Collective Behavior of Place and Non-place Neurons in the Hippocampal Network
Discussions of the hippocampus often focus on place cells, but many neurons are not place cells in any given environment. Here we describe the collective activity in such mixed populations, treating place and non-place cells on the same footing. We start with optical imaging experiments on CA1 in mi...
Gespeichert in:
Veröffentlicht in: | Neuron (Cambridge, Mass.) Mass.), 2017-12, Vol.96 (5), p.1178-1191.e4 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1191.e4 |
---|---|
container_issue | 5 |
container_start_page | 1178 |
container_title | Neuron (Cambridge, Mass.) |
container_volume | 96 |
creator | Meshulam, Leenoy Gauthier, Jeffrey L. Brody, Carlos D. Tank, David W. Bialek, William |
description | Discussions of the hippocampus often focus on place cells, but many neurons are not place cells in any given environment. Here we describe the collective activity in such mixed populations, treating place and non-place cells on the same footing. We start with optical imaging experiments on CA1 in mice as they run along a virtual linear track and use maximum entropy methods to approximate the distribution of patterns of activity in the population, matching the correlations between pairs of cells but otherwise assuming as little structure as possible. We find that these simple models accurately predict the activity of each neuron from the state of all the other neurons in the network, regardless of how well that neuron codes for position. Our results suggest that understanding the neural activity may require not only knowledge of the external variables modulating it but also of the internal network state.
•A successful unified theoretical framework for population states•Maximum entropy model predictions have high precision agreement with data•Network interactions explain a substantial amount of population activity in CA1•Place cells and non-place cells encode information collectively
Correlation patterns in CA1 hippocampus only partially arise from place encoding. Meshulam et al. utilize a population-level modeling approach to uncover collective patterns of activity in CA1 neurons that substantially reflect not only position but also their internal network state. |
doi_str_mv | 10.1016/j.neuron.2017.10.027 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5720931</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0896627317309960</els_id><sourcerecordid>1966461265</sourcerecordid><originalsourceid>FETCH-LOGICAL-c557t-5b68557868bbff482602ea73b95690a44a9f742af4ab49a8e45d1033253fae213</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhq2Kqt0W_kGFInHhksV2_BFfkGBFKVK_DnC2HGfCepu1g50s6r-vd7cthQMn2zPPvDPjF6EzgucEE_FhNfcwxeDnFBOZQ3NM5QGaEaxkyYhSr9AM10qUgsrqGJ2ktMKYMK7IETqminBGqJqhq0Xoe7Cj20DxGZZm40IsQlfc9sZCYXxbXAdfDrvX9a5fKpwvxiUUF24YgjXrwfQ5Nf4O8e41OuxMn-DN43mKfpx_-b64KC9vvn5bfLosLedyLHkj6nypRd00XcdqKjAFI6tGcaGwYcyoTjJqOmYapkwNjLcEVxXlVWeAkuoUfdzrDlOzhtaCH6Pp9RDd2sR7HYzTf2e8W-qfYaO5pFhVW4H3jwIx_JogjXrtkoW-Nx7ClDRRQjBBqOAZffcPugpT9Hm9TEmhaMZkptiesjGkFKF7HoZgvfVLr_TeL731axvFu7K3Lxd5Lnoy6M-mkL9z4yDqZB14C62L2TbdBvf_Dg8GdKg0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1976926127</pqid></control><display><type>article</type><title>Collective Behavior of Place and Non-place Neurons in the Hippocampal Network</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><source>Cell Press Free Archives</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Meshulam, Leenoy ; Gauthier, Jeffrey L. ; Brody, Carlos D. ; Tank, David W. ; Bialek, William</creator><creatorcontrib>Meshulam, Leenoy ; Gauthier, Jeffrey L. ; Brody, Carlos D. ; Tank, David W. ; Bialek, William</creatorcontrib><description>Discussions of the hippocampus often focus on place cells, but many neurons are not place cells in any given environment. Here we describe the collective activity in such mixed populations, treating place and non-place cells on the same footing. We start with optical imaging experiments on CA1 in mice as they run along a virtual linear track and use maximum entropy methods to approximate the distribution of patterns of activity in the population, matching the correlations between pairs of cells but otherwise assuming as little structure as possible. We find that these simple models accurately predict the activity of each neuron from the state of all the other neurons in the network, regardless of how well that neuron codes for position. Our results suggest that understanding the neural activity may require not only knowledge of the external variables modulating it but also of the internal network state.
•A successful unified theoretical framework for population states•Maximum entropy model predictions have high precision agreement with data•Network interactions explain a substantial amount of population activity in CA1•Place cells and non-place cells encode information collectively
Correlation patterns in CA1 hippocampus only partially arise from place encoding. Meshulam et al. utilize a population-level modeling approach to uncover collective patterns of activity in CA1 neurons that substantially reflect not only position but also their internal network state.</description><identifier>ISSN: 0896-6273</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/j.neuron.2017.10.027</identifier><identifier>PMID: 29154129</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Action Potentials ; Algorithms ; Animal models ; Animals ; CA1 Region, Hippocampal - cytology ; CA1 Region, Hippocampal - physiology ; Cognitive models ; collective phenomena ; Entropy ; Hippocampus ; Hippocampus - cytology ; Hippocampus - physiology ; Male ; maximum entropy ; Memory ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Models, Neurological ; Nerve Net - cytology ; Nerve Net - physiology ; Neurons ; Neurons - physiology ; pairwise correlations ; Phenomenology ; Photic Stimulation ; place cells ; Population ; Rodents ; Space Perception - physiology ; Studies ; User-Computer Interface ; Virtual reality</subject><ispartof>Neuron (Cambridge, Mass.), 2017-12, Vol.96 (5), p.1178-1191.e4</ispartof><rights>2017 Elsevier Inc.</rights><rights>Copyright © 2017 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Dec 6, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c557t-5b68557868bbff482602ea73b95690a44a9f742af4ab49a8e45d1033253fae213</citedby><cites>FETCH-LOGICAL-c557t-5b68557868bbff482602ea73b95690a44a9f742af4ab49a8e45d1033253fae213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0896627317309960$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29154129$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Meshulam, Leenoy</creatorcontrib><creatorcontrib>Gauthier, Jeffrey L.</creatorcontrib><creatorcontrib>Brody, Carlos D.</creatorcontrib><creatorcontrib>Tank, David W.</creatorcontrib><creatorcontrib>Bialek, William</creatorcontrib><title>Collective Behavior of Place and Non-place Neurons in the Hippocampal Network</title><title>Neuron (Cambridge, Mass.)</title><addtitle>Neuron</addtitle><description>Discussions of the hippocampus often focus on place cells, but many neurons are not place cells in any given environment. Here we describe the collective activity in such mixed populations, treating place and non-place cells on the same footing. We start with optical imaging experiments on CA1 in mice as they run along a virtual linear track and use maximum entropy methods to approximate the distribution of patterns of activity in the population, matching the correlations between pairs of cells but otherwise assuming as little structure as possible. We find that these simple models accurately predict the activity of each neuron from the state of all the other neurons in the network, regardless of how well that neuron codes for position. Our results suggest that understanding the neural activity may require not only knowledge of the external variables modulating it but also of the internal network state.
•A successful unified theoretical framework for population states•Maximum entropy model predictions have high precision agreement with data•Network interactions explain a substantial amount of population activity in CA1•Place cells and non-place cells encode information collectively
Correlation patterns in CA1 hippocampus only partially arise from place encoding. Meshulam et al. utilize a population-level modeling approach to uncover collective patterns of activity in CA1 neurons that substantially reflect not only position but also their internal network state.</description><subject>Action Potentials</subject><subject>Algorithms</subject><subject>Animal models</subject><subject>Animals</subject><subject>CA1 Region, Hippocampal - cytology</subject><subject>CA1 Region, Hippocampal - physiology</subject><subject>Cognitive models</subject><subject>collective phenomena</subject><subject>Entropy</subject><subject>Hippocampus</subject><subject>Hippocampus - cytology</subject><subject>Hippocampus - physiology</subject><subject>Male</subject><subject>maximum entropy</subject><subject>Memory</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Transgenic</subject><subject>Models, Neurological</subject><subject>Nerve Net - cytology</subject><subject>Nerve Net - physiology</subject><subject>Neurons</subject><subject>Neurons - physiology</subject><subject>pairwise correlations</subject><subject>Phenomenology</subject><subject>Photic Stimulation</subject><subject>place cells</subject><subject>Population</subject><subject>Rodents</subject><subject>Space Perception - physiology</subject><subject>Studies</subject><subject>User-Computer Interface</subject><subject>Virtual reality</subject><issn>0896-6273</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU1v1DAQhq2Kqt0W_kGFInHhksV2_BFfkGBFKVK_DnC2HGfCepu1g50s6r-vd7cthQMn2zPPvDPjF6EzgucEE_FhNfcwxeDnFBOZQ3NM5QGaEaxkyYhSr9AM10qUgsrqGJ2ktMKYMK7IETqminBGqJqhq0Xoe7Cj20DxGZZm40IsQlfc9sZCYXxbXAdfDrvX9a5fKpwvxiUUF24YgjXrwfQ5Nf4O8e41OuxMn-DN43mKfpx_-b64KC9vvn5bfLosLedyLHkj6nypRd00XcdqKjAFI6tGcaGwYcyoTjJqOmYapkwNjLcEVxXlVWeAkuoUfdzrDlOzhtaCH6Pp9RDd2sR7HYzTf2e8W-qfYaO5pFhVW4H3jwIx_JogjXrtkoW-Nx7ClDRRQjBBqOAZffcPugpT9Hm9TEmhaMZkptiesjGkFKF7HoZgvfVLr_TeL731axvFu7K3Lxd5Lnoy6M-mkL9z4yDqZB14C62L2TbdBvf_Dg8GdKg0</recordid><startdate>20171206</startdate><enddate>20171206</enddate><creator>Meshulam, Leenoy</creator><creator>Gauthier, Jeffrey L.</creator><creator>Brody, Carlos D.</creator><creator>Tank, David W.</creator><creator>Bialek, William</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20171206</creationdate><title>Collective Behavior of Place and Non-place Neurons in the Hippocampal Network</title><author>Meshulam, Leenoy ; Gauthier, Jeffrey L. ; Brody, Carlos D. ; Tank, David W. ; Bialek, William</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c557t-5b68557868bbff482602ea73b95690a44a9f742af4ab49a8e45d1033253fae213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Action Potentials</topic><topic>Algorithms</topic><topic>Animal models</topic><topic>Animals</topic><topic>CA1 Region, Hippocampal - cytology</topic><topic>CA1 Region, Hippocampal - physiology</topic><topic>Cognitive models</topic><topic>collective phenomena</topic><topic>Entropy</topic><topic>Hippocampus</topic><topic>Hippocampus - cytology</topic><topic>Hippocampus - physiology</topic><topic>Male</topic><topic>maximum entropy</topic><topic>Memory</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Transgenic</topic><topic>Models, Neurological</topic><topic>Nerve Net - cytology</topic><topic>Nerve Net - physiology</topic><topic>Neurons</topic><topic>Neurons - physiology</topic><topic>pairwise correlations</topic><topic>Phenomenology</topic><topic>Photic Stimulation</topic><topic>place cells</topic><topic>Population</topic><topic>Rodents</topic><topic>Space Perception - physiology</topic><topic>Studies</topic><topic>User-Computer Interface</topic><topic>Virtual reality</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meshulam, Leenoy</creatorcontrib><creatorcontrib>Gauthier, Jeffrey L.</creatorcontrib><creatorcontrib>Brody, Carlos D.</creatorcontrib><creatorcontrib>Tank, David W.</creatorcontrib><creatorcontrib>Bialek, William</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meshulam, Leenoy</au><au>Gauthier, Jeffrey L.</au><au>Brody, Carlos D.</au><au>Tank, David W.</au><au>Bialek, William</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Collective Behavior of Place and Non-place Neurons in the Hippocampal Network</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><addtitle>Neuron</addtitle><date>2017-12-06</date><risdate>2017</risdate><volume>96</volume><issue>5</issue><spage>1178</spage><epage>1191.e4</epage><pages>1178-1191.e4</pages><issn>0896-6273</issn><eissn>1097-4199</eissn><abstract>Discussions of the hippocampus often focus on place cells, but many neurons are not place cells in any given environment. Here we describe the collective activity in such mixed populations, treating place and non-place cells on the same footing. We start with optical imaging experiments on CA1 in mice as they run along a virtual linear track and use maximum entropy methods to approximate the distribution of patterns of activity in the population, matching the correlations between pairs of cells but otherwise assuming as little structure as possible. We find that these simple models accurately predict the activity of each neuron from the state of all the other neurons in the network, regardless of how well that neuron codes for position. Our results suggest that understanding the neural activity may require not only knowledge of the external variables modulating it but also of the internal network state.
•A successful unified theoretical framework for population states•Maximum entropy model predictions have high precision agreement with data•Network interactions explain a substantial amount of population activity in CA1•Place cells and non-place cells encode information collectively
Correlation patterns in CA1 hippocampus only partially arise from place encoding. Meshulam et al. utilize a population-level modeling approach to uncover collective patterns of activity in CA1 neurons that substantially reflect not only position but also their internal network state.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>29154129</pmid><doi>10.1016/j.neuron.2017.10.027</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0896-6273 |
ispartof | Neuron (Cambridge, Mass.), 2017-12, Vol.96 (5), p.1178-1191.e4 |
issn | 0896-6273 1097-4199 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5720931 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete; Cell Press Free Archives; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Action Potentials Algorithms Animal models Animals CA1 Region, Hippocampal - cytology CA1 Region, Hippocampal - physiology Cognitive models collective phenomena Entropy Hippocampus Hippocampus - cytology Hippocampus - physiology Male maximum entropy Memory Mice Mice, Inbred C57BL Mice, Transgenic Models, Neurological Nerve Net - cytology Nerve Net - physiology Neurons Neurons - physiology pairwise correlations Phenomenology Photic Stimulation place cells Population Rodents Space Perception - physiology Studies User-Computer Interface Virtual reality |
title | Collective Behavior of Place and Non-place Neurons in the Hippocampal Network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T22%3A40%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Collective%20Behavior%20of%20Place%20and%20Non-place%20Neurons%20in%20the%20Hippocampal%20Network&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=Meshulam,%20Leenoy&rft.date=2017-12-06&rft.volume=96&rft.issue=5&rft.spage=1178&rft.epage=1191.e4&rft.pages=1178-1191.e4&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/j.neuron.2017.10.027&rft_dat=%3Cproquest_pubme%3E1966461265%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1976926127&rft_id=info:pmid/29154129&rft_els_id=S0896627317309960&rfr_iscdi=true |