Proteomics and Network Analyses Reveal Inhibition of Akt‐mTOR Signaling in CD4+ T Cells by Mycobacterium tuberculosis Mannose‐Capped Lipoarabinomannan
Mycobacterium tuberculosis (Mtb) cell wall glycolipid mannose‐capped lipoarabinomannan (ManLAM) inhibits CD4+ T‐cell activation by inhibiting proximal T‐cell receptor (TCR) signaling when activated by anti‐CD3. To understand the impact of ManLAM on CD4+ T‐cell function when both the TCR–CD3 complex...
Gespeichert in:
Veröffentlicht in: | Proteomics (Weinheim) 2017-11, Vol.17 (22), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 22 |
container_start_page | |
container_title | Proteomics (Weinheim) |
container_volume | 17 |
creator | Karim, Ahmad F. Sande, Obondo J. Tomechko, Sara E. Ding, Xuedong Li, Ming Maxwell, Sean Ewing, Rob M. Harding, Clifford V. Rojas, Roxana E. Chance, Mark R. Boom, W. Henry |
description | Mycobacterium tuberculosis (Mtb) cell wall glycolipid mannose‐capped lipoarabinomannan (ManLAM) inhibits CD4+ T‐cell activation by inhibiting proximal T‐cell receptor (TCR) signaling when activated by anti‐CD3. To understand the impact of ManLAM on CD4+ T‐cell function when both the TCR–CD3 complex and major costimulator CD28 are engaged, we performed label‐free quantitative MS and network analysis. Mixed‐effect model analysis of peptide intensity identified 149 unique peptides representing 131 proteins that were differentially regulated by ManLAM in anti‐CD3‐ and anti‐CD28‐activated CD4+ T cells. Crosstalker, a novel network analysis tool identified dysregulated translation, TCA cycle, and RNA metabolism network modules. PCNA, Akt, mTOR, and UBC were found to be bridge node proteins connecting these modules of dysregulated proteins. Altered PCNA expression and cell cycle analysis showed arrest at the G2M phase. Western blot confirmed that ManLAM inhibited Akt and mTOR phosphorylation, and decreased expression of deubiquitinating enzymes Usp9x and Otub1. Decreased NF‐κB phosphorylation suggested interference with CD28 signaling through inhibition of the Usp9x‐Akt‐mTOR pathway. Thus, ManLAM induced global changes in the CD4+ T‐cell proteome by affecting Akt‐mTOR signaling, resulting in broad functional impairment of CD4+ T‐cell activation beyond inhibition of proximal TCR–CD3 signaling. |
doi_str_mv | 10.1002/pmic.201700233 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5725663</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1949692985</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4641-9b0ccbeab469159c04589be4ff39f4dab0eb998d132b523a30116a874bc498c83</originalsourceid><addsrcrecordid>eNqFkU9v0zAYhyMEYqNw5YgscUFCLXZsJ_YFqQr_KrVsGuVs2Y7TeUvszE425cZH4MzH45PgqqMCLpxs63386H3fX5Y9R3CBIMzf9J3VixyiMj0wfpCdogLROWcFeni8U3ySPYnxCiaM8fJxdpIzzkkO6Wn24zz4wfhkiUC6Gnw2w50P12DpZDtFE8GFuTWyBSt3aZUdrHfAN2B5Pfz89r3bnl2AL3aXUOt2wDpQvSOvwRZUpm0jUBPYTNorqQcT7NiBYVQm6LH10Uawkc75aJKmkn1varC2vZdBKut8l2rSPc0eNbKN5tn9Ocu-fni_rT7N12cfV9VyPdekIGjOFdRaGalIwRHlGhLKuDKkaTBvSC0VNIpzViOcK5pjiSFChWQlUZpwphmeZW8P3n5Unam1cUOQreiD7WSYhJdW_F1x9lLs_K2gZU6LAifBq3tB8DejiYPobNRpB9IZP0aBOOEFz_dBzLKX_6BXfgxpgXuqLBkrGCaJWhwoHXyMwTTHZhAU-9jFPnZxjD19ePHnCEf8d84JoAfgzrZm-o9OnG9WFcpLivAvJVy9wg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1977886834</pqid></control><display><type>article</type><title>Proteomics and Network Analyses Reveal Inhibition of Akt‐mTOR Signaling in CD4+ T Cells by Mycobacterium tuberculosis Mannose‐Capped Lipoarabinomannan</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Karim, Ahmad F. ; Sande, Obondo J. ; Tomechko, Sara E. ; Ding, Xuedong ; Li, Ming ; Maxwell, Sean ; Ewing, Rob M. ; Harding, Clifford V. ; Rojas, Roxana E. ; Chance, Mark R. ; Boom, W. Henry</creator><creatorcontrib>Karim, Ahmad F. ; Sande, Obondo J. ; Tomechko, Sara E. ; Ding, Xuedong ; Li, Ming ; Maxwell, Sean ; Ewing, Rob M. ; Harding, Clifford V. ; Rojas, Roxana E. ; Chance, Mark R. ; Boom, W. Henry</creatorcontrib><description>Mycobacterium tuberculosis (Mtb) cell wall glycolipid mannose‐capped lipoarabinomannan (ManLAM) inhibits CD4+ T‐cell activation by inhibiting proximal T‐cell receptor (TCR) signaling when activated by anti‐CD3. To understand the impact of ManLAM on CD4+ T‐cell function when both the TCR–CD3 complex and major costimulator CD28 are engaged, we performed label‐free quantitative MS and network analysis. Mixed‐effect model analysis of peptide intensity identified 149 unique peptides representing 131 proteins that were differentially regulated by ManLAM in anti‐CD3‐ and anti‐CD28‐activated CD4+ T cells. Crosstalker, a novel network analysis tool identified dysregulated translation, TCA cycle, and RNA metabolism network modules. PCNA, Akt, mTOR, and UBC were found to be bridge node proteins connecting these modules of dysregulated proteins. Altered PCNA expression and cell cycle analysis showed arrest at the G2M phase. Western blot confirmed that ManLAM inhibited Akt and mTOR phosphorylation, and decreased expression of deubiquitinating enzymes Usp9x and Otub1. Decreased NF‐κB phosphorylation suggested interference with CD28 signaling through inhibition of the Usp9x‐Akt‐mTOR pathway. Thus, ManLAM induced global changes in the CD4+ T‐cell proteome by affecting Akt‐mTOR signaling, resulting in broad functional impairment of CD4+ T‐cell activation beyond inhibition of proximal TCR–CD3 signaling.</description><identifier>ISSN: 1615-9853</identifier><identifier>EISSN: 1615-9861</identifier><identifier>DOI: 10.1002/pmic.201700233</identifier><identifier>PMID: 28994205</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Akt ; AKT protein ; Animals ; CD28 antigen ; CD3 antigen ; CD4 antigen ; CD4+ T‐cell ; CD4-Positive T-Lymphocytes - metabolism ; Cell activation ; Cell Cycle ; Cell walls ; Costimulator ; Female ; Gene Regulatory Networks ; label‐free mass spectrophotometry ; Lipopolysaccharides - pharmacology ; Lymphocytes ; Lymphocytes T ; M. tuberculosis ; ManLAM ; Mannose ; Mannose - chemistry ; Mass Spectrometry ; Metabolism ; Mice ; Mice, Inbred C57BL ; Modules ; mTOR ; Mycobacterium tuberculosis ; Mycobacterium tuberculosis - metabolism ; Network analysis ; NF-κB protein ; Oncogene Protein v-akt - antagonists & inhibitors ; Oncogene Protein v-akt - metabolism ; Peptides ; Phosphorylation ; Proliferating cell nuclear antigen ; Proteins ; Proteomics ; Proteomics - methods ; Ribonucleic acid ; RNA ; Signal Transduction ; Signaling ; Systems Biology ; T cell receptors ; TOR protein ; TOR Serine-Threonine Kinases - antagonists & inhibitors ; TOR Serine-Threonine Kinases - metabolism ; Tricarboxylic acid cycle ; Tuberculosis</subject><ispartof>Proteomics (Weinheim), 2017-11, Vol.17 (22), p.n/a</ispartof><rights>2017 The Authors, Proteomics Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2017 The Authors, Proteomics Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><rights>2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4641-9b0ccbeab469159c04589be4ff39f4dab0eb998d132b523a30116a874bc498c83</citedby><cites>FETCH-LOGICAL-c4641-9b0ccbeab469159c04589be4ff39f4dab0eb998d132b523a30116a874bc498c83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpmic.201700233$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpmic.201700233$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,315,781,785,886,1418,27929,27930,45579,45580</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28994205$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Karim, Ahmad F.</creatorcontrib><creatorcontrib>Sande, Obondo J.</creatorcontrib><creatorcontrib>Tomechko, Sara E.</creatorcontrib><creatorcontrib>Ding, Xuedong</creatorcontrib><creatorcontrib>Li, Ming</creatorcontrib><creatorcontrib>Maxwell, Sean</creatorcontrib><creatorcontrib>Ewing, Rob M.</creatorcontrib><creatorcontrib>Harding, Clifford V.</creatorcontrib><creatorcontrib>Rojas, Roxana E.</creatorcontrib><creatorcontrib>Chance, Mark R.</creatorcontrib><creatorcontrib>Boom, W. Henry</creatorcontrib><title>Proteomics and Network Analyses Reveal Inhibition of Akt‐mTOR Signaling in CD4+ T Cells by Mycobacterium tuberculosis Mannose‐Capped Lipoarabinomannan</title><title>Proteomics (Weinheim)</title><addtitle>Proteomics</addtitle><description>Mycobacterium tuberculosis (Mtb) cell wall glycolipid mannose‐capped lipoarabinomannan (ManLAM) inhibits CD4+ T‐cell activation by inhibiting proximal T‐cell receptor (TCR) signaling when activated by anti‐CD3. To understand the impact of ManLAM on CD4+ T‐cell function when both the TCR–CD3 complex and major costimulator CD28 are engaged, we performed label‐free quantitative MS and network analysis. Mixed‐effect model analysis of peptide intensity identified 149 unique peptides representing 131 proteins that were differentially regulated by ManLAM in anti‐CD3‐ and anti‐CD28‐activated CD4+ T cells. Crosstalker, a novel network analysis tool identified dysregulated translation, TCA cycle, and RNA metabolism network modules. PCNA, Akt, mTOR, and UBC were found to be bridge node proteins connecting these modules of dysregulated proteins. Altered PCNA expression and cell cycle analysis showed arrest at the G2M phase. Western blot confirmed that ManLAM inhibited Akt and mTOR phosphorylation, and decreased expression of deubiquitinating enzymes Usp9x and Otub1. Decreased NF‐κB phosphorylation suggested interference with CD28 signaling through inhibition of the Usp9x‐Akt‐mTOR pathway. Thus, ManLAM induced global changes in the CD4+ T‐cell proteome by affecting Akt‐mTOR signaling, resulting in broad functional impairment of CD4+ T‐cell activation beyond inhibition of proximal TCR–CD3 signaling.</description><subject>Akt</subject><subject>AKT protein</subject><subject>Animals</subject><subject>CD28 antigen</subject><subject>CD3 antigen</subject><subject>CD4 antigen</subject><subject>CD4+ T‐cell</subject><subject>CD4-Positive T-Lymphocytes - metabolism</subject><subject>Cell activation</subject><subject>Cell Cycle</subject><subject>Cell walls</subject><subject>Costimulator</subject><subject>Female</subject><subject>Gene Regulatory Networks</subject><subject>label‐free mass spectrophotometry</subject><subject>Lipopolysaccharides - pharmacology</subject><subject>Lymphocytes</subject><subject>Lymphocytes T</subject><subject>M. tuberculosis</subject><subject>ManLAM</subject><subject>Mannose</subject><subject>Mannose - chemistry</subject><subject>Mass Spectrometry</subject><subject>Metabolism</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Modules</subject><subject>mTOR</subject><subject>Mycobacterium tuberculosis</subject><subject>Mycobacterium tuberculosis - metabolism</subject><subject>Network analysis</subject><subject>NF-κB protein</subject><subject>Oncogene Protein v-akt - antagonists & inhibitors</subject><subject>Oncogene Protein v-akt - metabolism</subject><subject>Peptides</subject><subject>Phosphorylation</subject><subject>Proliferating cell nuclear antigen</subject><subject>Proteins</subject><subject>Proteomics</subject><subject>Proteomics - methods</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Signal Transduction</subject><subject>Signaling</subject><subject>Systems Biology</subject><subject>T cell receptors</subject><subject>TOR protein</subject><subject>TOR Serine-Threonine Kinases - antagonists & inhibitors</subject><subject>TOR Serine-Threonine Kinases - metabolism</subject><subject>Tricarboxylic acid cycle</subject><subject>Tuberculosis</subject><issn>1615-9853</issn><issn>1615-9861</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNqFkU9v0zAYhyMEYqNw5YgscUFCLXZsJ_YFqQr_KrVsGuVs2Y7TeUvszE425cZH4MzH45PgqqMCLpxs63386H3fX5Y9R3CBIMzf9J3VixyiMj0wfpCdogLROWcFeni8U3ySPYnxCiaM8fJxdpIzzkkO6Wn24zz4wfhkiUC6Gnw2w50P12DpZDtFE8GFuTWyBSt3aZUdrHfAN2B5Pfz89r3bnl2AL3aXUOt2wDpQvSOvwRZUpm0jUBPYTNorqQcT7NiBYVQm6LH10Uawkc75aJKmkn1varC2vZdBKut8l2rSPc0eNbKN5tn9Ocu-fni_rT7N12cfV9VyPdekIGjOFdRaGalIwRHlGhLKuDKkaTBvSC0VNIpzViOcK5pjiSFChWQlUZpwphmeZW8P3n5Unam1cUOQreiD7WSYhJdW_F1x9lLs_K2gZU6LAifBq3tB8DejiYPobNRpB9IZP0aBOOEFz_dBzLKX_6BXfgxpgXuqLBkrGCaJWhwoHXyMwTTHZhAU-9jFPnZxjD19ePHnCEf8d84JoAfgzrZm-o9OnG9WFcpLivAvJVy9wg</recordid><startdate>201711</startdate><enddate>201711</enddate><creator>Karim, Ahmad F.</creator><creator>Sande, Obondo J.</creator><creator>Tomechko, Sara E.</creator><creator>Ding, Xuedong</creator><creator>Li, Ming</creator><creator>Maxwell, Sean</creator><creator>Ewing, Rob M.</creator><creator>Harding, Clifford V.</creator><creator>Rojas, Roxana E.</creator><creator>Chance, Mark R.</creator><creator>Boom, W. Henry</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201711</creationdate><title>Proteomics and Network Analyses Reveal Inhibition of Akt‐mTOR Signaling in CD4+ T Cells by Mycobacterium tuberculosis Mannose‐Capped Lipoarabinomannan</title><author>Karim, Ahmad F. ; Sande, Obondo J. ; Tomechko, Sara E. ; Ding, Xuedong ; Li, Ming ; Maxwell, Sean ; Ewing, Rob M. ; Harding, Clifford V. ; Rojas, Roxana E. ; Chance, Mark R. ; Boom, W. Henry</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4641-9b0ccbeab469159c04589be4ff39f4dab0eb998d132b523a30116a874bc498c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Akt</topic><topic>AKT protein</topic><topic>Animals</topic><topic>CD28 antigen</topic><topic>CD3 antigen</topic><topic>CD4 antigen</topic><topic>CD4+ T‐cell</topic><topic>CD4-Positive T-Lymphocytes - metabolism</topic><topic>Cell activation</topic><topic>Cell Cycle</topic><topic>Cell walls</topic><topic>Costimulator</topic><topic>Female</topic><topic>Gene Regulatory Networks</topic><topic>label‐free mass spectrophotometry</topic><topic>Lipopolysaccharides - pharmacology</topic><topic>Lymphocytes</topic><topic>Lymphocytes T</topic><topic>M. tuberculosis</topic><topic>ManLAM</topic><topic>Mannose</topic><topic>Mannose - chemistry</topic><topic>Mass Spectrometry</topic><topic>Metabolism</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Modules</topic><topic>mTOR</topic><topic>Mycobacterium tuberculosis</topic><topic>Mycobacterium tuberculosis - metabolism</topic><topic>Network analysis</topic><topic>NF-κB protein</topic><topic>Oncogene Protein v-akt - antagonists & inhibitors</topic><topic>Oncogene Protein v-akt - metabolism</topic><topic>Peptides</topic><topic>Phosphorylation</topic><topic>Proliferating cell nuclear antigen</topic><topic>Proteins</topic><topic>Proteomics</topic><topic>Proteomics - methods</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Signal Transduction</topic><topic>Signaling</topic><topic>Systems Biology</topic><topic>T cell receptors</topic><topic>TOR protein</topic><topic>TOR Serine-Threonine Kinases - antagonists & inhibitors</topic><topic>TOR Serine-Threonine Kinases - metabolism</topic><topic>Tricarboxylic acid cycle</topic><topic>Tuberculosis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karim, Ahmad F.</creatorcontrib><creatorcontrib>Sande, Obondo J.</creatorcontrib><creatorcontrib>Tomechko, Sara E.</creatorcontrib><creatorcontrib>Ding, Xuedong</creatorcontrib><creatorcontrib>Li, Ming</creatorcontrib><creatorcontrib>Maxwell, Sean</creatorcontrib><creatorcontrib>Ewing, Rob M.</creatorcontrib><creatorcontrib>Harding, Clifford V.</creatorcontrib><creatorcontrib>Rojas, Roxana E.</creatorcontrib><creatorcontrib>Chance, Mark R.</creatorcontrib><creatorcontrib>Boom, W. Henry</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proteomics (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karim, Ahmad F.</au><au>Sande, Obondo J.</au><au>Tomechko, Sara E.</au><au>Ding, Xuedong</au><au>Li, Ming</au><au>Maxwell, Sean</au><au>Ewing, Rob M.</au><au>Harding, Clifford V.</au><au>Rojas, Roxana E.</au><au>Chance, Mark R.</au><au>Boom, W. Henry</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Proteomics and Network Analyses Reveal Inhibition of Akt‐mTOR Signaling in CD4+ T Cells by Mycobacterium tuberculosis Mannose‐Capped Lipoarabinomannan</atitle><jtitle>Proteomics (Weinheim)</jtitle><addtitle>Proteomics</addtitle><date>2017-11</date><risdate>2017</risdate><volume>17</volume><issue>22</issue><epage>n/a</epage><issn>1615-9853</issn><eissn>1615-9861</eissn><abstract>Mycobacterium tuberculosis (Mtb) cell wall glycolipid mannose‐capped lipoarabinomannan (ManLAM) inhibits CD4+ T‐cell activation by inhibiting proximal T‐cell receptor (TCR) signaling when activated by anti‐CD3. To understand the impact of ManLAM on CD4+ T‐cell function when both the TCR–CD3 complex and major costimulator CD28 are engaged, we performed label‐free quantitative MS and network analysis. Mixed‐effect model analysis of peptide intensity identified 149 unique peptides representing 131 proteins that were differentially regulated by ManLAM in anti‐CD3‐ and anti‐CD28‐activated CD4+ T cells. Crosstalker, a novel network analysis tool identified dysregulated translation, TCA cycle, and RNA metabolism network modules. PCNA, Akt, mTOR, and UBC were found to be bridge node proteins connecting these modules of dysregulated proteins. Altered PCNA expression and cell cycle analysis showed arrest at the G2M phase. Western blot confirmed that ManLAM inhibited Akt and mTOR phosphorylation, and decreased expression of deubiquitinating enzymes Usp9x and Otub1. Decreased NF‐κB phosphorylation suggested interference with CD28 signaling through inhibition of the Usp9x‐Akt‐mTOR pathway. Thus, ManLAM induced global changes in the CD4+ T‐cell proteome by affecting Akt‐mTOR signaling, resulting in broad functional impairment of CD4+ T‐cell activation beyond inhibition of proximal TCR–CD3 signaling.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28994205</pmid><doi>10.1002/pmic.201700233</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1615-9853 |
ispartof | Proteomics (Weinheim), 2017-11, Vol.17 (22), p.n/a |
issn | 1615-9853 1615-9861 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5725663 |
source | MEDLINE; Wiley Online Library All Journals |
subjects | Akt AKT protein Animals CD28 antigen CD3 antigen CD4 antigen CD4+ T‐cell CD4-Positive T-Lymphocytes - metabolism Cell activation Cell Cycle Cell walls Costimulator Female Gene Regulatory Networks label‐free mass spectrophotometry Lipopolysaccharides - pharmacology Lymphocytes Lymphocytes T M. tuberculosis ManLAM Mannose Mannose - chemistry Mass Spectrometry Metabolism Mice Mice, Inbred C57BL Modules mTOR Mycobacterium tuberculosis Mycobacterium tuberculosis - metabolism Network analysis NF-κB protein Oncogene Protein v-akt - antagonists & inhibitors Oncogene Protein v-akt - metabolism Peptides Phosphorylation Proliferating cell nuclear antigen Proteins Proteomics Proteomics - methods Ribonucleic acid RNA Signal Transduction Signaling Systems Biology T cell receptors TOR protein TOR Serine-Threonine Kinases - antagonists & inhibitors TOR Serine-Threonine Kinases - metabolism Tricarboxylic acid cycle Tuberculosis |
title | Proteomics and Network Analyses Reveal Inhibition of Akt‐mTOR Signaling in CD4+ T Cells by Mycobacterium tuberculosis Mannose‐Capped Lipoarabinomannan |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T12%3A47%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Proteomics%20and%20Network%20Analyses%20Reveal%20Inhibition%20of%20Akt%E2%80%90mTOR%20Signaling%20in%20CD4+%20T%20Cells%20by%20Mycobacterium%20tuberculosis%20Mannose%E2%80%90Capped%20Lipoarabinomannan&rft.jtitle=Proteomics%20(Weinheim)&rft.au=Karim,%20Ahmad%20F.&rft.date=2017-11&rft.volume=17&rft.issue=22&rft.epage=n/a&rft.issn=1615-9853&rft.eissn=1615-9861&rft_id=info:doi/10.1002/pmic.201700233&rft_dat=%3Cproquest_pubme%3E1949692985%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1977886834&rft_id=info:pmid/28994205&rfr_iscdi=true |