The molecular dialogue between Arabidopsis thaliana and the necrotrophic fungus Botrytis cinerea leads to major changes in host carbon metabolism
Photoassimilates play crucial roles during plant-pathogen interactions, as colonizing pathogens rely on the supply of sugars from hosts. The competition for sugar acquisition at the plant-pathogen interface involves different strategies from both partners which are critical for the outcome of the in...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2017-12, Vol.7 (1), p.17121-13, Article 17121 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13 |
---|---|
container_issue | 1 |
container_start_page | 17121 |
container_title | Scientific reports |
container_volume | 7 |
creator | Veillet, Florian Gaillard, Cécile Lemonnier, Pauline Coutos-Thévenot, Pierre La Camera, Sylvain |
description | Photoassimilates play crucial roles during plant-pathogen interactions, as colonizing pathogens rely on the supply of sugars from hosts. The competition for sugar acquisition at the plant-pathogen interface involves different strategies from both partners which are critical for the outcome of the interaction. Here, we dissect individual mechanisms of sugar uptake during the interaction of
Arabidopsis thaliana
with the necrotrophic fungus
Botrytis cinerea
using millicell culture insert, that enables molecular communication without physical contact. We demonstrate that
B. cinerea
is able to actively absorb glucose and fructose with equal capacities. Challenged
Arabidopsis
cells compete for extracellular monosaccharides through transcriptional reprogramming of host sugar transporter genes and activation of a complex sugar uptake system which displays differential specificity and affinity for hexoses. We provide evidence that the molecular dialogue between
Arabidopsis
cells and
B. cinerea
triggers major changes in host metabolism, including apoplastic sucrose degradation and consumption of carbohydrates and oxygen, suggesting an enhanced activity of the glycolysis and the cellular respiration. We conclude that beside a role in sugar deprivation of the pathogen by competing for sugar availability in the apoplast, the enhanced uptake of hexoses also contributes to sustain the increased activity of respiratory metabolism to fuel plant defences. |
doi_str_mv | 10.1038/s41598-017-17413-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5719352</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1983428321</sourcerecordid><originalsourceid>FETCH-LOGICAL-c508t-6472c5ab37d00b870a9faae1ca9d1d8d02420562e9af776b28b16230f71583563</originalsourceid><addsrcrecordid>eNp1Uk1v1DAQjRCIVqV_gAOyxAUOAX_EcXxBWqpCkVbiUs7WxJlsvErsxU6K9mfwj-tlS7VUwhfbM--9GXteUbxm9AOjovmYKiZ1U1KmSqYqJsr9s-Kc00qWXHD-_OR8VlymtKV5Sa4rpl8WZ1xzJqlW58Xv2wHJFEa0ywiRdA7GsFmQtDj_QvRkFaF1Xdgll8g8wOjAAwHf5QsSjzaGOYbd4CzpF79ZEvmcA_s5o63zGBHIiNBlbiATbEMkdgC_wUScJ0NIM7EQ2-DJhDO0YXRpelW86GFMePmwXxQ_vlzfXt2U6-9fv12t1qWVtJnLulLcSmiF6ihtG0VB9wDILOiOdU1HecWprDlq6JWqW960rOaC9orJRshaXBSfjrq7pZ2ws-jnCKPZRTdB3JsAzvyb8W4wm3BnpGJaSJ4F3h8Fhie0m9XaHGKU1TXVDb9jGfvuoVgMPxdMs5lcsjiO4DEsyTCtqjygih9k3z6BbsMSff6KjGpExRvBD4L8iMoTSCli_9gBo-ZgEHM0SG5CmT8GMftMenP65EfKXztkgDgCUk7lMcWT2v-XvQetCcjJ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1983428321</pqid></control><display><type>article</type><title>The molecular dialogue between Arabidopsis thaliana and the necrotrophic fungus Botrytis cinerea leads to major changes in host carbon metabolism</title><source>MEDLINE</source><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature OA Free Journals</source><creator>Veillet, Florian ; Gaillard, Cécile ; Lemonnier, Pauline ; Coutos-Thévenot, Pierre ; La Camera, Sylvain</creator><creatorcontrib>Veillet, Florian ; Gaillard, Cécile ; Lemonnier, Pauline ; Coutos-Thévenot, Pierre ; La Camera, Sylvain</creatorcontrib><description>Photoassimilates play crucial roles during plant-pathogen interactions, as colonizing pathogens rely on the supply of sugars from hosts. The competition for sugar acquisition at the plant-pathogen interface involves different strategies from both partners which are critical for the outcome of the interaction. Here, we dissect individual mechanisms of sugar uptake during the interaction of
Arabidopsis thaliana
with the necrotrophic fungus
Botrytis cinerea
using millicell culture insert, that enables molecular communication without physical contact. We demonstrate that
B. cinerea
is able to actively absorb glucose and fructose with equal capacities. Challenged
Arabidopsis
cells compete for extracellular monosaccharides through transcriptional reprogramming of host sugar transporter genes and activation of a complex sugar uptake system which displays differential specificity and affinity for hexoses. We provide evidence that the molecular dialogue between
Arabidopsis
cells and
B. cinerea
triggers major changes in host metabolism, including apoplastic sucrose degradation and consumption of carbohydrates and oxygen, suggesting an enhanced activity of the glycolysis and the cellular respiration. We conclude that beside a role in sugar deprivation of the pathogen by competing for sugar availability in the apoplast, the enhanced uptake of hexoses also contributes to sustain the increased activity of respiratory metabolism to fuel plant defences.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-017-17413-y</identifier><identifier>PMID: 29215097</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>38/77 ; 631/449/1736 ; 631/449/2661/2666 ; 82 ; Apoplast ; Arabidopsis ; Arabidopsis - genetics ; Arabidopsis - metabolism ; Arabidopsis - microbiology ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; Arabidopsis thaliana ; Biodegradation ; Botrytis - pathogenicity ; Botrytis cinerea ; Carbohydrates ; Cell culture ; Cell Respiration ; Fructose ; Glycolysis ; Hexoses - metabolism ; Host plants ; Host-Pathogen Interactions ; Humanities and Social Sciences ; Life Sciences ; Lymphocytes B ; Metabolism ; Monosaccharide Transport Proteins - genetics ; Monosaccharide Transport Proteins - metabolism ; Monosaccharides ; multidisciplinary ; Oxygen consumption ; Pathogens ; Science ; Science (multidisciplinary) ; Sucrose ; Sugar ; Transcription activation ; Vegetal Biology</subject><ispartof>Scientific reports, 2017-12, Vol.7 (1), p.17121-13, Article 17121</ispartof><rights>The Author(s) 2017</rights><rights>2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c508t-6472c5ab37d00b870a9faae1ca9d1d8d02420562e9af776b28b16230f71583563</citedby><cites>FETCH-LOGICAL-c508t-6472c5ab37d00b870a9faae1ca9d1d8d02420562e9af776b28b16230f71583563</cites><orcidid>0000-0002-6892-6825 ; 0000-0002-3131-1560</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5719352/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5719352/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29215097$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01660982$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Veillet, Florian</creatorcontrib><creatorcontrib>Gaillard, Cécile</creatorcontrib><creatorcontrib>Lemonnier, Pauline</creatorcontrib><creatorcontrib>Coutos-Thévenot, Pierre</creatorcontrib><creatorcontrib>La Camera, Sylvain</creatorcontrib><title>The molecular dialogue between Arabidopsis thaliana and the necrotrophic fungus Botrytis cinerea leads to major changes in host carbon metabolism</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Photoassimilates play crucial roles during plant-pathogen interactions, as colonizing pathogens rely on the supply of sugars from hosts. The competition for sugar acquisition at the plant-pathogen interface involves different strategies from both partners which are critical for the outcome of the interaction. Here, we dissect individual mechanisms of sugar uptake during the interaction of
Arabidopsis thaliana
with the necrotrophic fungus
Botrytis cinerea
using millicell culture insert, that enables molecular communication without physical contact. We demonstrate that
B. cinerea
is able to actively absorb glucose and fructose with equal capacities. Challenged
Arabidopsis
cells compete for extracellular monosaccharides through transcriptional reprogramming of host sugar transporter genes and activation of a complex sugar uptake system which displays differential specificity and affinity for hexoses. We provide evidence that the molecular dialogue between
Arabidopsis
cells and
B. cinerea
triggers major changes in host metabolism, including apoplastic sucrose degradation and consumption of carbohydrates and oxygen, suggesting an enhanced activity of the glycolysis and the cellular respiration. We conclude that beside a role in sugar deprivation of the pathogen by competing for sugar availability in the apoplast, the enhanced uptake of hexoses also contributes to sustain the increased activity of respiratory metabolism to fuel plant defences.</description><subject>38/77</subject><subject>631/449/1736</subject><subject>631/449/2661/2666</subject><subject>82</subject><subject>Apoplast</subject><subject>Arabidopsis</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis - microbiology</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Arabidopsis thaliana</subject><subject>Biodegradation</subject><subject>Botrytis - pathogenicity</subject><subject>Botrytis cinerea</subject><subject>Carbohydrates</subject><subject>Cell culture</subject><subject>Cell Respiration</subject><subject>Fructose</subject><subject>Glycolysis</subject><subject>Hexoses - metabolism</subject><subject>Host plants</subject><subject>Host-Pathogen Interactions</subject><subject>Humanities and Social Sciences</subject><subject>Life Sciences</subject><subject>Lymphocytes B</subject><subject>Metabolism</subject><subject>Monosaccharide Transport Proteins - genetics</subject><subject>Monosaccharide Transport Proteins - metabolism</subject><subject>Monosaccharides</subject><subject>multidisciplinary</subject><subject>Oxygen consumption</subject><subject>Pathogens</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Sucrose</subject><subject>Sugar</subject><subject>Transcription activation</subject><subject>Vegetal Biology</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1Uk1v1DAQjRCIVqV_gAOyxAUOAX_EcXxBWqpCkVbiUs7WxJlsvErsxU6K9mfwj-tlS7VUwhfbM--9GXteUbxm9AOjovmYKiZ1U1KmSqYqJsr9s-Kc00qWXHD-_OR8VlymtKV5Sa4rpl8WZ1xzJqlW58Xv2wHJFEa0ywiRdA7GsFmQtDj_QvRkFaF1Xdgll8g8wOjAAwHf5QsSjzaGOYbd4CzpF79ZEvmcA_s5o63zGBHIiNBlbiATbEMkdgC_wUScJ0NIM7EQ2-DJhDO0YXRpelW86GFMePmwXxQ_vlzfXt2U6-9fv12t1qWVtJnLulLcSmiF6ihtG0VB9wDILOiOdU1HecWprDlq6JWqW960rOaC9orJRshaXBSfjrq7pZ2ws-jnCKPZRTdB3JsAzvyb8W4wm3BnpGJaSJ4F3h8Fhie0m9XaHGKU1TXVDb9jGfvuoVgMPxdMs5lcsjiO4DEsyTCtqjygih9k3z6BbsMSff6KjGpExRvBD4L8iMoTSCli_9gBo-ZgEHM0SG5CmT8GMftMenP65EfKXztkgDgCUk7lMcWT2v-XvQetCcjJ</recordid><startdate>20171207</startdate><enddate>20171207</enddate><creator>Veillet, Florian</creator><creator>Gaillard, Cécile</creator><creator>Lemonnier, Pauline</creator><creator>Coutos-Thévenot, Pierre</creator><creator>La Camera, Sylvain</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6892-6825</orcidid><orcidid>https://orcid.org/0000-0002-3131-1560</orcidid></search><sort><creationdate>20171207</creationdate><title>The molecular dialogue between Arabidopsis thaliana and the necrotrophic fungus Botrytis cinerea leads to major changes in host carbon metabolism</title><author>Veillet, Florian ; Gaillard, Cécile ; Lemonnier, Pauline ; Coutos-Thévenot, Pierre ; La Camera, Sylvain</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c508t-6472c5ab37d00b870a9faae1ca9d1d8d02420562e9af776b28b16230f71583563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>38/77</topic><topic>631/449/1736</topic><topic>631/449/2661/2666</topic><topic>82</topic><topic>Apoplast</topic><topic>Arabidopsis</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis - microbiology</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Arabidopsis thaliana</topic><topic>Biodegradation</topic><topic>Botrytis - pathogenicity</topic><topic>Botrytis cinerea</topic><topic>Carbohydrates</topic><topic>Cell culture</topic><topic>Cell Respiration</topic><topic>Fructose</topic><topic>Glycolysis</topic><topic>Hexoses - metabolism</topic><topic>Host plants</topic><topic>Host-Pathogen Interactions</topic><topic>Humanities and Social Sciences</topic><topic>Life Sciences</topic><topic>Lymphocytes B</topic><topic>Metabolism</topic><topic>Monosaccharide Transport Proteins - genetics</topic><topic>Monosaccharide Transport Proteins - metabolism</topic><topic>Monosaccharides</topic><topic>multidisciplinary</topic><topic>Oxygen consumption</topic><topic>Pathogens</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Sucrose</topic><topic>Sugar</topic><topic>Transcription activation</topic><topic>Vegetal Biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Veillet, Florian</creatorcontrib><creatorcontrib>Gaillard, Cécile</creatorcontrib><creatorcontrib>Lemonnier, Pauline</creatorcontrib><creatorcontrib>Coutos-Thévenot, Pierre</creatorcontrib><creatorcontrib>La Camera, Sylvain</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database (ProQuest)</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Veillet, Florian</au><au>Gaillard, Cécile</au><au>Lemonnier, Pauline</au><au>Coutos-Thévenot, Pierre</au><au>La Camera, Sylvain</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The molecular dialogue between Arabidopsis thaliana and the necrotrophic fungus Botrytis cinerea leads to major changes in host carbon metabolism</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2017-12-07</date><risdate>2017</risdate><volume>7</volume><issue>1</issue><spage>17121</spage><epage>13</epage><pages>17121-13</pages><artnum>17121</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Photoassimilates play crucial roles during plant-pathogen interactions, as colonizing pathogens rely on the supply of sugars from hosts. The competition for sugar acquisition at the plant-pathogen interface involves different strategies from both partners which are critical for the outcome of the interaction. Here, we dissect individual mechanisms of sugar uptake during the interaction of
Arabidopsis thaliana
with the necrotrophic fungus
Botrytis cinerea
using millicell culture insert, that enables molecular communication without physical contact. We demonstrate that
B. cinerea
is able to actively absorb glucose and fructose with equal capacities. Challenged
Arabidopsis
cells compete for extracellular monosaccharides through transcriptional reprogramming of host sugar transporter genes and activation of a complex sugar uptake system which displays differential specificity and affinity for hexoses. We provide evidence that the molecular dialogue between
Arabidopsis
cells and
B. cinerea
triggers major changes in host metabolism, including apoplastic sucrose degradation and consumption of carbohydrates and oxygen, suggesting an enhanced activity of the glycolysis and the cellular respiration. We conclude that beside a role in sugar deprivation of the pathogen by competing for sugar availability in the apoplast, the enhanced uptake of hexoses also contributes to sustain the increased activity of respiratory metabolism to fuel plant defences.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>29215097</pmid><doi>10.1038/s41598-017-17413-y</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-6892-6825</orcidid><orcidid>https://orcid.org/0000-0002-3131-1560</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2017-12, Vol.7 (1), p.17121-13, Article 17121 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5719352 |
source | MEDLINE; Nature Free; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; Springer Nature OA Free Journals |
subjects | 38/77 631/449/1736 631/449/2661/2666 82 Apoplast Arabidopsis Arabidopsis - genetics Arabidopsis - metabolism Arabidopsis - microbiology Arabidopsis Proteins - genetics Arabidopsis Proteins - metabolism Arabidopsis thaliana Biodegradation Botrytis - pathogenicity Botrytis cinerea Carbohydrates Cell culture Cell Respiration Fructose Glycolysis Hexoses - metabolism Host plants Host-Pathogen Interactions Humanities and Social Sciences Life Sciences Lymphocytes B Metabolism Monosaccharide Transport Proteins - genetics Monosaccharide Transport Proteins - metabolism Monosaccharides multidisciplinary Oxygen consumption Pathogens Science Science (multidisciplinary) Sucrose Sugar Transcription activation Vegetal Biology |
title | The molecular dialogue between Arabidopsis thaliana and the necrotrophic fungus Botrytis cinerea leads to major changes in host carbon metabolism |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T03%3A57%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20molecular%20dialogue%20between%20Arabidopsis%20thaliana%20and%20the%20necrotrophic%20fungus%20Botrytis%20cinerea%20leads%20to%20major%20changes%20in%20host%20carbon%20metabolism&rft.jtitle=Scientific%20reports&rft.au=Veillet,%20Florian&rft.date=2017-12-07&rft.volume=7&rft.issue=1&rft.spage=17121&rft.epage=13&rft.pages=17121-13&rft.artnum=17121&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-017-17413-y&rft_dat=%3Cproquest_pubme%3E1983428321%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1983428321&rft_id=info:pmid/29215097&rfr_iscdi=true |