Hybrid Structure of the RagA/C-Ragulator mTORC1 Activation Complex

The lysosomal membrane is the locus for sensing cellular nutrient levels, which are transduced to mTORC1 via the Rag GTPases and the Ragulator complex. The crystal structure of the five-subunit human Ragulator at 1.4 Å resolution was determined. Lamtor1 wraps around the other four subunits to stabil...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular cell 2017-12, Vol.68 (5), p.835-846.e3
Hauptverfasser: Su, Ming-Yuan, Morris, Kyle L., Kim, Do Jin, Fu, Yangxue, Lawrence, Rosalie, Stjepanovic, Goran, Zoncu, Roberto, Hurley, James H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 846.e3
container_issue 5
container_start_page 835
container_title Molecular cell
container_volume 68
creator Su, Ming-Yuan
Morris, Kyle L.
Kim, Do Jin
Fu, Yangxue
Lawrence, Rosalie
Stjepanovic, Goran
Zoncu, Roberto
Hurley, James H.
description The lysosomal membrane is the locus for sensing cellular nutrient levels, which are transduced to mTORC1 via the Rag GTPases and the Ragulator complex. The crystal structure of the five-subunit human Ragulator at 1.4 Å resolution was determined. Lamtor1 wraps around the other four subunits to stabilize the assembly. The Lamtor2:Lamtor3 dimer stacks upon Lamtor4:Lamtor5 to create a platform for Rag binding. Hydrogen-deuterium exchange was used to map the Rag binding site to the outer face of the Lamtor2:Lamtor3 dimer and to the N-terminal intrinsically disordered region of Lamtor1. EM was used to reconstruct the assembly of the full-length RagAGTP:RagCGDP dimer bound to Ragulator at 16 Å resolution, revealing that the G-domains of the Rags project away from the Ragulator core. The combined structural model shows how Ragulator functions as a platform for the presentation of active Rags for mTORC1 recruitment, and might suggest an unconventional mechanism for Rag GEF activity. [Display omitted] •Crystal structure of V-shaped five subunit human Ragulator complex•Binding mode of RagA/C GTPase dimer by HDX-MS and EM•GTPase domains of RagA/C point away from and do not touch Ragulator•Ragulator affects conformation of GDP binding site in RagA without direct contact Su et al. report the crystal structure of Ragulator, a pentameric GEF for RagA, and the EM structure of its complex with the RagA/C dimer that activates mTORC1. HDX-MS shows that Ragulator modulates the RagA GTP binding site despite no contact with its GTPase domain.
doi_str_mv 10.1016/j.molcel.2017.10.016
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5722659</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1097276517307918</els_id><sourcerecordid>1961634784</sourcerecordid><originalsourceid>FETCH-LOGICAL-c556t-98ae40662a1428da21ecdfa8966f4c60af02d223b1228ea5160fc48c3bdbda013</originalsourceid><addsrcrecordid>eNp9UcFu1DAQtRCItgt_gFDEiUu2HsdxkgvSNqIUqVKlUs6WY0-6XiXxYjsr-vc42qXABfkw1puZN2_mEfIO6BooiMvdenSDxmHNKFQJWifwBTkH2lQ5B8Ffnv6sEuUZuQhhRynwsm5ekzPWAK3Koj4nVzdPnbcm-xb9rOPsMXN9FreY3avHzWWbpzAPKjqfjQ939y1kGx3tQUXrpqx1437An2_Iq14NAd-e4op8v_780N7kt3dfvrab21yXpYh5UyvkVAimgLPaKAaoTa_qRoiea0FVT5lhrOiAsRpVCYL2mte66ExnFIViRT4defdzN6LROEWvBrn3dlT-STpl5b-ZyW7lozvIsmJMlE0i-HAkcCFaGbSNqLfaTRPqKIHX6RWp6ONpinc_ZgxRjjakMw9qQjcHCY0AUfAq1a4IP5Zq70Lw2D9rASoXj-ROHj2Si0cLmsDU9v7vPZ6bfpvyZ1FM1zxY9ItWnDQa6xepxtn_T_gFJvekDw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1961634784</pqid></control><display><type>article</type><title>Hybrid Structure of the RagA/C-Ragulator mTORC1 Activation Complex</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Su, Ming-Yuan ; Morris, Kyle L. ; Kim, Do Jin ; Fu, Yangxue ; Lawrence, Rosalie ; Stjepanovic, Goran ; Zoncu, Roberto ; Hurley, James H.</creator><creatorcontrib>Su, Ming-Yuan ; Morris, Kyle L. ; Kim, Do Jin ; Fu, Yangxue ; Lawrence, Rosalie ; Stjepanovic, Goran ; Zoncu, Roberto ; Hurley, James H.</creatorcontrib><description>The lysosomal membrane is the locus for sensing cellular nutrient levels, which are transduced to mTORC1 via the Rag GTPases and the Ragulator complex. The crystal structure of the five-subunit human Ragulator at 1.4 Å resolution was determined. Lamtor1 wraps around the other four subunits to stabilize the assembly. The Lamtor2:Lamtor3 dimer stacks upon Lamtor4:Lamtor5 to create a platform for Rag binding. Hydrogen-deuterium exchange was used to map the Rag binding site to the outer face of the Lamtor2:Lamtor3 dimer and to the N-terminal intrinsically disordered region of Lamtor1. EM was used to reconstruct the assembly of the full-length RagAGTP:RagCGDP dimer bound to Ragulator at 16 Å resolution, revealing that the G-domains of the Rags project away from the Ragulator core. The combined structural model shows how Ragulator functions as a platform for the presentation of active Rags for mTORC1 recruitment, and might suggest an unconventional mechanism for Rag GEF activity. [Display omitted] •Crystal structure of V-shaped five subunit human Ragulator complex•Binding mode of RagA/C GTPase dimer by HDX-MS and EM•GTPase domains of RagA/C point away from and do not touch Ragulator•Ragulator affects conformation of GDP binding site in RagA without direct contact Su et al. report the crystal structure of Ragulator, a pentameric GEF for RagA, and the EM structure of its complex with the RagA/C dimer that activates mTORC1. HDX-MS shows that Ragulator modulates the RagA GTP binding site despite no contact with its GTPase domain.</description><identifier>ISSN: 1097-2765</identifier><identifier>EISSN: 1097-4164</identifier><identifier>DOI: 10.1016/j.molcel.2017.10.016</identifier><identifier>PMID: 29107538</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adaptor Proteins, Signal Transducing - chemistry ; Adaptor Proteins, Signal Transducing - genetics ; Adaptor Proteins, Signal Transducing - metabolism ; Binding Sites ; Carrier Proteins - chemistry ; Carrier Proteins - metabolism ; Guanine Nucleotide Exchange Factors - chemistry ; Guanine Nucleotide Exchange Factors - metabolism ; Humans ; Intracellular Signaling Peptides and Proteins ; Mechanistic Target of Rapamycin Complex 1 - chemistry ; Mechanistic Target of Rapamycin Complex 1 - genetics ; Mechanistic Target of Rapamycin Complex 1 - metabolism ; Microscopy, Electron ; Molecular Docking Simulation ; Monomeric GTP-Binding Proteins - chemistry ; Monomeric GTP-Binding Proteins - genetics ; Monomeric GTP-Binding Proteins - metabolism ; Protein Binding ; Protein Interaction Domains and Motifs ; Protein Multimerization ; Recombinant Proteins - chemistry ; Recombinant Proteins - metabolism ; Structure-Activity Relationship</subject><ispartof>Molecular cell, 2017-12, Vol.68 (5), p.835-846.e3</ispartof><rights>2017 Elsevier Inc.</rights><rights>Copyright © 2017 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c556t-98ae40662a1428da21ecdfa8966f4c60af02d223b1228ea5160fc48c3bdbda013</citedby><cites>FETCH-LOGICAL-c556t-98ae40662a1428da21ecdfa8966f4c60af02d223b1228ea5160fc48c3bdbda013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.molcel.2017.10.016$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,315,782,786,887,3552,27931,27932,46002</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29107538$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1484843$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Su, Ming-Yuan</creatorcontrib><creatorcontrib>Morris, Kyle L.</creatorcontrib><creatorcontrib>Kim, Do Jin</creatorcontrib><creatorcontrib>Fu, Yangxue</creatorcontrib><creatorcontrib>Lawrence, Rosalie</creatorcontrib><creatorcontrib>Stjepanovic, Goran</creatorcontrib><creatorcontrib>Zoncu, Roberto</creatorcontrib><creatorcontrib>Hurley, James H.</creatorcontrib><title>Hybrid Structure of the RagA/C-Ragulator mTORC1 Activation Complex</title><title>Molecular cell</title><addtitle>Mol Cell</addtitle><description>The lysosomal membrane is the locus for sensing cellular nutrient levels, which are transduced to mTORC1 via the Rag GTPases and the Ragulator complex. The crystal structure of the five-subunit human Ragulator at 1.4 Å resolution was determined. Lamtor1 wraps around the other four subunits to stabilize the assembly. The Lamtor2:Lamtor3 dimer stacks upon Lamtor4:Lamtor5 to create a platform for Rag binding. Hydrogen-deuterium exchange was used to map the Rag binding site to the outer face of the Lamtor2:Lamtor3 dimer and to the N-terminal intrinsically disordered region of Lamtor1. EM was used to reconstruct the assembly of the full-length RagAGTP:RagCGDP dimer bound to Ragulator at 16 Å resolution, revealing that the G-domains of the Rags project away from the Ragulator core. The combined structural model shows how Ragulator functions as a platform for the presentation of active Rags for mTORC1 recruitment, and might suggest an unconventional mechanism for Rag GEF activity. [Display omitted] •Crystal structure of V-shaped five subunit human Ragulator complex•Binding mode of RagA/C GTPase dimer by HDX-MS and EM•GTPase domains of RagA/C point away from and do not touch Ragulator•Ragulator affects conformation of GDP binding site in RagA without direct contact Su et al. report the crystal structure of Ragulator, a pentameric GEF for RagA, and the EM structure of its complex with the RagA/C dimer that activates mTORC1. HDX-MS shows that Ragulator modulates the RagA GTP binding site despite no contact with its GTPase domain.</description><subject>Adaptor Proteins, Signal Transducing - chemistry</subject><subject>Adaptor Proteins, Signal Transducing - genetics</subject><subject>Adaptor Proteins, Signal Transducing - metabolism</subject><subject>Binding Sites</subject><subject>Carrier Proteins - chemistry</subject><subject>Carrier Proteins - metabolism</subject><subject>Guanine Nucleotide Exchange Factors - chemistry</subject><subject>Guanine Nucleotide Exchange Factors - metabolism</subject><subject>Humans</subject><subject>Intracellular Signaling Peptides and Proteins</subject><subject>Mechanistic Target of Rapamycin Complex 1 - chemistry</subject><subject>Mechanistic Target of Rapamycin Complex 1 - genetics</subject><subject>Mechanistic Target of Rapamycin Complex 1 - metabolism</subject><subject>Microscopy, Electron</subject><subject>Molecular Docking Simulation</subject><subject>Monomeric GTP-Binding Proteins - chemistry</subject><subject>Monomeric GTP-Binding Proteins - genetics</subject><subject>Monomeric GTP-Binding Proteins - metabolism</subject><subject>Protein Binding</subject><subject>Protein Interaction Domains and Motifs</subject><subject>Protein Multimerization</subject><subject>Recombinant Proteins - chemistry</subject><subject>Recombinant Proteins - metabolism</subject><subject>Structure-Activity Relationship</subject><issn>1097-2765</issn><issn>1097-4164</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UcFu1DAQtRCItgt_gFDEiUu2HsdxkgvSNqIUqVKlUs6WY0-6XiXxYjsr-vc42qXABfkw1puZN2_mEfIO6BooiMvdenSDxmHNKFQJWifwBTkH2lQ5B8Ffnv6sEuUZuQhhRynwsm5ekzPWAK3Koj4nVzdPnbcm-xb9rOPsMXN9FreY3avHzWWbpzAPKjqfjQ939y1kGx3tQUXrpqx1437An2_Iq14NAd-e4op8v_780N7kt3dfvrab21yXpYh5UyvkVAimgLPaKAaoTa_qRoiea0FVT5lhrOiAsRpVCYL2mte66ExnFIViRT4defdzN6LROEWvBrn3dlT-STpl5b-ZyW7lozvIsmJMlE0i-HAkcCFaGbSNqLfaTRPqKIHX6RWp6ONpinc_ZgxRjjakMw9qQjcHCY0AUfAq1a4IP5Zq70Lw2D9rASoXj-ROHj2Si0cLmsDU9v7vPZ6bfpvyZ1FM1zxY9ItWnDQa6xepxtn_T_gFJvekDw</recordid><startdate>20171207</startdate><enddate>20171207</enddate><creator>Su, Ming-Yuan</creator><creator>Morris, Kyle L.</creator><creator>Kim, Do Jin</creator><creator>Fu, Yangxue</creator><creator>Lawrence, Rosalie</creator><creator>Stjepanovic, Goran</creator><creator>Zoncu, Roberto</creator><creator>Hurley, James H.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20171207</creationdate><title>Hybrid Structure of the RagA/C-Ragulator mTORC1 Activation Complex</title><author>Su, Ming-Yuan ; Morris, Kyle L. ; Kim, Do Jin ; Fu, Yangxue ; Lawrence, Rosalie ; Stjepanovic, Goran ; Zoncu, Roberto ; Hurley, James H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c556t-98ae40662a1428da21ecdfa8966f4c60af02d223b1228ea5160fc48c3bdbda013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adaptor Proteins, Signal Transducing - chemistry</topic><topic>Adaptor Proteins, Signal Transducing - genetics</topic><topic>Adaptor Proteins, Signal Transducing - metabolism</topic><topic>Binding Sites</topic><topic>Carrier Proteins - chemistry</topic><topic>Carrier Proteins - metabolism</topic><topic>Guanine Nucleotide Exchange Factors - chemistry</topic><topic>Guanine Nucleotide Exchange Factors - metabolism</topic><topic>Humans</topic><topic>Intracellular Signaling Peptides and Proteins</topic><topic>Mechanistic Target of Rapamycin Complex 1 - chemistry</topic><topic>Mechanistic Target of Rapamycin Complex 1 - genetics</topic><topic>Mechanistic Target of Rapamycin Complex 1 - metabolism</topic><topic>Microscopy, Electron</topic><topic>Molecular Docking Simulation</topic><topic>Monomeric GTP-Binding Proteins - chemistry</topic><topic>Monomeric GTP-Binding Proteins - genetics</topic><topic>Monomeric GTP-Binding Proteins - metabolism</topic><topic>Protein Binding</topic><topic>Protein Interaction Domains and Motifs</topic><topic>Protein Multimerization</topic><topic>Recombinant Proteins - chemistry</topic><topic>Recombinant Proteins - metabolism</topic><topic>Structure-Activity Relationship</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Su, Ming-Yuan</creatorcontrib><creatorcontrib>Morris, Kyle L.</creatorcontrib><creatorcontrib>Kim, Do Jin</creatorcontrib><creatorcontrib>Fu, Yangxue</creatorcontrib><creatorcontrib>Lawrence, Rosalie</creatorcontrib><creatorcontrib>Stjepanovic, Goran</creatorcontrib><creatorcontrib>Zoncu, Roberto</creatorcontrib><creatorcontrib>Hurley, James H.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Su, Ming-Yuan</au><au>Morris, Kyle L.</au><au>Kim, Do Jin</au><au>Fu, Yangxue</au><au>Lawrence, Rosalie</au><au>Stjepanovic, Goran</au><au>Zoncu, Roberto</au><au>Hurley, James H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid Structure of the RagA/C-Ragulator mTORC1 Activation Complex</atitle><jtitle>Molecular cell</jtitle><addtitle>Mol Cell</addtitle><date>2017-12-07</date><risdate>2017</risdate><volume>68</volume><issue>5</issue><spage>835</spage><epage>846.e3</epage><pages>835-846.e3</pages><issn>1097-2765</issn><eissn>1097-4164</eissn><abstract>The lysosomal membrane is the locus for sensing cellular nutrient levels, which are transduced to mTORC1 via the Rag GTPases and the Ragulator complex. The crystal structure of the five-subunit human Ragulator at 1.4 Å resolution was determined. Lamtor1 wraps around the other four subunits to stabilize the assembly. The Lamtor2:Lamtor3 dimer stacks upon Lamtor4:Lamtor5 to create a platform for Rag binding. Hydrogen-deuterium exchange was used to map the Rag binding site to the outer face of the Lamtor2:Lamtor3 dimer and to the N-terminal intrinsically disordered region of Lamtor1. EM was used to reconstruct the assembly of the full-length RagAGTP:RagCGDP dimer bound to Ragulator at 16 Å resolution, revealing that the G-domains of the Rags project away from the Ragulator core. The combined structural model shows how Ragulator functions as a platform for the presentation of active Rags for mTORC1 recruitment, and might suggest an unconventional mechanism for Rag GEF activity. [Display omitted] •Crystal structure of V-shaped five subunit human Ragulator complex•Binding mode of RagA/C GTPase dimer by HDX-MS and EM•GTPase domains of RagA/C point away from and do not touch Ragulator•Ragulator affects conformation of GDP binding site in RagA without direct contact Su et al. report the crystal structure of Ragulator, a pentameric GEF for RagA, and the EM structure of its complex with the RagA/C dimer that activates mTORC1. HDX-MS shows that Ragulator modulates the RagA GTP binding site despite no contact with its GTPase domain.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>29107538</pmid><doi>10.1016/j.molcel.2017.10.016</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1097-2765
ispartof Molecular cell, 2017-12, Vol.68 (5), p.835-846.e3
issn 1097-2765
1097-4164
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5722659
source MEDLINE; Cell Press Free Archives; Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals; Free Full-Text Journals in Chemistry
subjects Adaptor Proteins, Signal Transducing - chemistry
Adaptor Proteins, Signal Transducing - genetics
Adaptor Proteins, Signal Transducing - metabolism
Binding Sites
Carrier Proteins - chemistry
Carrier Proteins - metabolism
Guanine Nucleotide Exchange Factors - chemistry
Guanine Nucleotide Exchange Factors - metabolism
Humans
Intracellular Signaling Peptides and Proteins
Mechanistic Target of Rapamycin Complex 1 - chemistry
Mechanistic Target of Rapamycin Complex 1 - genetics
Mechanistic Target of Rapamycin Complex 1 - metabolism
Microscopy, Electron
Molecular Docking Simulation
Monomeric GTP-Binding Proteins - chemistry
Monomeric GTP-Binding Proteins - genetics
Monomeric GTP-Binding Proteins - metabolism
Protein Binding
Protein Interaction Domains and Motifs
Protein Multimerization
Recombinant Proteins - chemistry
Recombinant Proteins - metabolism
Structure-Activity Relationship
title Hybrid Structure of the RagA/C-Ragulator mTORC1 Activation Complex
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T22%3A34%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20Structure%20of%20the%20RagA/C-Ragulator%20mTORC1%20Activation%20Complex&rft.jtitle=Molecular%20cell&rft.au=Su,%20Ming-Yuan&rft.date=2017-12-07&rft.volume=68&rft.issue=5&rft.spage=835&rft.epage=846.e3&rft.pages=835-846.e3&rft.issn=1097-2765&rft.eissn=1097-4164&rft_id=info:doi/10.1016/j.molcel.2017.10.016&rft_dat=%3Cproquest_pubme%3E1961634784%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1961634784&rft_id=info:pmid/29107538&rft_els_id=S1097276517307918&rfr_iscdi=true