, Vol.1071, p.68-74
Hauptverfasser: Burgess, K.E.V., Borutzki, Y., Rankin, N., Daly, R., Jourdan, F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 74
container_issue
container_start_page 68
container_title Journal of chromatography. B, Analytical technologies in the biomedical and life sciences
container_volume 1071
creator Burgess, K.E.V.
Borutzki, Y.
Rankin, N.
Daly, R.
Jourdan, F.
description •An update to the ab-initio network construction tool MetaNetter has been produced.•The tool creates networks of masses from high resolution mass spectrometry data.•The new plugin provides both chemical transformation and adduct mapping.•Tables mapping adduct and transform counts across samples can be generated.•Retention time windows are supported for both adduct and transform network generation. Metabolomics frequently relies on the use of high resolution mass spectrometry data. Classification and filtering of this data remain a challenging task due to the plethora of complex mass spectral artefacts, chemical noise, adducts and fragmentation that occur during ionisation and analysis. Additionally, the relationships between detected compounds can provide a wealth of information about the nature of the samples and the biochemistry that gave rise to them. We present a biochemical networking tool: MetaNetter 2 that is based on the original MetaNetter, a Cytoscape plugin that creates ab initio networks. The new version supports two major improvements: the generation of adduct networks and the creation of tables that map adduct or transformation patterns across multiple samples, providing a readout of compound relationships. We have applied this tool to the analysis of adduct patterns in the same sample separated under two different chromatographies, allowing inferences to be made about the effect of different buffer conditions on adduct detection, and the application of the chemical transformation analysis to both a single fragmentation analysis and an all-ions fragmentation dataset. Finally, we present an analysis of a dataset derived from anaerobic and aerobic growth of the organism Staphylococcus aureus demonstrating the utility of the tool for biological analysis.
doi_str_mv 10.1016/j.jchromb.2017.08.015
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5726607</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1570023217314009</els_id><sourcerecordid>2000571406</sourcerecordid><originalsourceid>FETCH-LOGICAL-c534t-46ca704fe56fe8ab46294ae5234955eb141a1f53f1f0c31fc3704a113e02101f3</originalsourceid><addsrcrecordid>eNqFkU-vEyEUxYnR-J7Vj6BhqYsZLzDMHxeaplGfSdWNJu4IQy-v1JmhAlPTby9N64u6ccUN_M654RxCnjIoGbD65a7cmW3wY19yYE0JbQlM3iPXrG1EIZr62_08ywYK4IJfkUcx7iCD0IiH5Ip3IAC69prgR0z6E6aEgfJXdElXx-Sj0Xuk-2G-dRO1PlDdUze55DydMP304TvVkx6O0cU8bOiYPXo_uITUok5zQGoGHaOzzuismh6TB1YPEZ9czgX5-u7tl9VNsf78_sNquS6MFFUqqtroBiqLsrbY6r6qeVdplFxUnZTYs4ppZqWwzIIRzBqRac2YQOA5FCsW5PXZdz_3I24MTinoQe2DG3U4Kq-d-vtlclt16w9KNryuczYL8uJssP1HdrNcq9Md8JpD3cGBZfb5ZVnwP2aMSY0uGhwGPaGfo-IAIBtWQZ1ReUZN8DEGtHfeDNSpTrVTlzrVqU4Frcp1Zt2zP_9zp_rdXwbenAHMqR4cBhWNw8ngxgU0SW28-8-KX_jstJE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2000571406</pqid></control><display><type>article</type><title>MetaNetter 2: A Cytoscape plugin for ab initio network analysis and metabolite feature classification</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Burgess, K.E.V. ; Borutzki, Y. ; Rankin, N. ; Daly, R. ; Jourdan, F.</creator><creatorcontrib>Burgess, K.E.V. ; Borutzki, Y. ; Rankin, N. ; Daly, R. ; Jourdan, F.</creatorcontrib><description>•An update to the ab-initio network construction tool MetaNetter has been produced.•The tool creates networks of masses from high resolution mass spectrometry data.•The new plugin provides both chemical transformation and adduct mapping.•Tables mapping adduct and transform counts across samples can be generated.•Retention time windows are supported for both adduct and transform network generation. Metabolomics frequently relies on the use of high resolution mass spectrometry data. Classification and filtering of this data remain a challenging task due to the plethora of complex mass spectral artefacts, chemical noise, adducts and fragmentation that occur during ionisation and analysis. Additionally, the relationships between detected compounds can provide a wealth of information about the nature of the samples and the biochemistry that gave rise to them. We present a biochemical networking tool: MetaNetter 2 that is based on the original MetaNetter, a Cytoscape plugin that creates ab initio networks. The new version supports two major improvements: the generation of adduct networks and the creation of tables that map adduct or transformation patterns across multiple samples, providing a readout of compound relationships. We have applied this tool to the analysis of adduct patterns in the same sample separated under two different chromatographies, allowing inferences to be made about the effect of different buffer conditions on adduct detection, and the application of the chemical transformation analysis to both a single fragmentation analysis and an all-ions fragmentation dataset. Finally, we present an analysis of a dataset derived from anaerobic and aerobic growth of the organism Staphylococcus aureus demonstrating the utility of the tool for biological analysis.</description><identifier>ISSN: 1570-0232</identifier><identifier>EISSN: 1873-376X</identifier><identifier>DOI: 10.1016/j.jchromb.2017.08.015</identifier><identifier>PMID: 29030098</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Ab-initio network ; aerobiosis ; Aerobiosis - physiology ; Anaerobiosis - physiology ; chromatography ; Computational Biology ; data collection ; Databases, Factual ; ionization ; Life Sciences ; Mass spectrometry ; Mass Spectrometry - methods ; metabolites ; Metabolomics ; Metabolomics - methods ; MetaNetter ; Software ; Staphylococcus aureus ; Staphylococcus aureus - metabolism ; Staphylococcus aureus - physiology</subject><ispartof>Journal of chromatography. B, Analytical technologies in the biomedical and life sciences, 2017-12, Vol.1071, p.68-74</ispartof><rights>2017 The Author(s)</rights><rights>Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.</rights><rights>Attribution</rights><rights>2017 The Author(s) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c534t-46ca704fe56fe8ab46294ae5234955eb141a1f53f1f0c31fc3704a113e02101f3</citedby><cites>FETCH-LOGICAL-c534t-46ca704fe56fe8ab46294ae5234955eb141a1f53f1f0c31fc3704a113e02101f3</cites><orcidid>0000-0001-9401-2894</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1570023217314009$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29030098$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.inrae.fr/hal-02620690$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Burgess, K.E.V.</creatorcontrib><creatorcontrib>Borutzki, Y.</creatorcontrib><creatorcontrib>Rankin, N.</creatorcontrib><creatorcontrib>Daly, R.</creatorcontrib><creatorcontrib>Jourdan, F.</creatorcontrib><title>MetaNetter 2: A Cytoscape plugin for ab initio network analysis and metabolite feature classification</title><title>Journal of chromatography. B, Analytical technologies in the biomedical and life sciences</title><addtitle>J Chromatogr B Analyt Technol Biomed Life Sci</addtitle><description>•An update to the ab-initio network construction tool MetaNetter has been produced.•The tool creates networks of masses from high resolution mass spectrometry data.•The new plugin provides both chemical transformation and adduct mapping.•Tables mapping adduct and transform counts across samples can be generated.•Retention time windows are supported for both adduct and transform network generation. Metabolomics frequently relies on the use of high resolution mass spectrometry data. Classification and filtering of this data remain a challenging task due to the plethora of complex mass spectral artefacts, chemical noise, adducts and fragmentation that occur during ionisation and analysis. Additionally, the relationships between detected compounds can provide a wealth of information about the nature of the samples and the biochemistry that gave rise to them. We present a biochemical networking tool: MetaNetter 2 that is based on the original MetaNetter, a Cytoscape plugin that creates ab initio networks. The new version supports two major improvements: the generation of adduct networks and the creation of tables that map adduct or transformation patterns across multiple samples, providing a readout of compound relationships. We have applied this tool to the analysis of adduct patterns in the same sample separated under two different chromatographies, allowing inferences to be made about the effect of different buffer conditions on adduct detection, and the application of the chemical transformation analysis to both a single fragmentation analysis and an all-ions fragmentation dataset. Finally, we present an analysis of a dataset derived from anaerobic and aerobic growth of the organism Staphylococcus aureus demonstrating the utility of the tool for biological analysis.</description><subject>Ab-initio network</subject><subject>aerobiosis</subject><subject>Aerobiosis - physiology</subject><subject>Anaerobiosis - physiology</subject><subject>chromatography</subject><subject>Computational Biology</subject><subject>data collection</subject><subject>Databases, Factual</subject><subject>ionization</subject><subject>Life Sciences</subject><subject>Mass spectrometry</subject><subject>Mass Spectrometry - methods</subject><subject>metabolites</subject><subject>Metabolomics</subject><subject>Metabolomics - methods</subject><subject>MetaNetter</subject><subject>Software</subject><subject>Staphylococcus aureus</subject><subject>Staphylococcus aureus - metabolism</subject><subject>Staphylococcus aureus - physiology</subject><issn>1570-0232</issn><issn>1873-376X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU-vEyEUxYnR-J7Vj6BhqYsZLzDMHxeaplGfSdWNJu4IQy-v1JmhAlPTby9N64u6ccUN_M654RxCnjIoGbD65a7cmW3wY19yYE0JbQlM3iPXrG1EIZr62_08ywYK4IJfkUcx7iCD0IiH5Ip3IAC69prgR0z6E6aEgfJXdElXx-Sj0Xuk-2G-dRO1PlDdUze55DydMP304TvVkx6O0cU8bOiYPXo_uITUok5zQGoGHaOzzuismh6TB1YPEZ9czgX5-u7tl9VNsf78_sNquS6MFFUqqtroBiqLsrbY6r6qeVdplFxUnZTYs4ppZqWwzIIRzBqRac2YQOA5FCsW5PXZdz_3I24MTinoQe2DG3U4Kq-d-vtlclt16w9KNryuczYL8uJssP1HdrNcq9Md8JpD3cGBZfb5ZVnwP2aMSY0uGhwGPaGfo-IAIBtWQZ1ReUZN8DEGtHfeDNSpTrVTlzrVqU4Frcp1Zt2zP_9zp_rdXwbenAHMqR4cBhWNw8ngxgU0SW28-8-KX_jstJE</recordid><startdate>20171215</startdate><enddate>20171215</enddate><creator>Burgess, K.E.V.</creator><creator>Borutzki, Y.</creator><creator>Rankin, N.</creator><creator>Daly, R.</creator><creator>Jourdan, F.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9401-2894</orcidid></search><sort><creationdate>20171215</creationdate><title>MetaNetter 2: A Cytoscape plugin for ab initio network analysis and metabolite feature classification</title><author>Burgess, K.E.V. ; Borutzki, Y. ; Rankin, N. ; Daly, R. ; Jourdan, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c534t-46ca704fe56fe8ab46294ae5234955eb141a1f53f1f0c31fc3704a113e02101f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Ab-initio network</topic><topic>aerobiosis</topic><topic>Aerobiosis - physiology</topic><topic>Anaerobiosis - physiology</topic><topic>chromatography</topic><topic>Computational Biology</topic><topic>data collection</topic><topic>Databases, Factual</topic><topic>ionization</topic><topic>Life Sciences</topic><topic>Mass spectrometry</topic><topic>Mass Spectrometry - methods</topic><topic>metabolites</topic><topic>Metabolomics</topic><topic>Metabolomics - methods</topic><topic>MetaNetter</topic><topic>Software</topic><topic>Staphylococcus aureus</topic><topic>Staphylococcus aureus - metabolism</topic><topic>Staphylococcus aureus - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Burgess, K.E.V.</creatorcontrib><creatorcontrib>Borutzki, Y.</creatorcontrib><creatorcontrib>Rankin, N.</creatorcontrib><creatorcontrib>Daly, R.</creatorcontrib><creatorcontrib>Jourdan, F.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of chromatography. B, Analytical technologies in the biomedical and life sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Burgess, K.E.V.</au><au>Borutzki, Y.</au><au>Rankin, N.</au><au>Daly, R.</au><au>Jourdan, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MetaNetter 2: A Cytoscape plugin for ab initio network analysis and metabolite feature classification</atitle><jtitle>Journal of chromatography. B, Analytical technologies in the biomedical and life sciences</jtitle><addtitle>J Chromatogr B Analyt Technol Biomed Life Sci</addtitle><date>2017-12-15</date><risdate>2017</risdate><volume>1071</volume><spage>68</spage><epage>74</epage><pages>68-74</pages><issn>1570-0232</issn><eissn>1873-376X</eissn><abstract>•An update to the ab-initio network construction tool MetaNetter has been produced.•The tool creates networks of masses from high resolution mass spectrometry data.•The new plugin provides both chemical transformation and adduct mapping.•Tables mapping adduct and transform counts across samples can be generated.•Retention time windows are supported for both adduct and transform network generation. Metabolomics frequently relies on the use of high resolution mass spectrometry data. Classification and filtering of this data remain a challenging task due to the plethora of complex mass spectral artefacts, chemical noise, adducts and fragmentation that occur during ionisation and analysis. Additionally, the relationships between detected compounds can provide a wealth of information about the nature of the samples and the biochemistry that gave rise to them. We present a biochemical networking tool: MetaNetter 2 that is based on the original MetaNetter, a Cytoscape plugin that creates ab initio networks. The new version supports two major improvements: the generation of adduct networks and the creation of tables that map adduct or transformation patterns across multiple samples, providing a readout of compound relationships. We have applied this tool to the analysis of adduct patterns in the same sample separated under two different chromatographies, allowing inferences to be made about the effect of different buffer conditions on adduct detection, and the application of the chemical transformation analysis to both a single fragmentation analysis and an all-ions fragmentation dataset. Finally, we present an analysis of a dataset derived from anaerobic and aerobic growth of the organism Staphylococcus aureus demonstrating the utility of the tool for biological analysis.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>29030098</pmid><doi>10.1016/j.jchromb.2017.08.015</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-9401-2894</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1570-0232
ispartof Journal of chromatography. B, Analytical technologies in the biomedical and life sciences, 2017-12, Vol.1071, p.68-74
issn 1570-0232
1873-376X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5726607
source MEDLINE; Elsevier ScienceDirect Journals
subjects Ab-initio network
aerobiosis
Aerobiosis - physiology
Anaerobiosis - physiology
chromatography
Computational Biology
data collection
Databases, Factual
ionization
Life Sciences
Mass spectrometry
Mass Spectrometry - methods
metabolites
Metabolomics
Metabolomics - methods
MetaNetter
Software
Staphylococcus aureus
Staphylococcus aureus - metabolism
Staphylococcus aureus - physiology
title MetaNetter 2: A Cytoscape plugin for ab initio network analysis and metabolite feature classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T15%3A26%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MetaNetter%202:%20A%20Cytoscape%20plugin%20for%20ab%20initio%20network%20analysis%20and%20metabolite%20feature%20classification&rft.jtitle=Journal%20of%20chromatography.%20B,%20Analytical%20technologies%20in%20the%20biomedical%20and%20life%20sciences&rft.au=Burgess,%20K.E.V.&rft.date=2017-12-15&rft.volume=1071&rft.spage=68&rft.epage=74&rft.pages=68-74&rft.issn=1570-0232&rft.eissn=1873-376X&rft_id=info:doi/10.1016/j.jchromb.2017.08.015&rft_dat=%3Cproquest_pubme%3E2000571406%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2000571406&rft_id=info:pmid/29030098&rft_els_id=S1570023217314009&rfr_iscdi=true