Structure‐function relationships at the human spinal disc‐vertebra interface
ABSTRACT Damage at the intervertebral disc‐vertebra interface associates with back pain and disc herniation. However, the structural and biomechanical properties of the disc‐vertebra interface remain underexplored. We sought to measure mechanical properties and failure mechanisms, quantify architect...
Gespeichert in:
Veröffentlicht in: | Journal of orthopaedic research 2018-01, Vol.36 (1), p.192-201 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 201 |
---|---|
container_issue | 1 |
container_start_page | 192 |
container_title | Journal of orthopaedic research |
container_volume | 36 |
creator | Berg‐Johansen, Britta Fields, Aaron J. Liebenberg, Ellen C. Li, Alfred Lotz, Jeffrey C. |
description | ABSTRACT
Damage at the intervertebral disc‐vertebra interface associates with back pain and disc herniation. However, the structural and biomechanical properties of the disc‐vertebra interface remain underexplored. We sought to measure mechanical properties and failure mechanisms, quantify architectural features, and assess structure‐function relationships at this vulnerable location. Vertebra‐disc‐vertebra specimens from human cadaver thoracic spines were scanned with micro‐computed tomography (μCT), surface speckle‐coated, and loaded to failure in uniaxial tension. Digital image correlation (DIC) was used to calculate local surface strains. Failure surfaces were scanned using scanning electron microscopy (SEM), and adjacent sagittal slices were analyzed with histology and SEM. Seventy‐one percent of specimens failed initially at the cartilage endplate‐bone interface of the inner annulus region. Histology and SEM both indicated a lack of structural integration between the cartilage endplate (CEP) and bone. The interface failure strength was increased in samples with higher trabecular bone volume fraction in the vertebral endplates. Furthermore, failure strength decreased with degeneration, and in discs with thicker CEPs. Our findings indicate that poor structural connectivity between the CEP and vertebra may explain the structural weakness at this region, and provide insight into structural features that may contribute to risk for disc‐vertebra interface injury. The disc‐vertebra interface is the site of failure in the majority of herniation injuries. Here we show new structure‐function relationships at this interface that may motivate the development of diagnostics, prevention strategies, and treatments to improve the prognosis for many low back pain patients with disc‐vertebra interface injuries. © 2017 The Authors. Journal of Orthopaedic Research® Published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society. J Orthop Res 36:192–201, 2018. |
doi_str_mv | 10.1002/jor.23627 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5720932</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1907003174</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4157-d9495a21a8270c624ea3e0525e948bd6474eb1a065088a1cc89cfc5f3a8ddee63</originalsourceid><addsrcrecordid>eNp1kc-O0zAQhy0Eot3CgRdAOcIh7diJ7eSChKplF1RpEX8kbtbUmVBXaVJsp6g3HmGfkSchJaWCA6exNJ8_z_jH2DMOcw4gFtvOz0WmhH7AplzKPJVCf3nIpqAzlYJQasKuQtgCgOaieMwmopAlgIIpe_8x-t7G3tPPH_d139roujbx1ODpEDZuHxKMSdxQsul32CZh71psksoFO9w4kI-09pi4NpKv0dIT9qjGJtDTc52xz2-uPy1v09Xdzdvl61Vqcy51WpV5KVFwLIQGq0ROmBFIIanMi3Wlcp3TmiMoCUWB3NqitLWVdYZFVRGpbMZejd59v95RZamNHhuz926H_mg6dObfTus25mt3MFILKDMxCF6cBb771lOIZjfsRE2DLXV9MLwEDZBxnQ_oyxG1vgvBU315hoM5JWCGBMzvBAb2-d9zXcg_Xz4AixH47ho6_t9k3t19GJW_AG9RlI8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1907003174</pqid></control><display><type>article</type><title>Structure‐function relationships at the human spinal disc‐vertebra interface</title><source>Wiley Free Content</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Berg‐Johansen, Britta ; Fields, Aaron J. ; Liebenberg, Ellen C. ; Li, Alfred ; Lotz, Jeffrey C.</creator><creatorcontrib>Berg‐Johansen, Britta ; Fields, Aaron J. ; Liebenberg, Ellen C. ; Li, Alfred ; Lotz, Jeffrey C.</creatorcontrib><description>ABSTRACT
Damage at the intervertebral disc‐vertebra interface associates with back pain and disc herniation. However, the structural and biomechanical properties of the disc‐vertebra interface remain underexplored. We sought to measure mechanical properties and failure mechanisms, quantify architectural features, and assess structure‐function relationships at this vulnerable location. Vertebra‐disc‐vertebra specimens from human cadaver thoracic spines were scanned with micro‐computed tomography (μCT), surface speckle‐coated, and loaded to failure in uniaxial tension. Digital image correlation (DIC) was used to calculate local surface strains. Failure surfaces were scanned using scanning electron microscopy (SEM), and adjacent sagittal slices were analyzed with histology and SEM. Seventy‐one percent of specimens failed initially at the cartilage endplate‐bone interface of the inner annulus region. Histology and SEM both indicated a lack of structural integration between the cartilage endplate (CEP) and bone. The interface failure strength was increased in samples with higher trabecular bone volume fraction in the vertebral endplates. Furthermore, failure strength decreased with degeneration, and in discs with thicker CEPs. Our findings indicate that poor structural connectivity between the CEP and vertebra may explain the structural weakness at this region, and provide insight into structural features that may contribute to risk for disc‐vertebra interface injury. The disc‐vertebra interface is the site of failure in the majority of herniation injuries. Here we show new structure‐function relationships at this interface that may motivate the development of diagnostics, prevention strategies, and treatments to improve the prognosis for many low back pain patients with disc‐vertebra interface injuries. © 2017 The Authors. Journal of Orthopaedic Research® Published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society. J Orthop Res 36:192–201, 2018.</description><identifier>ISSN: 0736-0266</identifier><identifier>EISSN: 1554-527X</identifier><identifier>DOI: 10.1002/jor.23627</identifier><identifier>PMID: 28590060</identifier><language>eng</language><publisher>United States: John Wiley and Sons Inc</publisher><subject>Aged ; avulsion ; Biomechanical Phenomena ; Cartilage - anatomy & histology ; Cartilage - physiology ; cartilage endplate junction ; collagen ; disc herniation ; Female ; Humans ; intervertebral disc ; Intervertebral Disc - anatomy & histology ; Intervertebral Disc - physiology ; Intervertebral Disc Displacement - pathology ; Male ; Microscopy, Electrochemical, Scanning ; Middle Aged ; Thoracic Vertebrae - anatomy & histology ; Thoracic Vertebrae - physiology ; X-Ray Microtomography</subject><ispartof>Journal of orthopaedic research, 2018-01, Vol.36 (1), p.192-201</ispartof><rights>2017 The Authors. ® Published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society</rights><rights>2017 The Authors. Journal of Orthopaedic Research® Published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4157-d9495a21a8270c624ea3e0525e948bd6474eb1a065088a1cc89cfc5f3a8ddee63</citedby><cites>FETCH-LOGICAL-c4157-d9495a21a8270c624ea3e0525e948bd6474eb1a065088a1cc89cfc5f3a8ddee63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjor.23627$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjor.23627$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28590060$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Berg‐Johansen, Britta</creatorcontrib><creatorcontrib>Fields, Aaron J.</creatorcontrib><creatorcontrib>Liebenberg, Ellen C.</creatorcontrib><creatorcontrib>Li, Alfred</creatorcontrib><creatorcontrib>Lotz, Jeffrey C.</creatorcontrib><title>Structure‐function relationships at the human spinal disc‐vertebra interface</title><title>Journal of orthopaedic research</title><addtitle>J Orthop Res</addtitle><description>ABSTRACT
Damage at the intervertebral disc‐vertebra interface associates with back pain and disc herniation. However, the structural and biomechanical properties of the disc‐vertebra interface remain underexplored. We sought to measure mechanical properties and failure mechanisms, quantify architectural features, and assess structure‐function relationships at this vulnerable location. Vertebra‐disc‐vertebra specimens from human cadaver thoracic spines were scanned with micro‐computed tomography (μCT), surface speckle‐coated, and loaded to failure in uniaxial tension. Digital image correlation (DIC) was used to calculate local surface strains. Failure surfaces were scanned using scanning electron microscopy (SEM), and adjacent sagittal slices were analyzed with histology and SEM. Seventy‐one percent of specimens failed initially at the cartilage endplate‐bone interface of the inner annulus region. Histology and SEM both indicated a lack of structural integration between the cartilage endplate (CEP) and bone. The interface failure strength was increased in samples with higher trabecular bone volume fraction in the vertebral endplates. Furthermore, failure strength decreased with degeneration, and in discs with thicker CEPs. Our findings indicate that poor structural connectivity between the CEP and vertebra may explain the structural weakness at this region, and provide insight into structural features that may contribute to risk for disc‐vertebra interface injury. The disc‐vertebra interface is the site of failure in the majority of herniation injuries. Here we show new structure‐function relationships at this interface that may motivate the development of diagnostics, prevention strategies, and treatments to improve the prognosis for many low back pain patients with disc‐vertebra interface injuries. © 2017 The Authors. Journal of Orthopaedic Research® Published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society. J Orthop Res 36:192–201, 2018.</description><subject>Aged</subject><subject>avulsion</subject><subject>Biomechanical Phenomena</subject><subject>Cartilage - anatomy & histology</subject><subject>Cartilage - physiology</subject><subject>cartilage endplate junction</subject><subject>collagen</subject><subject>disc herniation</subject><subject>Female</subject><subject>Humans</subject><subject>intervertebral disc</subject><subject>Intervertebral Disc - anatomy & histology</subject><subject>Intervertebral Disc - physiology</subject><subject>Intervertebral Disc Displacement - pathology</subject><subject>Male</subject><subject>Microscopy, Electrochemical, Scanning</subject><subject>Middle Aged</subject><subject>Thoracic Vertebrae - anatomy & histology</subject><subject>Thoracic Vertebrae - physiology</subject><subject>X-Ray Microtomography</subject><issn>0736-0266</issn><issn>1554-527X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNp1kc-O0zAQhy0Eot3CgRdAOcIh7diJ7eSChKplF1RpEX8kbtbUmVBXaVJsp6g3HmGfkSchJaWCA6exNJ8_z_jH2DMOcw4gFtvOz0WmhH7AplzKPJVCf3nIpqAzlYJQasKuQtgCgOaieMwmopAlgIIpe_8x-t7G3tPPH_d139roujbx1ODpEDZuHxKMSdxQsul32CZh71psksoFO9w4kI-09pi4NpKv0dIT9qjGJtDTc52xz2-uPy1v09Xdzdvl61Vqcy51WpV5KVFwLIQGq0ROmBFIIanMi3Wlcp3TmiMoCUWB3NqitLWVdYZFVRGpbMZejd59v95RZamNHhuz926H_mg6dObfTus25mt3MFILKDMxCF6cBb771lOIZjfsRE2DLXV9MLwEDZBxnQ_oyxG1vgvBU315hoM5JWCGBMzvBAb2-d9zXcg_Xz4AixH47ho6_t9k3t19GJW_AG9RlI8</recordid><startdate>201801</startdate><enddate>201801</enddate><creator>Berg‐Johansen, Britta</creator><creator>Fields, Aaron J.</creator><creator>Liebenberg, Ellen C.</creator><creator>Li, Alfred</creator><creator>Lotz, Jeffrey C.</creator><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201801</creationdate><title>Structure‐function relationships at the human spinal disc‐vertebra interface</title><author>Berg‐Johansen, Britta ; Fields, Aaron J. ; Liebenberg, Ellen C. ; Li, Alfred ; Lotz, Jeffrey C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4157-d9495a21a8270c624ea3e0525e948bd6474eb1a065088a1cc89cfc5f3a8ddee63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aged</topic><topic>avulsion</topic><topic>Biomechanical Phenomena</topic><topic>Cartilage - anatomy & histology</topic><topic>Cartilage - physiology</topic><topic>cartilage endplate junction</topic><topic>collagen</topic><topic>disc herniation</topic><topic>Female</topic><topic>Humans</topic><topic>intervertebral disc</topic><topic>Intervertebral Disc - anatomy & histology</topic><topic>Intervertebral Disc - physiology</topic><topic>Intervertebral Disc Displacement - pathology</topic><topic>Male</topic><topic>Microscopy, Electrochemical, Scanning</topic><topic>Middle Aged</topic><topic>Thoracic Vertebrae - anatomy & histology</topic><topic>Thoracic Vertebrae - physiology</topic><topic>X-Ray Microtomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Berg‐Johansen, Britta</creatorcontrib><creatorcontrib>Fields, Aaron J.</creatorcontrib><creatorcontrib>Liebenberg, Ellen C.</creatorcontrib><creatorcontrib>Li, Alfred</creatorcontrib><creatorcontrib>Lotz, Jeffrey C.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of orthopaedic research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Berg‐Johansen, Britta</au><au>Fields, Aaron J.</au><au>Liebenberg, Ellen C.</au><au>Li, Alfred</au><au>Lotz, Jeffrey C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure‐function relationships at the human spinal disc‐vertebra interface</atitle><jtitle>Journal of orthopaedic research</jtitle><addtitle>J Orthop Res</addtitle><date>2018-01</date><risdate>2018</risdate><volume>36</volume><issue>1</issue><spage>192</spage><epage>201</epage><pages>192-201</pages><issn>0736-0266</issn><eissn>1554-527X</eissn><abstract>ABSTRACT
Damage at the intervertebral disc‐vertebra interface associates with back pain and disc herniation. However, the structural and biomechanical properties of the disc‐vertebra interface remain underexplored. We sought to measure mechanical properties and failure mechanisms, quantify architectural features, and assess structure‐function relationships at this vulnerable location. Vertebra‐disc‐vertebra specimens from human cadaver thoracic spines were scanned with micro‐computed tomography (μCT), surface speckle‐coated, and loaded to failure in uniaxial tension. Digital image correlation (DIC) was used to calculate local surface strains. Failure surfaces were scanned using scanning electron microscopy (SEM), and adjacent sagittal slices were analyzed with histology and SEM. Seventy‐one percent of specimens failed initially at the cartilage endplate‐bone interface of the inner annulus region. Histology and SEM both indicated a lack of structural integration between the cartilage endplate (CEP) and bone. The interface failure strength was increased in samples with higher trabecular bone volume fraction in the vertebral endplates. Furthermore, failure strength decreased with degeneration, and in discs with thicker CEPs. Our findings indicate that poor structural connectivity between the CEP and vertebra may explain the structural weakness at this region, and provide insight into structural features that may contribute to risk for disc‐vertebra interface injury. The disc‐vertebra interface is the site of failure in the majority of herniation injuries. Here we show new structure‐function relationships at this interface that may motivate the development of diagnostics, prevention strategies, and treatments to improve the prognosis for many low back pain patients with disc‐vertebra interface injuries. © 2017 The Authors. Journal of Orthopaedic Research® Published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society. J Orthop Res 36:192–201, 2018.</abstract><cop>United States</cop><pub>John Wiley and Sons Inc</pub><pmid>28590060</pmid><doi>10.1002/jor.23627</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0736-0266 |
ispartof | Journal of orthopaedic research, 2018-01, Vol.36 (1), p.192-201 |
issn | 0736-0266 1554-527X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5720932 |
source | Wiley Free Content; MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Aged avulsion Biomechanical Phenomena Cartilage - anatomy & histology Cartilage - physiology cartilage endplate junction collagen disc herniation Female Humans intervertebral disc Intervertebral Disc - anatomy & histology Intervertebral Disc - physiology Intervertebral Disc Displacement - pathology Male Microscopy, Electrochemical, Scanning Middle Aged Thoracic Vertebrae - anatomy & histology Thoracic Vertebrae - physiology X-Ray Microtomography |
title | Structure‐function relationships at the human spinal disc‐vertebra interface |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T21%3A00%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%E2%80%90function%20relationships%20at%20the%20human%20spinal%20disc%E2%80%90vertebra%20interface&rft.jtitle=Journal%20of%20orthopaedic%20research&rft.au=Berg%E2%80%90Johansen,%20Britta&rft.date=2018-01&rft.volume=36&rft.issue=1&rft.spage=192&rft.epage=201&rft.pages=192-201&rft.issn=0736-0266&rft.eissn=1554-527X&rft_id=info:doi/10.1002/jor.23627&rft_dat=%3Cproquest_pubme%3E1907003174%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1907003174&rft_id=info:pmid/28590060&rfr_iscdi=true |