The structural connectivity of higher order association cortices reflects human functional brain networks
Human higher cognition arises from the main tertiary association cortices including the frontal, temporal and parietal lobes. Many studies have suggested that cortical functions must be shaped or emerge from the pattern of underlying physical (white matter) connectivity. Despite the importance of th...
Gespeichert in:
Veröffentlicht in: | Cortex 2017-12, Vol.97, p.221-239 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 239 |
---|---|
container_issue | |
container_start_page | 221 |
container_title | Cortex |
container_volume | 97 |
creator | Jung, JeYoung Cloutman, Lauren L. Binney, Richard J. Lambon Ralph, Matthew A. |
description | Human higher cognition arises from the main tertiary association cortices including the frontal, temporal and parietal lobes. Many studies have suggested that cortical functions must be shaped or emerge from the pattern of underlying physical (white matter) connectivity. Despite the importance of this hypothesis, there has not been a large-scale analysis of the white-matter connectivity within and between these associative cortices. Thus, we explored the pattern of intra- and inter-lobe white matter connectivity between multiple areas defined in each lobe. We defined 43 regions of interest on the lateral associative cortex cytoarchitectonically (6 regions of interest – ROIs in the frontal lobe and 17 ROIs in the parietal lobe) and anatomically (20 ROIs in the temporal lobe) on individuals' native space. The results demonstrated that intra-region connectivity for all 3 lobes was dense and graded generally. In contrary, the inter-lobe connectivity was relatively discrete and regionally specific such that only small sub-regions exhibited long-range connections to another lobe. The long-range connectivity was mediated by 6 major associative white matter tracts, consistent with the notion that these higher cognitive functions arises from brain-wide distributed connectivity. Using graph-theory network analysis we revealed five physically-connected sub-networks, which correspond directly to five known functional networks. This study provides strong and direct evidence that core functional brain networks mirror the brain's structural connectivity. |
doi_str_mv | 10.1016/j.cortex.2016.08.011 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5726605</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010945216302325</els_id><sourcerecordid>1835390428</sourcerecordid><originalsourceid>FETCH-LOGICAL-c529t-2584087a33c8db34e0f13525978d531ca70d6a27be5ffdc98d8dc71ccec6a5173</originalsourceid><addsrcrecordid>eNp9UU1vFSEUJUZjn9V_YAxLNzMCMwzMxsQ0fjRp4qauCe9yp8NzHlRgnvbfy8urtW7cQAjn495zCHnNWcsZH97tWoip4K9W1FfLdMs4f0I2fFRdozkTT8mGMc6asZfijLzIeceYYFrK5-RMqGEUuh82xF_PSHNJK5Q12YVCDAGh-IMvdzROdPY3MyYak6unzTmCt8XHQI_mHjDThNNSGZnO694GOq0BjoCqtU3WBxqw_Izpe35Jnk12yfjq_j4n3z59vL740lx9_Xx58eGqASnG0gipe6aV7TrQbtv1yCbeSSFHpZ3sOFjF3GCF2qKcJgejdtqB4gAIg5Vcdefk_Un3dt3u0QGGUhczt8nvbboz0Xrz70_ws7mJByOVGAYmq8Dbe4EUf6yYi9n7DLgsNmBcs-G6k93IeqErtD9BIcWcaxIPNpyZY0tmZ04tmWNLhmlTW6q0N49HfCD9qeXvDliDOnhMJoPHAOh8qlkbF_3_HX4Dn1Sp0A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1835390428</pqid></control><display><type>article</type><title>The structural connectivity of higher order association cortices reflects human functional brain networks</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Jung, JeYoung ; Cloutman, Lauren L. ; Binney, Richard J. ; Lambon Ralph, Matthew A.</creator><creatorcontrib>Jung, JeYoung ; Cloutman, Lauren L. ; Binney, Richard J. ; Lambon Ralph, Matthew A.</creatorcontrib><description>Human higher cognition arises from the main tertiary association cortices including the frontal, temporal and parietal lobes. Many studies have suggested that cortical functions must be shaped or emerge from the pattern of underlying physical (white matter) connectivity. Despite the importance of this hypothesis, there has not been a large-scale analysis of the white-matter connectivity within and between these associative cortices. Thus, we explored the pattern of intra- and inter-lobe white matter connectivity between multiple areas defined in each lobe. We defined 43 regions of interest on the lateral associative cortex cytoarchitectonically (6 regions of interest – ROIs in the frontal lobe and 17 ROIs in the parietal lobe) and anatomically (20 ROIs in the temporal lobe) on individuals' native space. The results demonstrated that intra-region connectivity for all 3 lobes was dense and graded generally. In contrary, the inter-lobe connectivity was relatively discrete and regionally specific such that only small sub-regions exhibited long-range connections to another lobe. The long-range connectivity was mediated by 6 major associative white matter tracts, consistent with the notion that these higher cognitive functions arises from brain-wide distributed connectivity. Using graph-theory network analysis we revealed five physically-connected sub-networks, which correspond directly to five known functional networks. This study provides strong and direct evidence that core functional brain networks mirror the brain's structural connectivity.</description><identifier>ISSN: 0010-9452</identifier><identifier>EISSN: 1973-8102</identifier><identifier>DOI: 10.1016/j.cortex.2016.08.011</identifier><identifier>PMID: 27692846</identifier><language>eng</language><publisher>Italy: Elsevier Ltd</publisher><subject>Adult ; Associative cortex ; Brain - diagnostic imaging ; Brain - physiology ; Brain Mapping ; Diffusion Magnetic Resonance Imaging ; Diffusion Tensor Imaging ; Diffusion weighted imaging ; Female ; Graph-theory ; Higher cognitive function ; Humans ; Image Processing, Computer-Assisted ; Male ; Middle Aged ; Nerve Net - diagnostic imaging ; Nerve Net - physiology ; Neural Pathways - diagnostic imaging ; Neural Pathways - physiology ; Tractography ; Young Adult</subject><ispartof>Cortex, 2017-12, Vol.97, p.221-239</ispartof><rights>2016 The Authors</rights><rights>Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.</rights><rights>2016 The Authors 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c529t-2584087a33c8db34e0f13525978d531ca70d6a27be5ffdc98d8dc71ccec6a5173</citedby><cites>FETCH-LOGICAL-c529t-2584087a33c8db34e0f13525978d531ca70d6a27be5ffdc98d8dc71ccec6a5173</cites><orcidid>0000-0001-5907-2488</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0010945216302325$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27692846$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jung, JeYoung</creatorcontrib><creatorcontrib>Cloutman, Lauren L.</creatorcontrib><creatorcontrib>Binney, Richard J.</creatorcontrib><creatorcontrib>Lambon Ralph, Matthew A.</creatorcontrib><title>The structural connectivity of higher order association cortices reflects human functional brain networks</title><title>Cortex</title><addtitle>Cortex</addtitle><description>Human higher cognition arises from the main tertiary association cortices including the frontal, temporal and parietal lobes. Many studies have suggested that cortical functions must be shaped or emerge from the pattern of underlying physical (white matter) connectivity. Despite the importance of this hypothesis, there has not been a large-scale analysis of the white-matter connectivity within and between these associative cortices. Thus, we explored the pattern of intra- and inter-lobe white matter connectivity between multiple areas defined in each lobe. We defined 43 regions of interest on the lateral associative cortex cytoarchitectonically (6 regions of interest – ROIs in the frontal lobe and 17 ROIs in the parietal lobe) and anatomically (20 ROIs in the temporal lobe) on individuals' native space. The results demonstrated that intra-region connectivity for all 3 lobes was dense and graded generally. In contrary, the inter-lobe connectivity was relatively discrete and regionally specific such that only small sub-regions exhibited long-range connections to another lobe. The long-range connectivity was mediated by 6 major associative white matter tracts, consistent with the notion that these higher cognitive functions arises from brain-wide distributed connectivity. Using graph-theory network analysis we revealed five physically-connected sub-networks, which correspond directly to five known functional networks. This study provides strong and direct evidence that core functional brain networks mirror the brain's structural connectivity.</description><subject>Adult</subject><subject>Associative cortex</subject><subject>Brain - diagnostic imaging</subject><subject>Brain - physiology</subject><subject>Brain Mapping</subject><subject>Diffusion Magnetic Resonance Imaging</subject><subject>Diffusion Tensor Imaging</subject><subject>Diffusion weighted imaging</subject><subject>Female</subject><subject>Graph-theory</subject><subject>Higher cognitive function</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Nerve Net - diagnostic imaging</subject><subject>Nerve Net - physiology</subject><subject>Neural Pathways - diagnostic imaging</subject><subject>Neural Pathways - physiology</subject><subject>Tractography</subject><subject>Young Adult</subject><issn>0010-9452</issn><issn>1973-8102</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UU1vFSEUJUZjn9V_YAxLNzMCMwzMxsQ0fjRp4qauCe9yp8NzHlRgnvbfy8urtW7cQAjn495zCHnNWcsZH97tWoip4K9W1FfLdMs4f0I2fFRdozkTT8mGMc6asZfijLzIeceYYFrK5-RMqGEUuh82xF_PSHNJK5Q12YVCDAGh-IMvdzROdPY3MyYak6unzTmCt8XHQI_mHjDThNNSGZnO694GOq0BjoCqtU3WBxqw_Izpe35Jnk12yfjq_j4n3z59vL740lx9_Xx58eGqASnG0gipe6aV7TrQbtv1yCbeSSFHpZ3sOFjF3GCF2qKcJgejdtqB4gAIg5Vcdefk_Un3dt3u0QGGUhczt8nvbboz0Xrz70_ws7mJByOVGAYmq8Dbe4EUf6yYi9n7DLgsNmBcs-G6k93IeqErtD9BIcWcaxIPNpyZY0tmZ04tmWNLhmlTW6q0N49HfCD9qeXvDliDOnhMJoPHAOh8qlkbF_3_HX4Dn1Sp0A</recordid><startdate>201712</startdate><enddate>201712</enddate><creator>Jung, JeYoung</creator><creator>Cloutman, Lauren L.</creator><creator>Binney, Richard J.</creator><creator>Lambon Ralph, Matthew A.</creator><general>Elsevier Ltd</general><general>Masson</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5907-2488</orcidid></search><sort><creationdate>201712</creationdate><title>The structural connectivity of higher order association cortices reflects human functional brain networks</title><author>Jung, JeYoung ; Cloutman, Lauren L. ; Binney, Richard J. ; Lambon Ralph, Matthew A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c529t-2584087a33c8db34e0f13525978d531ca70d6a27be5ffdc98d8dc71ccec6a5173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adult</topic><topic>Associative cortex</topic><topic>Brain - diagnostic imaging</topic><topic>Brain - physiology</topic><topic>Brain Mapping</topic><topic>Diffusion Magnetic Resonance Imaging</topic><topic>Diffusion Tensor Imaging</topic><topic>Diffusion weighted imaging</topic><topic>Female</topic><topic>Graph-theory</topic><topic>Higher cognitive function</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Nerve Net - diagnostic imaging</topic><topic>Nerve Net - physiology</topic><topic>Neural Pathways - diagnostic imaging</topic><topic>Neural Pathways - physiology</topic><topic>Tractography</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jung, JeYoung</creatorcontrib><creatorcontrib>Cloutman, Lauren L.</creatorcontrib><creatorcontrib>Binney, Richard J.</creatorcontrib><creatorcontrib>Lambon Ralph, Matthew A.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cortex</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jung, JeYoung</au><au>Cloutman, Lauren L.</au><au>Binney, Richard J.</au><au>Lambon Ralph, Matthew A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The structural connectivity of higher order association cortices reflects human functional brain networks</atitle><jtitle>Cortex</jtitle><addtitle>Cortex</addtitle><date>2017-12</date><risdate>2017</risdate><volume>97</volume><spage>221</spage><epage>239</epage><pages>221-239</pages><issn>0010-9452</issn><eissn>1973-8102</eissn><abstract>Human higher cognition arises from the main tertiary association cortices including the frontal, temporal and parietal lobes. Many studies have suggested that cortical functions must be shaped or emerge from the pattern of underlying physical (white matter) connectivity. Despite the importance of this hypothesis, there has not been a large-scale analysis of the white-matter connectivity within and between these associative cortices. Thus, we explored the pattern of intra- and inter-lobe white matter connectivity between multiple areas defined in each lobe. We defined 43 regions of interest on the lateral associative cortex cytoarchitectonically (6 regions of interest – ROIs in the frontal lobe and 17 ROIs in the parietal lobe) and anatomically (20 ROIs in the temporal lobe) on individuals' native space. The results demonstrated that intra-region connectivity for all 3 lobes was dense and graded generally. In contrary, the inter-lobe connectivity was relatively discrete and regionally specific such that only small sub-regions exhibited long-range connections to another lobe. The long-range connectivity was mediated by 6 major associative white matter tracts, consistent with the notion that these higher cognitive functions arises from brain-wide distributed connectivity. Using graph-theory network analysis we revealed five physically-connected sub-networks, which correspond directly to five known functional networks. This study provides strong and direct evidence that core functional brain networks mirror the brain's structural connectivity.</abstract><cop>Italy</cop><pub>Elsevier Ltd</pub><pmid>27692846</pmid><doi>10.1016/j.cortex.2016.08.011</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-5907-2488</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-9452 |
ispartof | Cortex, 2017-12, Vol.97, p.221-239 |
issn | 0010-9452 1973-8102 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5726605 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Adult Associative cortex Brain - diagnostic imaging Brain - physiology Brain Mapping Diffusion Magnetic Resonance Imaging Diffusion Tensor Imaging Diffusion weighted imaging Female Graph-theory Higher cognitive function Humans Image Processing, Computer-Assisted Male Middle Aged Nerve Net - diagnostic imaging Nerve Net - physiology Neural Pathways - diagnostic imaging Neural Pathways - physiology Tractography Young Adult |
title | The structural connectivity of higher order association cortices reflects human functional brain networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T01%3A53%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20structural%20connectivity%20of%20higher%20order%20association%20cortices%20reflects%20human%20functional%20brain%20networks&rft.jtitle=Cortex&rft.au=Jung,%20JeYoung&rft.date=2017-12&rft.volume=97&rft.spage=221&rft.epage=239&rft.pages=221-239&rft.issn=0010-9452&rft.eissn=1973-8102&rft_id=info:doi/10.1016/j.cortex.2016.08.011&rft_dat=%3Cproquest_pubme%3E1835390428%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1835390428&rft_id=info:pmid/27692846&rft_els_id=S0010945216302325&rfr_iscdi=true |