Proteomics and Network Analyses Reveal Inhibition of Akt‐mTOR Signaling in CD4+ T Cells by Mycobacterium tuberculosis Mannose‐Capped Lipoarabinomannan

Mycobacterium tuberculosis (Mtb) cell wall glycolipid mannose‐capped lipoarabinomannan (ManLAM) inhibits CD4+ T‐cell activation by inhibiting proximal T‐cell receptor (TCR) signaling when activated by anti‐CD3. To understand the impact of ManLAM on CD4+ T‐cell function when both the TCR–CD3 complex...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proteomics (Weinheim) 2017-11, Vol.17 (22), p.n/a
Hauptverfasser: Karim, Ahmad F., Sande, Obondo J., Tomechko, Sara E., Ding, Xuedong, Li, Ming, Maxwell, Sean, Ewing, Rob M., Harding, Clifford V., Rojas, Roxana E., Chance, Mark R., Boom, W. Henry
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 22
container_start_page
container_title Proteomics (Weinheim)
container_volume 17
creator Karim, Ahmad F.
Sande, Obondo J.
Tomechko, Sara E.
Ding, Xuedong
Li, Ming
Maxwell, Sean
Ewing, Rob M.
Harding, Clifford V.
Rojas, Roxana E.
Chance, Mark R.
Boom, W. Henry
description Mycobacterium tuberculosis (Mtb) cell wall glycolipid mannose‐capped lipoarabinomannan (ManLAM) inhibits CD4+ T‐cell activation by inhibiting proximal T‐cell receptor (TCR) signaling when activated by anti‐CD3. To understand the impact of ManLAM on CD4+ T‐cell function when both the TCR–CD3 complex and major costimulator CD28 are engaged, we performed label‐free quantitative MS and network analysis. Mixed‐effect model analysis of peptide intensity identified 149 unique peptides representing 131 proteins that were differentially regulated by ManLAM in anti‐CD3‐ and anti‐CD28‐activated CD4+ T cells. Crosstalker, a novel network analysis tool identified dysregulated translation, TCA cycle, and RNA metabolism network modules. PCNA, Akt, mTOR, and UBC were found to be bridge node proteins connecting these modules of dysregulated proteins. Altered PCNA expression and cell cycle analysis showed arrest at the G2M phase. Western blot confirmed that ManLAM inhibited Akt and mTOR phosphorylation, and decreased expression of deubiquitinating enzymes Usp9x and Otub1. Decreased NF‐κB phosphorylation suggested interference with CD28 signaling through inhibition of the Usp9x‐Akt‐mTOR pathway. Thus, ManLAM induced global changes in the CD4+ T‐cell proteome by affecting Akt‐mTOR signaling, resulting in broad functional impairment of CD4+ T‐cell activation beyond inhibition of proximal TCR–CD3 signaling.
doi_str_mv 10.1002/pmic.201700233
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5725663</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1949692985</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4641-9b0ccbeab469159c04589be4ff39f4dab0eb998d132b523a30116a874bc498c83</originalsourceid><addsrcrecordid>eNqFkU9v0zAYhyMEYqNw5YgscUFCLXZsJ_YFqQr_KrVsGuVs2Y7TeUvszE425cZH4MzH45PgqqMCLpxs63386H3fX5Y9R3CBIMzf9J3VixyiMj0wfpCdogLROWcFeni8U3ySPYnxCiaM8fJxdpIzzkkO6Wn24zz4wfhkiUC6Gnw2w50P12DpZDtFE8GFuTWyBSt3aZUdrHfAN2B5Pfz89r3bnl2AL3aXUOt2wDpQvSOvwRZUpm0jUBPYTNorqQcT7NiBYVQm6LH10Uawkc75aJKmkn1varC2vZdBKut8l2rSPc0eNbKN5tn9Ocu-fni_rT7N12cfV9VyPdekIGjOFdRaGalIwRHlGhLKuDKkaTBvSC0VNIpzViOcK5pjiSFChWQlUZpwphmeZW8P3n5Unam1cUOQreiD7WSYhJdW_F1x9lLs_K2gZU6LAifBq3tB8DejiYPobNRpB9IZP0aBOOEFz_dBzLKX_6BXfgxpgXuqLBkrGCaJWhwoHXyMwTTHZhAU-9jFPnZxjD19ePHnCEf8d84JoAfgzrZm-o9OnG9WFcpLivAvJVy9wg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1977886834</pqid></control><display><type>article</type><title>Proteomics and Network Analyses Reveal Inhibition of Akt‐mTOR Signaling in CD4+ T Cells by Mycobacterium tuberculosis Mannose‐Capped Lipoarabinomannan</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Karim, Ahmad F. ; Sande, Obondo J. ; Tomechko, Sara E. ; Ding, Xuedong ; Li, Ming ; Maxwell, Sean ; Ewing, Rob M. ; Harding, Clifford V. ; Rojas, Roxana E. ; Chance, Mark R. ; Boom, W. Henry</creator><creatorcontrib>Karim, Ahmad F. ; Sande, Obondo J. ; Tomechko, Sara E. ; Ding, Xuedong ; Li, Ming ; Maxwell, Sean ; Ewing, Rob M. ; Harding, Clifford V. ; Rojas, Roxana E. ; Chance, Mark R. ; Boom, W. Henry</creatorcontrib><description>Mycobacterium tuberculosis (Mtb) cell wall glycolipid mannose‐capped lipoarabinomannan (ManLAM) inhibits CD4+ T‐cell activation by inhibiting proximal T‐cell receptor (TCR) signaling when activated by anti‐CD3. To understand the impact of ManLAM on CD4+ T‐cell function when both the TCR–CD3 complex and major costimulator CD28 are engaged, we performed label‐free quantitative MS and network analysis. Mixed‐effect model analysis of peptide intensity identified 149 unique peptides representing 131 proteins that were differentially regulated by ManLAM in anti‐CD3‐ and anti‐CD28‐activated CD4+ T cells. Crosstalker, a novel network analysis tool identified dysregulated translation, TCA cycle, and RNA metabolism network modules. PCNA, Akt, mTOR, and UBC were found to be bridge node proteins connecting these modules of dysregulated proteins. Altered PCNA expression and cell cycle analysis showed arrest at the G2M phase. Western blot confirmed that ManLAM inhibited Akt and mTOR phosphorylation, and decreased expression of deubiquitinating enzymes Usp9x and Otub1. Decreased NF‐κB phosphorylation suggested interference with CD28 signaling through inhibition of the Usp9x‐Akt‐mTOR pathway. Thus, ManLAM induced global changes in the CD4+ T‐cell proteome by affecting Akt‐mTOR signaling, resulting in broad functional impairment of CD4+ T‐cell activation beyond inhibition of proximal TCR–CD3 signaling.</description><identifier>ISSN: 1615-9853</identifier><identifier>EISSN: 1615-9861</identifier><identifier>DOI: 10.1002/pmic.201700233</identifier><identifier>PMID: 28994205</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Akt ; AKT protein ; Animals ; CD28 antigen ; CD3 antigen ; CD4 antigen ; CD4+ T‐cell ; CD4-Positive T-Lymphocytes - metabolism ; Cell activation ; Cell Cycle ; Cell walls ; Costimulator ; Female ; Gene Regulatory Networks ; label‐free mass spectrophotometry ; Lipopolysaccharides - pharmacology ; Lymphocytes ; Lymphocytes T ; M. tuberculosis ; ManLAM ; Mannose ; Mannose - chemistry ; Mass Spectrometry ; Metabolism ; Mice ; Mice, Inbred C57BL ; Modules ; mTOR ; Mycobacterium tuberculosis ; Mycobacterium tuberculosis - metabolism ; Network analysis ; NF-κB protein ; Oncogene Protein v-akt - antagonists &amp; inhibitors ; Oncogene Protein v-akt - metabolism ; Peptides ; Phosphorylation ; Proliferating cell nuclear antigen ; Proteins ; Proteomics ; Proteomics - methods ; Ribonucleic acid ; RNA ; Signal Transduction ; Signaling ; Systems Biology ; T cell receptors ; TOR protein ; TOR Serine-Threonine Kinases - antagonists &amp; inhibitors ; TOR Serine-Threonine Kinases - metabolism ; Tricarboxylic acid cycle ; Tuberculosis</subject><ispartof>Proteomics (Weinheim), 2017-11, Vol.17 (22), p.n/a</ispartof><rights>2017 The Authors, Proteomics Published by WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2017 The Authors, Proteomics Published by WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2017 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4641-9b0ccbeab469159c04589be4ff39f4dab0eb998d132b523a30116a874bc498c83</citedby><cites>FETCH-LOGICAL-c4641-9b0ccbeab469159c04589be4ff39f4dab0eb998d132b523a30116a874bc498c83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpmic.201700233$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpmic.201700233$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,315,781,785,886,1418,27929,27930,45579,45580</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28994205$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Karim, Ahmad F.</creatorcontrib><creatorcontrib>Sande, Obondo J.</creatorcontrib><creatorcontrib>Tomechko, Sara E.</creatorcontrib><creatorcontrib>Ding, Xuedong</creatorcontrib><creatorcontrib>Li, Ming</creatorcontrib><creatorcontrib>Maxwell, Sean</creatorcontrib><creatorcontrib>Ewing, Rob M.</creatorcontrib><creatorcontrib>Harding, Clifford V.</creatorcontrib><creatorcontrib>Rojas, Roxana E.</creatorcontrib><creatorcontrib>Chance, Mark R.</creatorcontrib><creatorcontrib>Boom, W. Henry</creatorcontrib><title>Proteomics and Network Analyses Reveal Inhibition of Akt‐mTOR Signaling in CD4+ T Cells by Mycobacterium tuberculosis Mannose‐Capped Lipoarabinomannan</title><title>Proteomics (Weinheim)</title><addtitle>Proteomics</addtitle><description>Mycobacterium tuberculosis (Mtb) cell wall glycolipid mannose‐capped lipoarabinomannan (ManLAM) inhibits CD4+ T‐cell activation by inhibiting proximal T‐cell receptor (TCR) signaling when activated by anti‐CD3. To understand the impact of ManLAM on CD4+ T‐cell function when both the TCR–CD3 complex and major costimulator CD28 are engaged, we performed label‐free quantitative MS and network analysis. Mixed‐effect model analysis of peptide intensity identified 149 unique peptides representing 131 proteins that were differentially regulated by ManLAM in anti‐CD3‐ and anti‐CD28‐activated CD4+ T cells. Crosstalker, a novel network analysis tool identified dysregulated translation, TCA cycle, and RNA metabolism network modules. PCNA, Akt, mTOR, and UBC were found to be bridge node proteins connecting these modules of dysregulated proteins. Altered PCNA expression and cell cycle analysis showed arrest at the G2M phase. Western blot confirmed that ManLAM inhibited Akt and mTOR phosphorylation, and decreased expression of deubiquitinating enzymes Usp9x and Otub1. Decreased NF‐κB phosphorylation suggested interference with CD28 signaling through inhibition of the Usp9x‐Akt‐mTOR pathway. Thus, ManLAM induced global changes in the CD4+ T‐cell proteome by affecting Akt‐mTOR signaling, resulting in broad functional impairment of CD4+ T‐cell activation beyond inhibition of proximal TCR–CD3 signaling.</description><subject>Akt</subject><subject>AKT protein</subject><subject>Animals</subject><subject>CD28 antigen</subject><subject>CD3 antigen</subject><subject>CD4 antigen</subject><subject>CD4+ T‐cell</subject><subject>CD4-Positive T-Lymphocytes - metabolism</subject><subject>Cell activation</subject><subject>Cell Cycle</subject><subject>Cell walls</subject><subject>Costimulator</subject><subject>Female</subject><subject>Gene Regulatory Networks</subject><subject>label‐free mass spectrophotometry</subject><subject>Lipopolysaccharides - pharmacology</subject><subject>Lymphocytes</subject><subject>Lymphocytes T</subject><subject>M. tuberculosis</subject><subject>ManLAM</subject><subject>Mannose</subject><subject>Mannose - chemistry</subject><subject>Mass Spectrometry</subject><subject>Metabolism</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Modules</subject><subject>mTOR</subject><subject>Mycobacterium tuberculosis</subject><subject>Mycobacterium tuberculosis - metabolism</subject><subject>Network analysis</subject><subject>NF-κB protein</subject><subject>Oncogene Protein v-akt - antagonists &amp; inhibitors</subject><subject>Oncogene Protein v-akt - metabolism</subject><subject>Peptides</subject><subject>Phosphorylation</subject><subject>Proliferating cell nuclear antigen</subject><subject>Proteins</subject><subject>Proteomics</subject><subject>Proteomics - methods</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Signal Transduction</subject><subject>Signaling</subject><subject>Systems Biology</subject><subject>T cell receptors</subject><subject>TOR protein</subject><subject>TOR Serine-Threonine Kinases - antagonists &amp; inhibitors</subject><subject>TOR Serine-Threonine Kinases - metabolism</subject><subject>Tricarboxylic acid cycle</subject><subject>Tuberculosis</subject><issn>1615-9853</issn><issn>1615-9861</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNqFkU9v0zAYhyMEYqNw5YgscUFCLXZsJ_YFqQr_KrVsGuVs2Y7TeUvszE425cZH4MzH45PgqqMCLpxs63386H3fX5Y9R3CBIMzf9J3VixyiMj0wfpCdogLROWcFeni8U3ySPYnxCiaM8fJxdpIzzkkO6Wn24zz4wfhkiUC6Gnw2w50P12DpZDtFE8GFuTWyBSt3aZUdrHfAN2B5Pfz89r3bnl2AL3aXUOt2wDpQvSOvwRZUpm0jUBPYTNorqQcT7NiBYVQm6LH10Uawkc75aJKmkn1varC2vZdBKut8l2rSPc0eNbKN5tn9Ocu-fni_rT7N12cfV9VyPdekIGjOFdRaGalIwRHlGhLKuDKkaTBvSC0VNIpzViOcK5pjiSFChWQlUZpwphmeZW8P3n5Unam1cUOQreiD7WSYhJdW_F1x9lLs_K2gZU6LAifBq3tB8DejiYPobNRpB9IZP0aBOOEFz_dBzLKX_6BXfgxpgXuqLBkrGCaJWhwoHXyMwTTHZhAU-9jFPnZxjD19ePHnCEf8d84JoAfgzrZm-o9OnG9WFcpLivAvJVy9wg</recordid><startdate>201711</startdate><enddate>201711</enddate><creator>Karim, Ahmad F.</creator><creator>Sande, Obondo J.</creator><creator>Tomechko, Sara E.</creator><creator>Ding, Xuedong</creator><creator>Li, Ming</creator><creator>Maxwell, Sean</creator><creator>Ewing, Rob M.</creator><creator>Harding, Clifford V.</creator><creator>Rojas, Roxana E.</creator><creator>Chance, Mark R.</creator><creator>Boom, W. Henry</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201711</creationdate><title>Proteomics and Network Analyses Reveal Inhibition of Akt‐mTOR Signaling in CD4+ T Cells by Mycobacterium tuberculosis Mannose‐Capped Lipoarabinomannan</title><author>Karim, Ahmad F. ; Sande, Obondo J. ; Tomechko, Sara E. ; Ding, Xuedong ; Li, Ming ; Maxwell, Sean ; Ewing, Rob M. ; Harding, Clifford V. ; Rojas, Roxana E. ; Chance, Mark R. ; Boom, W. Henry</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4641-9b0ccbeab469159c04589be4ff39f4dab0eb998d132b523a30116a874bc498c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Akt</topic><topic>AKT protein</topic><topic>Animals</topic><topic>CD28 antigen</topic><topic>CD3 antigen</topic><topic>CD4 antigen</topic><topic>CD4+ T‐cell</topic><topic>CD4-Positive T-Lymphocytes - metabolism</topic><topic>Cell activation</topic><topic>Cell Cycle</topic><topic>Cell walls</topic><topic>Costimulator</topic><topic>Female</topic><topic>Gene Regulatory Networks</topic><topic>label‐free mass spectrophotometry</topic><topic>Lipopolysaccharides - pharmacology</topic><topic>Lymphocytes</topic><topic>Lymphocytes T</topic><topic>M. tuberculosis</topic><topic>ManLAM</topic><topic>Mannose</topic><topic>Mannose - chemistry</topic><topic>Mass Spectrometry</topic><topic>Metabolism</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Modules</topic><topic>mTOR</topic><topic>Mycobacterium tuberculosis</topic><topic>Mycobacterium tuberculosis - metabolism</topic><topic>Network analysis</topic><topic>NF-κB protein</topic><topic>Oncogene Protein v-akt - antagonists &amp; inhibitors</topic><topic>Oncogene Protein v-akt - metabolism</topic><topic>Peptides</topic><topic>Phosphorylation</topic><topic>Proliferating cell nuclear antigen</topic><topic>Proteins</topic><topic>Proteomics</topic><topic>Proteomics - methods</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Signal Transduction</topic><topic>Signaling</topic><topic>Systems Biology</topic><topic>T cell receptors</topic><topic>TOR protein</topic><topic>TOR Serine-Threonine Kinases - antagonists &amp; inhibitors</topic><topic>TOR Serine-Threonine Kinases - metabolism</topic><topic>Tricarboxylic acid cycle</topic><topic>Tuberculosis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karim, Ahmad F.</creatorcontrib><creatorcontrib>Sande, Obondo J.</creatorcontrib><creatorcontrib>Tomechko, Sara E.</creatorcontrib><creatorcontrib>Ding, Xuedong</creatorcontrib><creatorcontrib>Li, Ming</creatorcontrib><creatorcontrib>Maxwell, Sean</creatorcontrib><creatorcontrib>Ewing, Rob M.</creatorcontrib><creatorcontrib>Harding, Clifford V.</creatorcontrib><creatorcontrib>Rojas, Roxana E.</creatorcontrib><creatorcontrib>Chance, Mark R.</creatorcontrib><creatorcontrib>Boom, W. Henry</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proteomics (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karim, Ahmad F.</au><au>Sande, Obondo J.</au><au>Tomechko, Sara E.</au><au>Ding, Xuedong</au><au>Li, Ming</au><au>Maxwell, Sean</au><au>Ewing, Rob M.</au><au>Harding, Clifford V.</au><au>Rojas, Roxana E.</au><au>Chance, Mark R.</au><au>Boom, W. Henry</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Proteomics and Network Analyses Reveal Inhibition of Akt‐mTOR Signaling in CD4+ T Cells by Mycobacterium tuberculosis Mannose‐Capped Lipoarabinomannan</atitle><jtitle>Proteomics (Weinheim)</jtitle><addtitle>Proteomics</addtitle><date>2017-11</date><risdate>2017</risdate><volume>17</volume><issue>22</issue><epage>n/a</epage><issn>1615-9853</issn><eissn>1615-9861</eissn><abstract>Mycobacterium tuberculosis (Mtb) cell wall glycolipid mannose‐capped lipoarabinomannan (ManLAM) inhibits CD4+ T‐cell activation by inhibiting proximal T‐cell receptor (TCR) signaling when activated by anti‐CD3. To understand the impact of ManLAM on CD4+ T‐cell function when both the TCR–CD3 complex and major costimulator CD28 are engaged, we performed label‐free quantitative MS and network analysis. Mixed‐effect model analysis of peptide intensity identified 149 unique peptides representing 131 proteins that were differentially regulated by ManLAM in anti‐CD3‐ and anti‐CD28‐activated CD4+ T cells. Crosstalker, a novel network analysis tool identified dysregulated translation, TCA cycle, and RNA metabolism network modules. PCNA, Akt, mTOR, and UBC were found to be bridge node proteins connecting these modules of dysregulated proteins. Altered PCNA expression and cell cycle analysis showed arrest at the G2M phase. Western blot confirmed that ManLAM inhibited Akt and mTOR phosphorylation, and decreased expression of deubiquitinating enzymes Usp9x and Otub1. Decreased NF‐κB phosphorylation suggested interference with CD28 signaling through inhibition of the Usp9x‐Akt‐mTOR pathway. Thus, ManLAM induced global changes in the CD4+ T‐cell proteome by affecting Akt‐mTOR signaling, resulting in broad functional impairment of CD4+ T‐cell activation beyond inhibition of proximal TCR–CD3 signaling.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28994205</pmid><doi>10.1002/pmic.201700233</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1615-9853
ispartof Proteomics (Weinheim), 2017-11, Vol.17 (22), p.n/a
issn 1615-9853
1615-9861
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5725663
source MEDLINE; Wiley Online Library All Journals
subjects Akt
AKT protein
Animals
CD28 antigen
CD3 antigen
CD4 antigen
CD4+ T‐cell
CD4-Positive T-Lymphocytes - metabolism
Cell activation
Cell Cycle
Cell walls
Costimulator
Female
Gene Regulatory Networks
label‐free mass spectrophotometry
Lipopolysaccharides - pharmacology
Lymphocytes
Lymphocytes T
M. tuberculosis
ManLAM
Mannose
Mannose - chemistry
Mass Spectrometry
Metabolism
Mice
Mice, Inbred C57BL
Modules
mTOR
Mycobacterium tuberculosis
Mycobacterium tuberculosis - metabolism
Network analysis
NF-κB protein
Oncogene Protein v-akt - antagonists & inhibitors
Oncogene Protein v-akt - metabolism
Peptides
Phosphorylation
Proliferating cell nuclear antigen
Proteins
Proteomics
Proteomics - methods
Ribonucleic acid
RNA
Signal Transduction
Signaling
Systems Biology
T cell receptors
TOR protein
TOR Serine-Threonine Kinases - antagonists & inhibitors
TOR Serine-Threonine Kinases - metabolism
Tricarboxylic acid cycle
Tuberculosis
title Proteomics and Network Analyses Reveal Inhibition of Akt‐mTOR Signaling in CD4+ T Cells by Mycobacterium tuberculosis Mannose‐Capped Lipoarabinomannan
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T12%3A47%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Proteomics%20and%20Network%20Analyses%20Reveal%20Inhibition%20of%20Akt%E2%80%90mTOR%20Signaling%20in%20CD4+%20T%20Cells%20by%20Mycobacterium%20tuberculosis%20Mannose%E2%80%90Capped%20Lipoarabinomannan&rft.jtitle=Proteomics%20(Weinheim)&rft.au=Karim,%20Ahmad%20F.&rft.date=2017-11&rft.volume=17&rft.issue=22&rft.epage=n/a&rft.issn=1615-9853&rft.eissn=1615-9861&rft_id=info:doi/10.1002/pmic.201700233&rft_dat=%3Cproquest_pubme%3E1949692985%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1977886834&rft_id=info:pmid/28994205&rfr_iscdi=true