The structural connectivity of higher order association cortices reflects human functional brain networks

Human higher cognition arises from the main tertiary association cortices including the frontal, temporal and parietal lobes. Many studies have suggested that cortical functions must be shaped or emerge from the pattern of underlying physical (white matter) connectivity. Despite the importance of th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cortex 2017-12, Vol.97, p.221-239
Hauptverfasser: Jung, JeYoung, Cloutman, Lauren L., Binney, Richard J., Lambon Ralph, Matthew A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 239
container_issue
container_start_page 221
container_title Cortex
container_volume 97
creator Jung, JeYoung
Cloutman, Lauren L.
Binney, Richard J.
Lambon Ralph, Matthew A.
description Human higher cognition arises from the main tertiary association cortices including the frontal, temporal and parietal lobes. Many studies have suggested that cortical functions must be shaped or emerge from the pattern of underlying physical (white matter) connectivity. Despite the importance of this hypothesis, there has not been a large-scale analysis of the white-matter connectivity within and between these associative cortices. Thus, we explored the pattern of intra- and inter-lobe white matter connectivity between multiple areas defined in each lobe. We defined 43 regions of interest on the lateral associative cortex cytoarchitectonically (6 regions of interest – ROIs in the frontal lobe and 17 ROIs in the parietal lobe) and anatomically (20 ROIs in the temporal lobe) on individuals' native space. The results demonstrated that intra-region connectivity for all 3 lobes was dense and graded generally. In contrary, the inter-lobe connectivity was relatively discrete and regionally specific such that only small sub-regions exhibited long-range connections to another lobe. The long-range connectivity was mediated by 6 major associative white matter tracts, consistent with the notion that these higher cognitive functions arises from brain-wide distributed connectivity. Using graph-theory network analysis we revealed five physically-connected sub-networks, which correspond directly to five known functional networks. This study provides strong and direct evidence that core functional brain networks mirror the brain's structural connectivity.
doi_str_mv 10.1016/j.cortex.2016.08.011
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5726605</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010945216302325</els_id><sourcerecordid>1835390428</sourcerecordid><originalsourceid>FETCH-LOGICAL-c529t-2584087a33c8db34e0f13525978d531ca70d6a27be5ffdc98d8dc71ccec6a5173</originalsourceid><addsrcrecordid>eNp9UU1vFSEUJUZjn9V_YAxLNzMCMwzMxsQ0fjRp4qauCe9yp8NzHlRgnvbfy8urtW7cQAjn495zCHnNWcsZH97tWoip4K9W1FfLdMs4f0I2fFRdozkTT8mGMc6asZfijLzIeceYYFrK5-RMqGEUuh82xF_PSHNJK5Q12YVCDAGh-IMvdzROdPY3MyYak6unzTmCt8XHQI_mHjDThNNSGZnO694GOq0BjoCqtU3WBxqw_Izpe35Jnk12yfjq_j4n3z59vL740lx9_Xx58eGqASnG0gipe6aV7TrQbtv1yCbeSSFHpZ3sOFjF3GCF2qKcJgejdtqB4gAIg5Vcdefk_Un3dt3u0QGGUhczt8nvbboz0Xrz70_ws7mJByOVGAYmq8Dbe4EUf6yYi9n7DLgsNmBcs-G6k93IeqErtD9BIcWcaxIPNpyZY0tmZ04tmWNLhmlTW6q0N49HfCD9qeXvDliDOnhMJoPHAOh8qlkbF_3_HX4Dn1Sp0A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1835390428</pqid></control><display><type>article</type><title>The structural connectivity of higher order association cortices reflects human functional brain networks</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Jung, JeYoung ; Cloutman, Lauren L. ; Binney, Richard J. ; Lambon Ralph, Matthew A.</creator><creatorcontrib>Jung, JeYoung ; Cloutman, Lauren L. ; Binney, Richard J. ; Lambon Ralph, Matthew A.</creatorcontrib><description>Human higher cognition arises from the main tertiary association cortices including the frontal, temporal and parietal lobes. Many studies have suggested that cortical functions must be shaped or emerge from the pattern of underlying physical (white matter) connectivity. Despite the importance of this hypothesis, there has not been a large-scale analysis of the white-matter connectivity within and between these associative cortices. Thus, we explored the pattern of intra- and inter-lobe white matter connectivity between multiple areas defined in each lobe. We defined 43 regions of interest on the lateral associative cortex cytoarchitectonically (6 regions of interest – ROIs in the frontal lobe and 17 ROIs in the parietal lobe) and anatomically (20 ROIs in the temporal lobe) on individuals' native space. The results demonstrated that intra-region connectivity for all 3 lobes was dense and graded generally. In contrary, the inter-lobe connectivity was relatively discrete and regionally specific such that only small sub-regions exhibited long-range connections to another lobe. The long-range connectivity was mediated by 6 major associative white matter tracts, consistent with the notion that these higher cognitive functions arises from brain-wide distributed connectivity. Using graph-theory network analysis we revealed five physically-connected sub-networks, which correspond directly to five known functional networks. This study provides strong and direct evidence that core functional brain networks mirror the brain's structural connectivity.</description><identifier>ISSN: 0010-9452</identifier><identifier>EISSN: 1973-8102</identifier><identifier>DOI: 10.1016/j.cortex.2016.08.011</identifier><identifier>PMID: 27692846</identifier><language>eng</language><publisher>Italy: Elsevier Ltd</publisher><subject>Adult ; Associative cortex ; Brain - diagnostic imaging ; Brain - physiology ; Brain Mapping ; Diffusion Magnetic Resonance Imaging ; Diffusion Tensor Imaging ; Diffusion weighted imaging ; Female ; Graph-theory ; Higher cognitive function ; Humans ; Image Processing, Computer-Assisted ; Male ; Middle Aged ; Nerve Net - diagnostic imaging ; Nerve Net - physiology ; Neural Pathways - diagnostic imaging ; Neural Pathways - physiology ; Tractography ; Young Adult</subject><ispartof>Cortex, 2017-12, Vol.97, p.221-239</ispartof><rights>2016 The Authors</rights><rights>Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.</rights><rights>2016 The Authors 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c529t-2584087a33c8db34e0f13525978d531ca70d6a27be5ffdc98d8dc71ccec6a5173</citedby><cites>FETCH-LOGICAL-c529t-2584087a33c8db34e0f13525978d531ca70d6a27be5ffdc98d8dc71ccec6a5173</cites><orcidid>0000-0001-5907-2488</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0010945216302325$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27692846$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jung, JeYoung</creatorcontrib><creatorcontrib>Cloutman, Lauren L.</creatorcontrib><creatorcontrib>Binney, Richard J.</creatorcontrib><creatorcontrib>Lambon Ralph, Matthew A.</creatorcontrib><title>The structural connectivity of higher order association cortices reflects human functional brain networks</title><title>Cortex</title><addtitle>Cortex</addtitle><description>Human higher cognition arises from the main tertiary association cortices including the frontal, temporal and parietal lobes. Many studies have suggested that cortical functions must be shaped or emerge from the pattern of underlying physical (white matter) connectivity. Despite the importance of this hypothesis, there has not been a large-scale analysis of the white-matter connectivity within and between these associative cortices. Thus, we explored the pattern of intra- and inter-lobe white matter connectivity between multiple areas defined in each lobe. We defined 43 regions of interest on the lateral associative cortex cytoarchitectonically (6 regions of interest – ROIs in the frontal lobe and 17 ROIs in the parietal lobe) and anatomically (20 ROIs in the temporal lobe) on individuals' native space. The results demonstrated that intra-region connectivity for all 3 lobes was dense and graded generally. In contrary, the inter-lobe connectivity was relatively discrete and regionally specific such that only small sub-regions exhibited long-range connections to another lobe. The long-range connectivity was mediated by 6 major associative white matter tracts, consistent with the notion that these higher cognitive functions arises from brain-wide distributed connectivity. Using graph-theory network analysis we revealed five physically-connected sub-networks, which correspond directly to five known functional networks. This study provides strong and direct evidence that core functional brain networks mirror the brain's structural connectivity.</description><subject>Adult</subject><subject>Associative cortex</subject><subject>Brain - diagnostic imaging</subject><subject>Brain - physiology</subject><subject>Brain Mapping</subject><subject>Diffusion Magnetic Resonance Imaging</subject><subject>Diffusion Tensor Imaging</subject><subject>Diffusion weighted imaging</subject><subject>Female</subject><subject>Graph-theory</subject><subject>Higher cognitive function</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Nerve Net - diagnostic imaging</subject><subject>Nerve Net - physiology</subject><subject>Neural Pathways - diagnostic imaging</subject><subject>Neural Pathways - physiology</subject><subject>Tractography</subject><subject>Young Adult</subject><issn>0010-9452</issn><issn>1973-8102</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UU1vFSEUJUZjn9V_YAxLNzMCMwzMxsQ0fjRp4qauCe9yp8NzHlRgnvbfy8urtW7cQAjn495zCHnNWcsZH97tWoip4K9W1FfLdMs4f0I2fFRdozkTT8mGMc6asZfijLzIeceYYFrK5-RMqGEUuh82xF_PSHNJK5Q12YVCDAGh-IMvdzROdPY3MyYak6unzTmCt8XHQI_mHjDThNNSGZnO694GOq0BjoCqtU3WBxqw_Izpe35Jnk12yfjq_j4n3z59vL740lx9_Xx58eGqASnG0gipe6aV7TrQbtv1yCbeSSFHpZ3sOFjF3GCF2qKcJgejdtqB4gAIg5Vcdefk_Un3dt3u0QGGUhczt8nvbboz0Xrz70_ws7mJByOVGAYmq8Dbe4EUf6yYi9n7DLgsNmBcs-G6k93IeqErtD9BIcWcaxIPNpyZY0tmZ04tmWNLhmlTW6q0N49HfCD9qeXvDliDOnhMJoPHAOh8qlkbF_3_HX4Dn1Sp0A</recordid><startdate>201712</startdate><enddate>201712</enddate><creator>Jung, JeYoung</creator><creator>Cloutman, Lauren L.</creator><creator>Binney, Richard J.</creator><creator>Lambon Ralph, Matthew A.</creator><general>Elsevier Ltd</general><general>Masson</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5907-2488</orcidid></search><sort><creationdate>201712</creationdate><title>The structural connectivity of higher order association cortices reflects human functional brain networks</title><author>Jung, JeYoung ; Cloutman, Lauren L. ; Binney, Richard J. ; Lambon Ralph, Matthew A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c529t-2584087a33c8db34e0f13525978d531ca70d6a27be5ffdc98d8dc71ccec6a5173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adult</topic><topic>Associative cortex</topic><topic>Brain - diagnostic imaging</topic><topic>Brain - physiology</topic><topic>Brain Mapping</topic><topic>Diffusion Magnetic Resonance Imaging</topic><topic>Diffusion Tensor Imaging</topic><topic>Diffusion weighted imaging</topic><topic>Female</topic><topic>Graph-theory</topic><topic>Higher cognitive function</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Nerve Net - diagnostic imaging</topic><topic>Nerve Net - physiology</topic><topic>Neural Pathways - diagnostic imaging</topic><topic>Neural Pathways - physiology</topic><topic>Tractography</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jung, JeYoung</creatorcontrib><creatorcontrib>Cloutman, Lauren L.</creatorcontrib><creatorcontrib>Binney, Richard J.</creatorcontrib><creatorcontrib>Lambon Ralph, Matthew A.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cortex</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jung, JeYoung</au><au>Cloutman, Lauren L.</au><au>Binney, Richard J.</au><au>Lambon Ralph, Matthew A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The structural connectivity of higher order association cortices reflects human functional brain networks</atitle><jtitle>Cortex</jtitle><addtitle>Cortex</addtitle><date>2017-12</date><risdate>2017</risdate><volume>97</volume><spage>221</spage><epage>239</epage><pages>221-239</pages><issn>0010-9452</issn><eissn>1973-8102</eissn><abstract>Human higher cognition arises from the main tertiary association cortices including the frontal, temporal and parietal lobes. Many studies have suggested that cortical functions must be shaped or emerge from the pattern of underlying physical (white matter) connectivity. Despite the importance of this hypothesis, there has not been a large-scale analysis of the white-matter connectivity within and between these associative cortices. Thus, we explored the pattern of intra- and inter-lobe white matter connectivity between multiple areas defined in each lobe. We defined 43 regions of interest on the lateral associative cortex cytoarchitectonically (6 regions of interest – ROIs in the frontal lobe and 17 ROIs in the parietal lobe) and anatomically (20 ROIs in the temporal lobe) on individuals' native space. The results demonstrated that intra-region connectivity for all 3 lobes was dense and graded generally. In contrary, the inter-lobe connectivity was relatively discrete and regionally specific such that only small sub-regions exhibited long-range connections to another lobe. The long-range connectivity was mediated by 6 major associative white matter tracts, consistent with the notion that these higher cognitive functions arises from brain-wide distributed connectivity. Using graph-theory network analysis we revealed five physically-connected sub-networks, which correspond directly to five known functional networks. This study provides strong and direct evidence that core functional brain networks mirror the brain's structural connectivity.</abstract><cop>Italy</cop><pub>Elsevier Ltd</pub><pmid>27692846</pmid><doi>10.1016/j.cortex.2016.08.011</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-5907-2488</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0010-9452
ispartof Cortex, 2017-12, Vol.97, p.221-239
issn 0010-9452
1973-8102
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5726605
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Adult
Associative cortex
Brain - diagnostic imaging
Brain - physiology
Brain Mapping
Diffusion Magnetic Resonance Imaging
Diffusion Tensor Imaging
Diffusion weighted imaging
Female
Graph-theory
Higher cognitive function
Humans
Image Processing, Computer-Assisted
Male
Middle Aged
Nerve Net - diagnostic imaging
Nerve Net - physiology
Neural Pathways - diagnostic imaging
Neural Pathways - physiology
Tractography
Young Adult
title The structural connectivity of higher order association cortices reflects human functional brain networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T01%3A53%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20structural%20connectivity%20of%20higher%20order%20association%20cortices%20reflects%20human%20functional%20brain%20networks&rft.jtitle=Cortex&rft.au=Jung,%20JeYoung&rft.date=2017-12&rft.volume=97&rft.spage=221&rft.epage=239&rft.pages=221-239&rft.issn=0010-9452&rft.eissn=1973-8102&rft_id=info:doi/10.1016/j.cortex.2016.08.011&rft_dat=%3Cproquest_pubme%3E1835390428%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1835390428&rft_id=info:pmid/27692846&rft_els_id=S0010945216302325&rfr_iscdi=true