Engineering an aldehyde dehydrogenase toward its substrates, 3-hydroxypropanal and NAD+, for enhancing the production of 3-hydroxypropionic acid
3-Hydroxypropionic acid (3-HP) can be produced via the biological route involving two enzymatic reactions: dehydration of glycerol to 3-hydroxypropanal (3-HPA) and then oxidation to 3-HP. However, commercial production of 3-HP using recombinant microorganisms has been hampered with several problems,...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2017-12, Vol.7 (1), p.17155-12, Article 17155 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12 |
---|---|
container_issue | 1 |
container_start_page | 17155 |
container_title | Scientific reports |
container_volume | 7 |
creator | Park, Ye Seop Choi, Un Jong Nam, Nguyen Hoai Choi, Sang Jin Nasir, Abdul Lee, Sun-Gu Kim, Kyung Jin Jung, Gyoo Yeol Choi, Sangdun Shim, Jeung Yeop Park, Sunghoon Yoo, Tae Hyeon |
description | 3-Hydroxypropionic acid (3-HP) can be produced via the biological route involving two enzymatic reactions: dehydration of glycerol to 3-hydroxypropanal (3-HPA) and then oxidation to 3-HP. However, commercial production of 3-HP using recombinant microorganisms has been hampered with several problems, some of which are associated with the toxicity of 3-HPA and the efficiency of NAD
+
regeneration. We engineered α-ketoglutaric semialdehyde dehydrogenase (KGSADH) from
Azospirillum brasilense
for the second reaction to address these issues. The residues in the binding sites for the substrates, 3-HPA and NAD
+
, were randomized, and the resulting libraries were screened for higher activity. Isolated KGSADH variants had significantly lower K
m
values for both the substrates. The enzymes also showed higher substrate specificities for aldehyde and NAD
+
, less inhibition by NADH, and greater resistance to inactivation by 3-HPA than the wild-type enzyme. A recombinant
Pseudomonas denitrificans
strain with one of the engineered KGSADH variants exhibited less accumulation of 3-HPA, decreased levels of inactivation of the enzymes, and higher cell growth than that with the wild-type KGSADH. The flask culture of the
P. denitrificans
strain with the mutant KGSADH resulted in about 40% increase of 3-HP titer (53 mM) compared with that using the wild-type enzyme (37 mM). |
doi_str_mv | 10.1038/s41598-017-15400-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5719400</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1983418355</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-82551d2f9bcf17a83d84a1d7b312d307be01144aeea1e9d9e22e585041508cea3</originalsourceid><addsrcrecordid>eNp1UctuFDEQtBCIRCE_wAFZ4kiGuP3QjC9IURIeUhQucLY8ds-uo4092DOw-xf5ZLy7Idoc8KWtdlW1u4qQt8A-AhPdeZGgdNcwaBtQkrFm_YIccyZVwwXnLw_uR-S0lDtWj-Jagn5NjrjmILXWx-ThOi5CRMwhLqiN1K48Ljce6a7ktMBoC9Ip_bHZ0zAVWua-TNlOWM6oaHag9WbMabTRrqqEp7cXVx_O6JAyxbi00W2lpyXSCvKzm0KKNA3PubUXHLUu-Dfk1WBXBU8f6wn5-fn6x-XX5ub7l2-XFzeNq9tOTceVAs8H3bsBWtsJ30kLvu0FcC9Y2yMDkNIiWkDtNXKOqlOsusY6h1ackE973XHu79E7jHWplRlzuLd5Y5IN5vlLDEuzSL-NakFXv6vA-0eBnH7NWCZzl-ZcPSgGdCckdEKpiuJ7lMuplIzD0wRgZhuk2QdpapBmF6RZV9K7w789Uf7FVgFiDyjjNjjMB7P_L_sX9F6tAA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1983418355</pqid></control><display><type>article</type><title>Engineering an aldehyde dehydrogenase toward its substrates, 3-hydroxypropanal and NAD+, for enhancing the production of 3-hydroxypropionic acid</title><source>MEDLINE</source><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature OA Free Journals</source><creator>Park, Ye Seop ; Choi, Un Jong ; Nam, Nguyen Hoai ; Choi, Sang Jin ; Nasir, Abdul ; Lee, Sun-Gu ; Kim, Kyung Jin ; Jung, Gyoo Yeol ; Choi, Sangdun ; Shim, Jeung Yeop ; Park, Sunghoon ; Yoo, Tae Hyeon</creator><creatorcontrib>Park, Ye Seop ; Choi, Un Jong ; Nam, Nguyen Hoai ; Choi, Sang Jin ; Nasir, Abdul ; Lee, Sun-Gu ; Kim, Kyung Jin ; Jung, Gyoo Yeol ; Choi, Sangdun ; Shim, Jeung Yeop ; Park, Sunghoon ; Yoo, Tae Hyeon</creatorcontrib><description>3-Hydroxypropionic acid (3-HP) can be produced via the biological route involving two enzymatic reactions: dehydration of glycerol to 3-hydroxypropanal (3-HPA) and then oxidation to 3-HP. However, commercial production of 3-HP using recombinant microorganisms has been hampered with several problems, some of which are associated with the toxicity of 3-HPA and the efficiency of NAD
+
regeneration. We engineered α-ketoglutaric semialdehyde dehydrogenase (KGSADH) from
Azospirillum brasilense
for the second reaction to address these issues. The residues in the binding sites for the substrates, 3-HPA and NAD
+
, were randomized, and the resulting libraries were screened for higher activity. Isolated KGSADH variants had significantly lower K
m
values for both the substrates. The enzymes also showed higher substrate specificities for aldehyde and NAD
+
, less inhibition by NADH, and greater resistance to inactivation by 3-HPA than the wild-type enzyme. A recombinant
Pseudomonas denitrificans
strain with one of the engineered KGSADH variants exhibited less accumulation of 3-HPA, decreased levels of inactivation of the enzymes, and higher cell growth than that with the wild-type KGSADH. The flask culture of the
P. denitrificans
strain with the mutant KGSADH resulted in about 40% increase of 3-HP titer (53 mM) compared with that using the wild-type enzyme (37 mM).</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-017-15400-x</identifier><identifier>PMID: 29214999</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>3-Hydroxypropionaldehyde ; 42/70 ; 631/45/603 ; 631/61/318 ; 82/47 ; 82/80 ; 82/83 ; Aldehyde dehydrogenase ; Aldehyde Oxidoreductases - chemistry ; Aldehyde Oxidoreductases - metabolism ; Azospirillum brasilense - enzymology ; Bacterial Proteins - metabolism ; Binding sites ; Cell culture ; Dehydration ; Dehydrogenase ; Dehydrogenases ; Enzymes ; Glyceraldehyde - analogs & derivatives ; Glyceraldehyde - metabolism ; Glycerol ; Glycerol - metabolism ; Humanities and Social Sciences ; Inactivation ; Ketoglutaric acid ; Lactic Acid - analogs & derivatives ; Lactic Acid - metabolism ; Microorganisms ; multidisciplinary ; NAD ; NAD - metabolism ; NADH ; Oxidation ; Propane - metabolism ; Protein Conformation ; Protein Engineering - methods ; Science ; Science (multidisciplinary) ; Substrate Specificity ; Substrates ; Toxicity</subject><ispartof>Scientific reports, 2017-12, Vol.7 (1), p.17155-12, Article 17155</ispartof><rights>The Author(s) 2017</rights><rights>2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-82551d2f9bcf17a83d84a1d7b312d307be01144aeea1e9d9e22e585041508cea3</citedby><cites>FETCH-LOGICAL-c540t-82551d2f9bcf17a83d84a1d7b312d307be01144aeea1e9d9e22e585041508cea3</cites><orcidid>0000-0002-2339-3500</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5719400/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5719400/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29214999$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Park, Ye Seop</creatorcontrib><creatorcontrib>Choi, Un Jong</creatorcontrib><creatorcontrib>Nam, Nguyen Hoai</creatorcontrib><creatorcontrib>Choi, Sang Jin</creatorcontrib><creatorcontrib>Nasir, Abdul</creatorcontrib><creatorcontrib>Lee, Sun-Gu</creatorcontrib><creatorcontrib>Kim, Kyung Jin</creatorcontrib><creatorcontrib>Jung, Gyoo Yeol</creatorcontrib><creatorcontrib>Choi, Sangdun</creatorcontrib><creatorcontrib>Shim, Jeung Yeop</creatorcontrib><creatorcontrib>Park, Sunghoon</creatorcontrib><creatorcontrib>Yoo, Tae Hyeon</creatorcontrib><title>Engineering an aldehyde dehydrogenase toward its substrates, 3-hydroxypropanal and NAD+, for enhancing the production of 3-hydroxypropionic acid</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>3-Hydroxypropionic acid (3-HP) can be produced via the biological route involving two enzymatic reactions: dehydration of glycerol to 3-hydroxypropanal (3-HPA) and then oxidation to 3-HP. However, commercial production of 3-HP using recombinant microorganisms has been hampered with several problems, some of which are associated with the toxicity of 3-HPA and the efficiency of NAD
+
regeneration. We engineered α-ketoglutaric semialdehyde dehydrogenase (KGSADH) from
Azospirillum brasilense
for the second reaction to address these issues. The residues in the binding sites for the substrates, 3-HPA and NAD
+
, were randomized, and the resulting libraries were screened for higher activity. Isolated KGSADH variants had significantly lower K
m
values for both the substrates. The enzymes also showed higher substrate specificities for aldehyde and NAD
+
, less inhibition by NADH, and greater resistance to inactivation by 3-HPA than the wild-type enzyme. A recombinant
Pseudomonas denitrificans
strain with one of the engineered KGSADH variants exhibited less accumulation of 3-HPA, decreased levels of inactivation of the enzymes, and higher cell growth than that with the wild-type KGSADH. The flask culture of the
P. denitrificans
strain with the mutant KGSADH resulted in about 40% increase of 3-HP titer (53 mM) compared with that using the wild-type enzyme (37 mM).</description><subject>3-Hydroxypropionaldehyde</subject><subject>42/70</subject><subject>631/45/603</subject><subject>631/61/318</subject><subject>82/47</subject><subject>82/80</subject><subject>82/83</subject><subject>Aldehyde dehydrogenase</subject><subject>Aldehyde Oxidoreductases - chemistry</subject><subject>Aldehyde Oxidoreductases - metabolism</subject><subject>Azospirillum brasilense - enzymology</subject><subject>Bacterial Proteins - metabolism</subject><subject>Binding sites</subject><subject>Cell culture</subject><subject>Dehydration</subject><subject>Dehydrogenase</subject><subject>Dehydrogenases</subject><subject>Enzymes</subject><subject>Glyceraldehyde - analogs & derivatives</subject><subject>Glyceraldehyde - metabolism</subject><subject>Glycerol</subject><subject>Glycerol - metabolism</subject><subject>Humanities and Social Sciences</subject><subject>Inactivation</subject><subject>Ketoglutaric acid</subject><subject>Lactic Acid - analogs & derivatives</subject><subject>Lactic Acid - metabolism</subject><subject>Microorganisms</subject><subject>multidisciplinary</subject><subject>NAD</subject><subject>NAD - metabolism</subject><subject>NADH</subject><subject>Oxidation</subject><subject>Propane - metabolism</subject><subject>Protein Conformation</subject><subject>Protein Engineering - methods</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Substrate Specificity</subject><subject>Substrates</subject><subject>Toxicity</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1UctuFDEQtBCIRCE_wAFZ4kiGuP3QjC9IURIeUhQucLY8ds-uo4092DOw-xf5ZLy7Idoc8KWtdlW1u4qQt8A-AhPdeZGgdNcwaBtQkrFm_YIccyZVwwXnLw_uR-S0lDtWj-Jagn5NjrjmILXWx-ThOi5CRMwhLqiN1K48Ljce6a7ktMBoC9Ip_bHZ0zAVWua-TNlOWM6oaHag9WbMabTRrqqEp7cXVx_O6JAyxbi00W2lpyXSCvKzm0KKNA3PubUXHLUu-Dfk1WBXBU8f6wn5-fn6x-XX5ub7l2-XFzeNq9tOTceVAs8H3bsBWtsJ30kLvu0FcC9Y2yMDkNIiWkDtNXKOqlOsusY6h1ackE973XHu79E7jHWplRlzuLd5Y5IN5vlLDEuzSL-NakFXv6vA-0eBnH7NWCZzl-ZcPSgGdCckdEKpiuJ7lMuplIzD0wRgZhuk2QdpapBmF6RZV9K7w789Uf7FVgFiDyjjNjjMB7P_L_sX9F6tAA</recordid><startdate>20171207</startdate><enddate>20171207</enddate><creator>Park, Ye Seop</creator><creator>Choi, Un Jong</creator><creator>Nam, Nguyen Hoai</creator><creator>Choi, Sang Jin</creator><creator>Nasir, Abdul</creator><creator>Lee, Sun-Gu</creator><creator>Kim, Kyung Jin</creator><creator>Jung, Gyoo Yeol</creator><creator>Choi, Sangdun</creator><creator>Shim, Jeung Yeop</creator><creator>Park, Sunghoon</creator><creator>Yoo, Tae Hyeon</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2339-3500</orcidid></search><sort><creationdate>20171207</creationdate><title>Engineering an aldehyde dehydrogenase toward its substrates, 3-hydroxypropanal and NAD+, for enhancing the production of 3-hydroxypropionic acid</title><author>Park, Ye Seop ; Choi, Un Jong ; Nam, Nguyen Hoai ; Choi, Sang Jin ; Nasir, Abdul ; Lee, Sun-Gu ; Kim, Kyung Jin ; Jung, Gyoo Yeol ; Choi, Sangdun ; Shim, Jeung Yeop ; Park, Sunghoon ; Yoo, Tae Hyeon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-82551d2f9bcf17a83d84a1d7b312d307be01144aeea1e9d9e22e585041508cea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>3-Hydroxypropionaldehyde</topic><topic>42/70</topic><topic>631/45/603</topic><topic>631/61/318</topic><topic>82/47</topic><topic>82/80</topic><topic>82/83</topic><topic>Aldehyde dehydrogenase</topic><topic>Aldehyde Oxidoreductases - chemistry</topic><topic>Aldehyde Oxidoreductases - metabolism</topic><topic>Azospirillum brasilense - enzymology</topic><topic>Bacterial Proteins - metabolism</topic><topic>Binding sites</topic><topic>Cell culture</topic><topic>Dehydration</topic><topic>Dehydrogenase</topic><topic>Dehydrogenases</topic><topic>Enzymes</topic><topic>Glyceraldehyde - analogs & derivatives</topic><topic>Glyceraldehyde - metabolism</topic><topic>Glycerol</topic><topic>Glycerol - metabolism</topic><topic>Humanities and Social Sciences</topic><topic>Inactivation</topic><topic>Ketoglutaric acid</topic><topic>Lactic Acid - analogs & derivatives</topic><topic>Lactic Acid - metabolism</topic><topic>Microorganisms</topic><topic>multidisciplinary</topic><topic>NAD</topic><topic>NAD - metabolism</topic><topic>NADH</topic><topic>Oxidation</topic><topic>Propane - metabolism</topic><topic>Protein Conformation</topic><topic>Protein Engineering - methods</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Substrate Specificity</topic><topic>Substrates</topic><topic>Toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Ye Seop</creatorcontrib><creatorcontrib>Choi, Un Jong</creatorcontrib><creatorcontrib>Nam, Nguyen Hoai</creatorcontrib><creatorcontrib>Choi, Sang Jin</creatorcontrib><creatorcontrib>Nasir, Abdul</creatorcontrib><creatorcontrib>Lee, Sun-Gu</creatorcontrib><creatorcontrib>Kim, Kyung Jin</creatorcontrib><creatorcontrib>Jung, Gyoo Yeol</creatorcontrib><creatorcontrib>Choi, Sangdun</creatorcontrib><creatorcontrib>Shim, Jeung Yeop</creatorcontrib><creatorcontrib>Park, Sunghoon</creatorcontrib><creatorcontrib>Yoo, Tae Hyeon</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Ye Seop</au><au>Choi, Un Jong</au><au>Nam, Nguyen Hoai</au><au>Choi, Sang Jin</au><au>Nasir, Abdul</au><au>Lee, Sun-Gu</au><au>Kim, Kyung Jin</au><au>Jung, Gyoo Yeol</au><au>Choi, Sangdun</au><au>Shim, Jeung Yeop</au><au>Park, Sunghoon</au><au>Yoo, Tae Hyeon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering an aldehyde dehydrogenase toward its substrates, 3-hydroxypropanal and NAD+, for enhancing the production of 3-hydroxypropionic acid</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2017-12-07</date><risdate>2017</risdate><volume>7</volume><issue>1</issue><spage>17155</spage><epage>12</epage><pages>17155-12</pages><artnum>17155</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>3-Hydroxypropionic acid (3-HP) can be produced via the biological route involving two enzymatic reactions: dehydration of glycerol to 3-hydroxypropanal (3-HPA) and then oxidation to 3-HP. However, commercial production of 3-HP using recombinant microorganisms has been hampered with several problems, some of which are associated with the toxicity of 3-HPA and the efficiency of NAD
+
regeneration. We engineered α-ketoglutaric semialdehyde dehydrogenase (KGSADH) from
Azospirillum brasilense
for the second reaction to address these issues. The residues in the binding sites for the substrates, 3-HPA and NAD
+
, were randomized, and the resulting libraries were screened for higher activity. Isolated KGSADH variants had significantly lower K
m
values for both the substrates. The enzymes also showed higher substrate specificities for aldehyde and NAD
+
, less inhibition by NADH, and greater resistance to inactivation by 3-HPA than the wild-type enzyme. A recombinant
Pseudomonas denitrificans
strain with one of the engineered KGSADH variants exhibited less accumulation of 3-HPA, decreased levels of inactivation of the enzymes, and higher cell growth than that with the wild-type KGSADH. The flask culture of the
P. denitrificans
strain with the mutant KGSADH resulted in about 40% increase of 3-HP titer (53 mM) compared with that using the wild-type enzyme (37 mM).</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>29214999</pmid><doi>10.1038/s41598-017-15400-x</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-2339-3500</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2017-12, Vol.7 (1), p.17155-12, Article 17155 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5719400 |
source | MEDLINE; Nature Free; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; Springer Nature OA Free Journals |
subjects | 3-Hydroxypropionaldehyde 42/70 631/45/603 631/61/318 82/47 82/80 82/83 Aldehyde dehydrogenase Aldehyde Oxidoreductases - chemistry Aldehyde Oxidoreductases - metabolism Azospirillum brasilense - enzymology Bacterial Proteins - metabolism Binding sites Cell culture Dehydration Dehydrogenase Dehydrogenases Enzymes Glyceraldehyde - analogs & derivatives Glyceraldehyde - metabolism Glycerol Glycerol - metabolism Humanities and Social Sciences Inactivation Ketoglutaric acid Lactic Acid - analogs & derivatives Lactic Acid - metabolism Microorganisms multidisciplinary NAD NAD - metabolism NADH Oxidation Propane - metabolism Protein Conformation Protein Engineering - methods Science Science (multidisciplinary) Substrate Specificity Substrates Toxicity |
title | Engineering an aldehyde dehydrogenase toward its substrates, 3-hydroxypropanal and NAD+, for enhancing the production of 3-hydroxypropionic acid |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T16%3A23%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20an%20aldehyde%20dehydrogenase%20toward%20its%20substrates,%203-hydroxypropanal%20and%20NAD+,%20for%20enhancing%20the%20production%20of%203-hydroxypropionic%20acid&rft.jtitle=Scientific%20reports&rft.au=Park,%20Ye%20Seop&rft.date=2017-12-07&rft.volume=7&rft.issue=1&rft.spage=17155&rft.epage=12&rft.pages=17155-12&rft.artnum=17155&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-017-15400-x&rft_dat=%3Cproquest_pubme%3E1983418355%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1983418355&rft_id=info:pmid/29214999&rfr_iscdi=true |