Role of Molecular Recognition in l‑Cystine Crystal Growth Inhibition

l-Cystine kidney stonesaggregates of single crystals of the hexagonal form of l-cystineafflict more than 20 000 individuals in the United States alone. Current therapies are often ineffective and produce adverse side effects. Recognizing that the growth of l-cystine crystals is a critical step in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Crystal growth & design 2017-05, Vol.17 (5), p.2767-2781
Hauptverfasser: Poloni, Laura N, Zhu, Zina, Garcia-Vázquez, Nelson, Yu, Anthony C, Connors, David M, Hu, Longqin, Sahota, Amrik, Ward, Michael D, Shtukenberg, Alexander G
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2781
container_issue 5
container_start_page 2767
container_title Crystal growth & design
container_volume 17
creator Poloni, Laura N
Zhu, Zina
Garcia-Vázquez, Nelson
Yu, Anthony C
Connors, David M
Hu, Longqin
Sahota, Amrik
Ward, Michael D
Shtukenberg, Alexander G
description l-Cystine kidney stonesaggregates of single crystals of the hexagonal form of l-cystineafflict more than 20 000 individuals in the United States alone. Current therapies are often ineffective and produce adverse side effects. Recognizing that the growth of l-cystine crystals is a critical step in stone pathogenesis, real-time in situ atomic force microscopy of growth on the (0001) face of l-cystine crystals and measurements of crystal growth anisotropy were performed in the presence of prospective inhibitors drawn from a 31-member library. The most effective molecular imposters for crystal growth inhibition were l-cystine mimics (aka molecular imposters), particularly l-cystine diesters and diamides, for which a kinetic analysis revealed a common inhibition mechanism consistent with Cabrera–Vermilyea step pinning. The amount of inhibitor incorporated by l-cystine crystals, estimated from kinetic data, suggests that imposter binding to the {0001} face is less probable than binding of l-cystine solute molecules, whereas imposter binding to {101̅0} faces is comparable to that of l-cystine molecules. These estimates were corroborated by computational binding energies. Collectively, these findings identify the key structural factors responsible for molecular recognition between molecular imposters and l-cystine crystal kink sites, and the inhibition of crystal growth. The observations are consistent with the reduction of l-cystine stone burden in mouse models by the more effective inhibitors, thereby articulating a strategy for stone prevention based on molecular design.
doi_str_mv 10.1021/acs.cgd.7b00236
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5722434</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1976439854</sourcerecordid><originalsourceid>FETCH-LOGICAL-a429t-9651969e9783197d46fddb5bbf990fabb7091c777f702faa1b3703dbedc342ef3</originalsourceid><addsrcrecordid>eNp1kMtKAzEUhoMotlbX7mSWgkzNZWYy2QhSvEFFKLoOyUzSRqZJTWYUd76Cr-iTmNoLunB1Dsl3_nP4ADhGcIggRueiCsNqWg-phBCTYgf0UY7LlOYw3930WUl64CCEZwghLQjZBz3MMMlwhvvgeuIalTid3MdadY3wyURVbmpNa5xNjE2ar4_P0XtojVXJyMdGNMmNd2_tLLmzMyN_wEOwp0UT1NG6DsDT9dXj6DYdP9zcjS7Hqcgwa1NW5IgVTDFaEsRonRW6rmUupWYMaiElhQxVlFJNIdZCIEkoJLVUdRXvVZoMwMUqd9HJeXxVtvWi4Qtv5sK_cycM__tjzYxP3SvPKcYZyWLA6TrAu5dOhZbPTahU0wirXBd4vKrICCvzJXq-QivvQvBKb9cgyJf2ebTPo32-th8nTn5ft-U3uiNwtgKWk8-u8zbK-jfuG7H3kkQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1976439854</pqid></control><display><type>article</type><title>Role of Molecular Recognition in l‑Cystine Crystal Growth Inhibition</title><source>ACS Publications</source><creator>Poloni, Laura N ; Zhu, Zina ; Garcia-Vázquez, Nelson ; Yu, Anthony C ; Connors, David M ; Hu, Longqin ; Sahota, Amrik ; Ward, Michael D ; Shtukenberg, Alexander G</creator><creatorcontrib>Poloni, Laura N ; Zhu, Zina ; Garcia-Vázquez, Nelson ; Yu, Anthony C ; Connors, David M ; Hu, Longqin ; Sahota, Amrik ; Ward, Michael D ; Shtukenberg, Alexander G</creatorcontrib><description>l-Cystine kidney stonesaggregates of single crystals of the hexagonal form of l-cystineafflict more than 20 000 individuals in the United States alone. Current therapies are often ineffective and produce adverse side effects. Recognizing that the growth of l-cystine crystals is a critical step in stone pathogenesis, real-time in situ atomic force microscopy of growth on the (0001) face of l-cystine crystals and measurements of crystal growth anisotropy were performed in the presence of prospective inhibitors drawn from a 31-member library. The most effective molecular imposters for crystal growth inhibition were l-cystine mimics (aka molecular imposters), particularly l-cystine diesters and diamides, for which a kinetic analysis revealed a common inhibition mechanism consistent with Cabrera–Vermilyea step pinning. The amount of inhibitor incorporated by l-cystine crystals, estimated from kinetic data, suggests that imposter binding to the {0001} face is less probable than binding of l-cystine solute molecules, whereas imposter binding to {101̅0} faces is comparable to that of l-cystine molecules. These estimates were corroborated by computational binding energies. Collectively, these findings identify the key structural factors responsible for molecular recognition between molecular imposters and l-cystine crystal kink sites, and the inhibition of crystal growth. The observations are consistent with the reduction of l-cystine stone burden in mouse models by the more effective inhibitors, thereby articulating a strategy for stone prevention based on molecular design.</description><identifier>ISSN: 1528-7483</identifier><identifier>EISSN: 1528-7505</identifier><identifier>DOI: 10.1021/acs.cgd.7b00236</identifier><identifier>PMID: 29234242</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Crystal growth &amp; design, 2017-05, Vol.17 (5), p.2767-2781</ispartof><rights>Copyright © 2017 American Chemical Society</rights><rights>Copyright © 2017 American Chemical Society 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a429t-9651969e9783197d46fddb5bbf990fabb7091c777f702faa1b3703dbedc342ef3</citedby><cites>FETCH-LOGICAL-a429t-9651969e9783197d46fddb5bbf990fabb7091c777f702faa1b3703dbedc342ef3</cites><orcidid>0000-0002-5590-4758 ; 0000-0002-2090-781X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.cgd.7b00236$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.cgd.7b00236$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29234242$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Poloni, Laura N</creatorcontrib><creatorcontrib>Zhu, Zina</creatorcontrib><creatorcontrib>Garcia-Vázquez, Nelson</creatorcontrib><creatorcontrib>Yu, Anthony C</creatorcontrib><creatorcontrib>Connors, David M</creatorcontrib><creatorcontrib>Hu, Longqin</creatorcontrib><creatorcontrib>Sahota, Amrik</creatorcontrib><creatorcontrib>Ward, Michael D</creatorcontrib><creatorcontrib>Shtukenberg, Alexander G</creatorcontrib><title>Role of Molecular Recognition in l‑Cystine Crystal Growth Inhibition</title><title>Crystal growth &amp; design</title><addtitle>Cryst. Growth Des</addtitle><description>l-Cystine kidney stonesaggregates of single crystals of the hexagonal form of l-cystineafflict more than 20 000 individuals in the United States alone. Current therapies are often ineffective and produce adverse side effects. Recognizing that the growth of l-cystine crystals is a critical step in stone pathogenesis, real-time in situ atomic force microscopy of growth on the (0001) face of l-cystine crystals and measurements of crystal growth anisotropy were performed in the presence of prospective inhibitors drawn from a 31-member library. The most effective molecular imposters for crystal growth inhibition were l-cystine mimics (aka molecular imposters), particularly l-cystine diesters and diamides, for which a kinetic analysis revealed a common inhibition mechanism consistent with Cabrera–Vermilyea step pinning. The amount of inhibitor incorporated by l-cystine crystals, estimated from kinetic data, suggests that imposter binding to the {0001} face is less probable than binding of l-cystine solute molecules, whereas imposter binding to {101̅0} faces is comparable to that of l-cystine molecules. These estimates were corroborated by computational binding energies. Collectively, these findings identify the key structural factors responsible for molecular recognition between molecular imposters and l-cystine crystal kink sites, and the inhibition of crystal growth. The observations are consistent with the reduction of l-cystine stone burden in mouse models by the more effective inhibitors, thereby articulating a strategy for stone prevention based on molecular design.</description><issn>1528-7483</issn><issn>1528-7505</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kMtKAzEUhoMotlbX7mSWgkzNZWYy2QhSvEFFKLoOyUzSRqZJTWYUd76Cr-iTmNoLunB1Dsl3_nP4ADhGcIggRueiCsNqWg-phBCTYgf0UY7LlOYw3930WUl64CCEZwghLQjZBz3MMMlwhvvgeuIalTid3MdadY3wyURVbmpNa5xNjE2ar4_P0XtojVXJyMdGNMmNd2_tLLmzMyN_wEOwp0UT1NG6DsDT9dXj6DYdP9zcjS7Hqcgwa1NW5IgVTDFaEsRonRW6rmUupWYMaiElhQxVlFJNIdZCIEkoJLVUdRXvVZoMwMUqd9HJeXxVtvWi4Qtv5sK_cycM__tjzYxP3SvPKcYZyWLA6TrAu5dOhZbPTahU0wirXBd4vKrICCvzJXq-QivvQvBKb9cgyJf2ebTPo32-th8nTn5ft-U3uiNwtgKWk8-u8zbK-jfuG7H3kkQ</recordid><startdate>20170503</startdate><enddate>20170503</enddate><creator>Poloni, Laura N</creator><creator>Zhu, Zina</creator><creator>Garcia-Vázquez, Nelson</creator><creator>Yu, Anthony C</creator><creator>Connors, David M</creator><creator>Hu, Longqin</creator><creator>Sahota, Amrik</creator><creator>Ward, Michael D</creator><creator>Shtukenberg, Alexander G</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5590-4758</orcidid><orcidid>https://orcid.org/0000-0002-2090-781X</orcidid></search><sort><creationdate>20170503</creationdate><title>Role of Molecular Recognition in l‑Cystine Crystal Growth Inhibition</title><author>Poloni, Laura N ; Zhu, Zina ; Garcia-Vázquez, Nelson ; Yu, Anthony C ; Connors, David M ; Hu, Longqin ; Sahota, Amrik ; Ward, Michael D ; Shtukenberg, Alexander G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a429t-9651969e9783197d46fddb5bbf990fabb7091c777f702faa1b3703dbedc342ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Poloni, Laura N</creatorcontrib><creatorcontrib>Zhu, Zina</creatorcontrib><creatorcontrib>Garcia-Vázquez, Nelson</creatorcontrib><creatorcontrib>Yu, Anthony C</creatorcontrib><creatorcontrib>Connors, David M</creatorcontrib><creatorcontrib>Hu, Longqin</creatorcontrib><creatorcontrib>Sahota, Amrik</creatorcontrib><creatorcontrib>Ward, Michael D</creatorcontrib><creatorcontrib>Shtukenberg, Alexander G</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Crystal growth &amp; design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Poloni, Laura N</au><au>Zhu, Zina</au><au>Garcia-Vázquez, Nelson</au><au>Yu, Anthony C</au><au>Connors, David M</au><au>Hu, Longqin</au><au>Sahota, Amrik</au><au>Ward, Michael D</au><au>Shtukenberg, Alexander G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of Molecular Recognition in l‑Cystine Crystal Growth Inhibition</atitle><jtitle>Crystal growth &amp; design</jtitle><addtitle>Cryst. Growth Des</addtitle><date>2017-05-03</date><risdate>2017</risdate><volume>17</volume><issue>5</issue><spage>2767</spage><epage>2781</epage><pages>2767-2781</pages><issn>1528-7483</issn><eissn>1528-7505</eissn><abstract>l-Cystine kidney stonesaggregates of single crystals of the hexagonal form of l-cystineafflict more than 20 000 individuals in the United States alone. Current therapies are often ineffective and produce adverse side effects. Recognizing that the growth of l-cystine crystals is a critical step in stone pathogenesis, real-time in situ atomic force microscopy of growth on the (0001) face of l-cystine crystals and measurements of crystal growth anisotropy were performed in the presence of prospective inhibitors drawn from a 31-member library. The most effective molecular imposters for crystal growth inhibition were l-cystine mimics (aka molecular imposters), particularly l-cystine diesters and diamides, for which a kinetic analysis revealed a common inhibition mechanism consistent with Cabrera–Vermilyea step pinning. The amount of inhibitor incorporated by l-cystine crystals, estimated from kinetic data, suggests that imposter binding to the {0001} face is less probable than binding of l-cystine solute molecules, whereas imposter binding to {101̅0} faces is comparable to that of l-cystine molecules. These estimates were corroborated by computational binding energies. Collectively, these findings identify the key structural factors responsible for molecular recognition between molecular imposters and l-cystine crystal kink sites, and the inhibition of crystal growth. The observations are consistent with the reduction of l-cystine stone burden in mouse models by the more effective inhibitors, thereby articulating a strategy for stone prevention based on molecular design.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29234242</pmid><doi>10.1021/acs.cgd.7b00236</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-5590-4758</orcidid><orcidid>https://orcid.org/0000-0002-2090-781X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1528-7483
ispartof Crystal growth & design, 2017-05, Vol.17 (5), p.2767-2781
issn 1528-7483
1528-7505
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5722434
source ACS Publications
title Role of Molecular Recognition in l‑Cystine Crystal Growth Inhibition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T18%3A54%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20Molecular%20Recognition%20in%20l%E2%80%91Cystine%20Crystal%20Growth%20Inhibition&rft.jtitle=Crystal%20growth%20&%20design&rft.au=Poloni,%20Laura%20N&rft.date=2017-05-03&rft.volume=17&rft.issue=5&rft.spage=2767&rft.epage=2781&rft.pages=2767-2781&rft.issn=1528-7483&rft.eissn=1528-7505&rft_id=info:doi/10.1021/acs.cgd.7b00236&rft_dat=%3Cproquest_pubme%3E1976439854%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1976439854&rft_id=info:pmid/29234242&rfr_iscdi=true