Structure‐function relationships at the human spinal disc‐vertebra interface

ABSTRACT Damage at the intervertebral disc‐vertebra interface associates with back pain and disc herniation. However, the structural and biomechanical properties of the disc‐vertebra interface remain underexplored. We sought to measure mechanical properties and failure mechanisms, quantify architect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of orthopaedic research 2018-01, Vol.36 (1), p.192-201
Hauptverfasser: Berg‐Johansen, Britta, Fields, Aaron J., Liebenberg, Ellen C., Li, Alfred, Lotz, Jeffrey C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 201
container_issue 1
container_start_page 192
container_title Journal of orthopaedic research
container_volume 36
creator Berg‐Johansen, Britta
Fields, Aaron J.
Liebenberg, Ellen C.
Li, Alfred
Lotz, Jeffrey C.
description ABSTRACT Damage at the intervertebral disc‐vertebra interface associates with back pain and disc herniation. However, the structural and biomechanical properties of the disc‐vertebra interface remain underexplored. We sought to measure mechanical properties and failure mechanisms, quantify architectural features, and assess structure‐function relationships at this vulnerable location. Vertebra‐disc‐vertebra specimens from human cadaver thoracic spines were scanned with micro‐computed tomography (μCT), surface speckle‐coated, and loaded to failure in uniaxial tension. Digital image correlation (DIC) was used to calculate local surface strains. Failure surfaces were scanned using scanning electron microscopy (SEM), and adjacent sagittal slices were analyzed with histology and SEM. Seventy‐one percent of specimens failed initially at the cartilage endplate‐bone interface of the inner annulus region. Histology and SEM both indicated a lack of structural integration between the cartilage endplate (CEP) and bone. The interface failure strength was increased in samples with higher trabecular bone volume fraction in the vertebral endplates. Furthermore, failure strength decreased with degeneration, and in discs with thicker CEPs. Our findings indicate that poor structural connectivity between the CEP and vertebra may explain the structural weakness at this region, and provide insight into structural features that may contribute to risk for disc‐vertebra interface injury. The disc‐vertebra interface is the site of failure in the majority of herniation injuries. Here we show new structure‐function relationships at this interface that may motivate the development of diagnostics, prevention strategies, and treatments to improve the prognosis for many low back pain patients with disc‐vertebra interface injuries. © 2017 The Authors. Journal of Orthopaedic Research® Published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society. J Orthop Res 36:192–201, 2018.
doi_str_mv 10.1002/jor.23627
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5720932</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1907003174</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4157-d9495a21a8270c624ea3e0525e948bd6474eb1a065088a1cc89cfc5f3a8ddee63</originalsourceid><addsrcrecordid>eNp1kc-O0zAQhy0Eot3CgRdAOcIh7diJ7eSChKplF1RpEX8kbtbUmVBXaVJsp6g3HmGfkSchJaWCA6exNJ8_z_jH2DMOcw4gFtvOz0WmhH7AplzKPJVCf3nIpqAzlYJQasKuQtgCgOaieMwmopAlgIIpe_8x-t7G3tPPH_d139roujbx1ODpEDZuHxKMSdxQsul32CZh71psksoFO9w4kI-09pi4NpKv0dIT9qjGJtDTc52xz2-uPy1v09Xdzdvl61Vqcy51WpV5KVFwLIQGq0ROmBFIIanMi3Wlcp3TmiMoCUWB3NqitLWVdYZFVRGpbMZejd59v95RZamNHhuz926H_mg6dObfTus25mt3MFILKDMxCF6cBb771lOIZjfsRE2DLXV9MLwEDZBxnQ_oyxG1vgvBU315hoM5JWCGBMzvBAb2-d9zXcg_Xz4AixH47ho6_t9k3t19GJW_AG9RlI8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1907003174</pqid></control><display><type>article</type><title>Structure‐function relationships at the human spinal disc‐vertebra interface</title><source>Wiley Free Content</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Berg‐Johansen, Britta ; Fields, Aaron J. ; Liebenberg, Ellen C. ; Li, Alfred ; Lotz, Jeffrey C.</creator><creatorcontrib>Berg‐Johansen, Britta ; Fields, Aaron J. ; Liebenberg, Ellen C. ; Li, Alfred ; Lotz, Jeffrey C.</creatorcontrib><description>ABSTRACT Damage at the intervertebral disc‐vertebra interface associates with back pain and disc herniation. However, the structural and biomechanical properties of the disc‐vertebra interface remain underexplored. We sought to measure mechanical properties and failure mechanisms, quantify architectural features, and assess structure‐function relationships at this vulnerable location. Vertebra‐disc‐vertebra specimens from human cadaver thoracic spines were scanned with micro‐computed tomography (μCT), surface speckle‐coated, and loaded to failure in uniaxial tension. Digital image correlation (DIC) was used to calculate local surface strains. Failure surfaces were scanned using scanning electron microscopy (SEM), and adjacent sagittal slices were analyzed with histology and SEM. Seventy‐one percent of specimens failed initially at the cartilage endplate‐bone interface of the inner annulus region. Histology and SEM both indicated a lack of structural integration between the cartilage endplate (CEP) and bone. The interface failure strength was increased in samples with higher trabecular bone volume fraction in the vertebral endplates. Furthermore, failure strength decreased with degeneration, and in discs with thicker CEPs. Our findings indicate that poor structural connectivity between the CEP and vertebra may explain the structural weakness at this region, and provide insight into structural features that may contribute to risk for disc‐vertebra interface injury. The disc‐vertebra interface is the site of failure in the majority of herniation injuries. Here we show new structure‐function relationships at this interface that may motivate the development of diagnostics, prevention strategies, and treatments to improve the prognosis for many low back pain patients with disc‐vertebra interface injuries. © 2017 The Authors. Journal of Orthopaedic Research® Published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society. J Orthop Res 36:192–201, 2018.</description><identifier>ISSN: 0736-0266</identifier><identifier>EISSN: 1554-527X</identifier><identifier>DOI: 10.1002/jor.23627</identifier><identifier>PMID: 28590060</identifier><language>eng</language><publisher>United States: John Wiley and Sons Inc</publisher><subject>Aged ; avulsion ; Biomechanical Phenomena ; Cartilage - anatomy &amp; histology ; Cartilage - physiology ; cartilage endplate junction ; collagen ; disc herniation ; Female ; Humans ; intervertebral disc ; Intervertebral Disc - anatomy &amp; histology ; Intervertebral Disc - physiology ; Intervertebral Disc Displacement - pathology ; Male ; Microscopy, Electrochemical, Scanning ; Middle Aged ; Thoracic Vertebrae - anatomy &amp; histology ; Thoracic Vertebrae - physiology ; X-Ray Microtomography</subject><ispartof>Journal of orthopaedic research, 2018-01, Vol.36 (1), p.192-201</ispartof><rights>2017 The Authors. ® Published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society</rights><rights>2017 The Authors. Journal of Orthopaedic Research® Published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4157-d9495a21a8270c624ea3e0525e948bd6474eb1a065088a1cc89cfc5f3a8ddee63</citedby><cites>FETCH-LOGICAL-c4157-d9495a21a8270c624ea3e0525e948bd6474eb1a065088a1cc89cfc5f3a8ddee63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjor.23627$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjor.23627$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28590060$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Berg‐Johansen, Britta</creatorcontrib><creatorcontrib>Fields, Aaron J.</creatorcontrib><creatorcontrib>Liebenberg, Ellen C.</creatorcontrib><creatorcontrib>Li, Alfred</creatorcontrib><creatorcontrib>Lotz, Jeffrey C.</creatorcontrib><title>Structure‐function relationships at the human spinal disc‐vertebra interface</title><title>Journal of orthopaedic research</title><addtitle>J Orthop Res</addtitle><description>ABSTRACT Damage at the intervertebral disc‐vertebra interface associates with back pain and disc herniation. However, the structural and biomechanical properties of the disc‐vertebra interface remain underexplored. We sought to measure mechanical properties and failure mechanisms, quantify architectural features, and assess structure‐function relationships at this vulnerable location. Vertebra‐disc‐vertebra specimens from human cadaver thoracic spines were scanned with micro‐computed tomography (μCT), surface speckle‐coated, and loaded to failure in uniaxial tension. Digital image correlation (DIC) was used to calculate local surface strains. Failure surfaces were scanned using scanning electron microscopy (SEM), and adjacent sagittal slices were analyzed with histology and SEM. Seventy‐one percent of specimens failed initially at the cartilage endplate‐bone interface of the inner annulus region. Histology and SEM both indicated a lack of structural integration between the cartilage endplate (CEP) and bone. The interface failure strength was increased in samples with higher trabecular bone volume fraction in the vertebral endplates. Furthermore, failure strength decreased with degeneration, and in discs with thicker CEPs. Our findings indicate that poor structural connectivity between the CEP and vertebra may explain the structural weakness at this region, and provide insight into structural features that may contribute to risk for disc‐vertebra interface injury. The disc‐vertebra interface is the site of failure in the majority of herniation injuries. Here we show new structure‐function relationships at this interface that may motivate the development of diagnostics, prevention strategies, and treatments to improve the prognosis for many low back pain patients with disc‐vertebra interface injuries. © 2017 The Authors. Journal of Orthopaedic Research® Published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society. J Orthop Res 36:192–201, 2018.</description><subject>Aged</subject><subject>avulsion</subject><subject>Biomechanical Phenomena</subject><subject>Cartilage - anatomy &amp; histology</subject><subject>Cartilage - physiology</subject><subject>cartilage endplate junction</subject><subject>collagen</subject><subject>disc herniation</subject><subject>Female</subject><subject>Humans</subject><subject>intervertebral disc</subject><subject>Intervertebral Disc - anatomy &amp; histology</subject><subject>Intervertebral Disc - physiology</subject><subject>Intervertebral Disc Displacement - pathology</subject><subject>Male</subject><subject>Microscopy, Electrochemical, Scanning</subject><subject>Middle Aged</subject><subject>Thoracic Vertebrae - anatomy &amp; histology</subject><subject>Thoracic Vertebrae - physiology</subject><subject>X-Ray Microtomography</subject><issn>0736-0266</issn><issn>1554-527X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNp1kc-O0zAQhy0Eot3CgRdAOcIh7diJ7eSChKplF1RpEX8kbtbUmVBXaVJsp6g3HmGfkSchJaWCA6exNJ8_z_jH2DMOcw4gFtvOz0WmhH7AplzKPJVCf3nIpqAzlYJQasKuQtgCgOaieMwmopAlgIIpe_8x-t7G3tPPH_d139roujbx1ODpEDZuHxKMSdxQsul32CZh71psksoFO9w4kI-09pi4NpKv0dIT9qjGJtDTc52xz2-uPy1v09Xdzdvl61Vqcy51WpV5KVFwLIQGq0ROmBFIIanMi3Wlcp3TmiMoCUWB3NqitLWVdYZFVRGpbMZejd59v95RZamNHhuz926H_mg6dObfTus25mt3MFILKDMxCF6cBb771lOIZjfsRE2DLXV9MLwEDZBxnQ_oyxG1vgvBU315hoM5JWCGBMzvBAb2-d9zXcg_Xz4AixH47ho6_t9k3t19GJW_AG9RlI8</recordid><startdate>201801</startdate><enddate>201801</enddate><creator>Berg‐Johansen, Britta</creator><creator>Fields, Aaron J.</creator><creator>Liebenberg, Ellen C.</creator><creator>Li, Alfred</creator><creator>Lotz, Jeffrey C.</creator><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201801</creationdate><title>Structure‐function relationships at the human spinal disc‐vertebra interface</title><author>Berg‐Johansen, Britta ; Fields, Aaron J. ; Liebenberg, Ellen C. ; Li, Alfred ; Lotz, Jeffrey C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4157-d9495a21a8270c624ea3e0525e948bd6474eb1a065088a1cc89cfc5f3a8ddee63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aged</topic><topic>avulsion</topic><topic>Biomechanical Phenomena</topic><topic>Cartilage - anatomy &amp; histology</topic><topic>Cartilage - physiology</topic><topic>cartilage endplate junction</topic><topic>collagen</topic><topic>disc herniation</topic><topic>Female</topic><topic>Humans</topic><topic>intervertebral disc</topic><topic>Intervertebral Disc - anatomy &amp; histology</topic><topic>Intervertebral Disc - physiology</topic><topic>Intervertebral Disc Displacement - pathology</topic><topic>Male</topic><topic>Microscopy, Electrochemical, Scanning</topic><topic>Middle Aged</topic><topic>Thoracic Vertebrae - anatomy &amp; histology</topic><topic>Thoracic Vertebrae - physiology</topic><topic>X-Ray Microtomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Berg‐Johansen, Britta</creatorcontrib><creatorcontrib>Fields, Aaron J.</creatorcontrib><creatorcontrib>Liebenberg, Ellen C.</creatorcontrib><creatorcontrib>Li, Alfred</creatorcontrib><creatorcontrib>Lotz, Jeffrey C.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of orthopaedic research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Berg‐Johansen, Britta</au><au>Fields, Aaron J.</au><au>Liebenberg, Ellen C.</au><au>Li, Alfred</au><au>Lotz, Jeffrey C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure‐function relationships at the human spinal disc‐vertebra interface</atitle><jtitle>Journal of orthopaedic research</jtitle><addtitle>J Orthop Res</addtitle><date>2018-01</date><risdate>2018</risdate><volume>36</volume><issue>1</issue><spage>192</spage><epage>201</epage><pages>192-201</pages><issn>0736-0266</issn><eissn>1554-527X</eissn><abstract>ABSTRACT Damage at the intervertebral disc‐vertebra interface associates with back pain and disc herniation. However, the structural and biomechanical properties of the disc‐vertebra interface remain underexplored. We sought to measure mechanical properties and failure mechanisms, quantify architectural features, and assess structure‐function relationships at this vulnerable location. Vertebra‐disc‐vertebra specimens from human cadaver thoracic spines were scanned with micro‐computed tomography (μCT), surface speckle‐coated, and loaded to failure in uniaxial tension. Digital image correlation (DIC) was used to calculate local surface strains. Failure surfaces were scanned using scanning electron microscopy (SEM), and adjacent sagittal slices were analyzed with histology and SEM. Seventy‐one percent of specimens failed initially at the cartilage endplate‐bone interface of the inner annulus region. Histology and SEM both indicated a lack of structural integration between the cartilage endplate (CEP) and bone. The interface failure strength was increased in samples with higher trabecular bone volume fraction in the vertebral endplates. Furthermore, failure strength decreased with degeneration, and in discs with thicker CEPs. Our findings indicate that poor structural connectivity between the CEP and vertebra may explain the structural weakness at this region, and provide insight into structural features that may contribute to risk for disc‐vertebra interface injury. The disc‐vertebra interface is the site of failure in the majority of herniation injuries. Here we show new structure‐function relationships at this interface that may motivate the development of diagnostics, prevention strategies, and treatments to improve the prognosis for many low back pain patients with disc‐vertebra interface injuries. © 2017 The Authors. Journal of Orthopaedic Research® Published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society. J Orthop Res 36:192–201, 2018.</abstract><cop>United States</cop><pub>John Wiley and Sons Inc</pub><pmid>28590060</pmid><doi>10.1002/jor.23627</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0736-0266
ispartof Journal of orthopaedic research, 2018-01, Vol.36 (1), p.192-201
issn 0736-0266
1554-527X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5720932
source Wiley Free Content; MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Aged
avulsion
Biomechanical Phenomena
Cartilage - anatomy & histology
Cartilage - physiology
cartilage endplate junction
collagen
disc herniation
Female
Humans
intervertebral disc
Intervertebral Disc - anatomy & histology
Intervertebral Disc - physiology
Intervertebral Disc Displacement - pathology
Male
Microscopy, Electrochemical, Scanning
Middle Aged
Thoracic Vertebrae - anatomy & histology
Thoracic Vertebrae - physiology
X-Ray Microtomography
title Structure‐function relationships at the human spinal disc‐vertebra interface
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T21%3A00%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%E2%80%90function%20relationships%20at%20the%20human%20spinal%20disc%E2%80%90vertebra%20interface&rft.jtitle=Journal%20of%20orthopaedic%20research&rft.au=Berg%E2%80%90Johansen,%20Britta&rft.date=2018-01&rft.volume=36&rft.issue=1&rft.spage=192&rft.epage=201&rft.pages=192-201&rft.issn=0736-0266&rft.eissn=1554-527X&rft_id=info:doi/10.1002/jor.23627&rft_dat=%3Cproquest_pubme%3E1907003174%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1907003174&rft_id=info:pmid/28590060&rfr_iscdi=true