The molecular dialogue between Arabidopsis thaliana and the necrotrophic fungus Botrytis cinerea leads to major changes in host carbon metabolism

Photoassimilates play crucial roles during plant-pathogen interactions, as colonizing pathogens rely on the supply of sugars from hosts. The competition for sugar acquisition at the plant-pathogen interface involves different strategies from both partners which are critical for the outcome of the in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2017-12, Vol.7 (1), p.17121-13, Article 17121
Hauptverfasser: Veillet, Florian, Gaillard, Cécile, Lemonnier, Pauline, Coutos-Thévenot, Pierre, La Camera, Sylvain
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13
container_issue 1
container_start_page 17121
container_title Scientific reports
container_volume 7
creator Veillet, Florian
Gaillard, Cécile
Lemonnier, Pauline
Coutos-Thévenot, Pierre
La Camera, Sylvain
description Photoassimilates play crucial roles during plant-pathogen interactions, as colonizing pathogens rely on the supply of sugars from hosts. The competition for sugar acquisition at the plant-pathogen interface involves different strategies from both partners which are critical for the outcome of the interaction. Here, we dissect individual mechanisms of sugar uptake during the interaction of Arabidopsis thaliana with the necrotrophic fungus Botrytis cinerea using millicell culture insert, that enables molecular communication without physical contact. We demonstrate that B. cinerea is able to actively absorb glucose and fructose with equal capacities. Challenged Arabidopsis cells compete for extracellular monosaccharides through transcriptional reprogramming of host sugar transporter genes and activation of a complex sugar uptake system which displays differential specificity and affinity for hexoses. We provide evidence that the molecular dialogue between Arabidopsis cells and B. cinerea triggers major changes in host metabolism, including apoplastic sucrose degradation and consumption of carbohydrates and oxygen, suggesting an enhanced activity of the glycolysis and the cellular respiration. We conclude that beside a role in sugar deprivation of the pathogen by competing for sugar availability in the apoplast, the enhanced uptake of hexoses also contributes to sustain the increased activity of respiratory metabolism to fuel plant defences.
doi_str_mv 10.1038/s41598-017-17413-y
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5719352</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1983428321</sourcerecordid><originalsourceid>FETCH-LOGICAL-c508t-6472c5ab37d00b870a9faae1ca9d1d8d02420562e9af776b28b16230f71583563</originalsourceid><addsrcrecordid>eNp1Uk1v1DAQjRCIVqV_gAOyxAUOAX_EcXxBWqpCkVbiUs7WxJlsvErsxU6K9mfwj-tlS7VUwhfbM--9GXteUbxm9AOjovmYKiZ1U1KmSqYqJsr9s-Kc00qWXHD-_OR8VlymtKV5Sa4rpl8WZ1xzJqlW58Xv2wHJFEa0ywiRdA7GsFmQtDj_QvRkFaF1Xdgll8g8wOjAAwHf5QsSjzaGOYbd4CzpF79ZEvmcA_s5o63zGBHIiNBlbiATbEMkdgC_wUScJ0NIM7EQ2-DJhDO0YXRpelW86GFMePmwXxQ_vlzfXt2U6-9fv12t1qWVtJnLulLcSmiF6ihtG0VB9wDILOiOdU1HecWprDlq6JWqW960rOaC9orJRshaXBSfjrq7pZ2ws-jnCKPZRTdB3JsAzvyb8W4wm3BnpGJaSJ4F3h8Fhie0m9XaHGKU1TXVDb9jGfvuoVgMPxdMs5lcsjiO4DEsyTCtqjygih9k3z6BbsMSff6KjGpExRvBD4L8iMoTSCli_9gBo-ZgEHM0SG5CmT8GMftMenP65EfKXztkgDgCUk7lMcWT2v-XvQetCcjJ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1983428321</pqid></control><display><type>article</type><title>The molecular dialogue between Arabidopsis thaliana and the necrotrophic fungus Botrytis cinerea leads to major changes in host carbon metabolism</title><source>MEDLINE</source><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature OA Free Journals</source><creator>Veillet, Florian ; Gaillard, Cécile ; Lemonnier, Pauline ; Coutos-Thévenot, Pierre ; La Camera, Sylvain</creator><creatorcontrib>Veillet, Florian ; Gaillard, Cécile ; Lemonnier, Pauline ; Coutos-Thévenot, Pierre ; La Camera, Sylvain</creatorcontrib><description>Photoassimilates play crucial roles during plant-pathogen interactions, as colonizing pathogens rely on the supply of sugars from hosts. The competition for sugar acquisition at the plant-pathogen interface involves different strategies from both partners which are critical for the outcome of the interaction. Here, we dissect individual mechanisms of sugar uptake during the interaction of Arabidopsis thaliana with the necrotrophic fungus Botrytis cinerea using millicell culture insert, that enables molecular communication without physical contact. We demonstrate that B. cinerea is able to actively absorb glucose and fructose with equal capacities. Challenged Arabidopsis cells compete for extracellular monosaccharides through transcriptional reprogramming of host sugar transporter genes and activation of a complex sugar uptake system which displays differential specificity and affinity for hexoses. We provide evidence that the molecular dialogue between Arabidopsis cells and B. cinerea triggers major changes in host metabolism, including apoplastic sucrose degradation and consumption of carbohydrates and oxygen, suggesting an enhanced activity of the glycolysis and the cellular respiration. We conclude that beside a role in sugar deprivation of the pathogen by competing for sugar availability in the apoplast, the enhanced uptake of hexoses also contributes to sustain the increased activity of respiratory metabolism to fuel plant defences.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-017-17413-y</identifier><identifier>PMID: 29215097</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>38/77 ; 631/449/1736 ; 631/449/2661/2666 ; 82 ; Apoplast ; Arabidopsis ; Arabidopsis - genetics ; Arabidopsis - metabolism ; Arabidopsis - microbiology ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; Arabidopsis thaliana ; Biodegradation ; Botrytis - pathogenicity ; Botrytis cinerea ; Carbohydrates ; Cell culture ; Cell Respiration ; Fructose ; Glycolysis ; Hexoses - metabolism ; Host plants ; Host-Pathogen Interactions ; Humanities and Social Sciences ; Life Sciences ; Lymphocytes B ; Metabolism ; Monosaccharide Transport Proteins - genetics ; Monosaccharide Transport Proteins - metabolism ; Monosaccharides ; multidisciplinary ; Oxygen consumption ; Pathogens ; Science ; Science (multidisciplinary) ; Sucrose ; Sugar ; Transcription activation ; Vegetal Biology</subject><ispartof>Scientific reports, 2017-12, Vol.7 (1), p.17121-13, Article 17121</ispartof><rights>The Author(s) 2017</rights><rights>2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c508t-6472c5ab37d00b870a9faae1ca9d1d8d02420562e9af776b28b16230f71583563</citedby><cites>FETCH-LOGICAL-c508t-6472c5ab37d00b870a9faae1ca9d1d8d02420562e9af776b28b16230f71583563</cites><orcidid>0000-0002-6892-6825 ; 0000-0002-3131-1560</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5719352/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5719352/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29215097$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01660982$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Veillet, Florian</creatorcontrib><creatorcontrib>Gaillard, Cécile</creatorcontrib><creatorcontrib>Lemonnier, Pauline</creatorcontrib><creatorcontrib>Coutos-Thévenot, Pierre</creatorcontrib><creatorcontrib>La Camera, Sylvain</creatorcontrib><title>The molecular dialogue between Arabidopsis thaliana and the necrotrophic fungus Botrytis cinerea leads to major changes in host carbon metabolism</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Photoassimilates play crucial roles during plant-pathogen interactions, as colonizing pathogens rely on the supply of sugars from hosts. The competition for sugar acquisition at the plant-pathogen interface involves different strategies from both partners which are critical for the outcome of the interaction. Here, we dissect individual mechanisms of sugar uptake during the interaction of Arabidopsis thaliana with the necrotrophic fungus Botrytis cinerea using millicell culture insert, that enables molecular communication without physical contact. We demonstrate that B. cinerea is able to actively absorb glucose and fructose with equal capacities. Challenged Arabidopsis cells compete for extracellular monosaccharides through transcriptional reprogramming of host sugar transporter genes and activation of a complex sugar uptake system which displays differential specificity and affinity for hexoses. We provide evidence that the molecular dialogue between Arabidopsis cells and B. cinerea triggers major changes in host metabolism, including apoplastic sucrose degradation and consumption of carbohydrates and oxygen, suggesting an enhanced activity of the glycolysis and the cellular respiration. We conclude that beside a role in sugar deprivation of the pathogen by competing for sugar availability in the apoplast, the enhanced uptake of hexoses also contributes to sustain the increased activity of respiratory metabolism to fuel plant defences.</description><subject>38/77</subject><subject>631/449/1736</subject><subject>631/449/2661/2666</subject><subject>82</subject><subject>Apoplast</subject><subject>Arabidopsis</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis - microbiology</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Arabidopsis thaliana</subject><subject>Biodegradation</subject><subject>Botrytis - pathogenicity</subject><subject>Botrytis cinerea</subject><subject>Carbohydrates</subject><subject>Cell culture</subject><subject>Cell Respiration</subject><subject>Fructose</subject><subject>Glycolysis</subject><subject>Hexoses - metabolism</subject><subject>Host plants</subject><subject>Host-Pathogen Interactions</subject><subject>Humanities and Social Sciences</subject><subject>Life Sciences</subject><subject>Lymphocytes B</subject><subject>Metabolism</subject><subject>Monosaccharide Transport Proteins - genetics</subject><subject>Monosaccharide Transport Proteins - metabolism</subject><subject>Monosaccharides</subject><subject>multidisciplinary</subject><subject>Oxygen consumption</subject><subject>Pathogens</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Sucrose</subject><subject>Sugar</subject><subject>Transcription activation</subject><subject>Vegetal Biology</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1Uk1v1DAQjRCIVqV_gAOyxAUOAX_EcXxBWqpCkVbiUs7WxJlsvErsxU6K9mfwj-tlS7VUwhfbM--9GXteUbxm9AOjovmYKiZ1U1KmSqYqJsr9s-Kc00qWXHD-_OR8VlymtKV5Sa4rpl8WZ1xzJqlW58Xv2wHJFEa0ywiRdA7GsFmQtDj_QvRkFaF1Xdgll8g8wOjAAwHf5QsSjzaGOYbd4CzpF79ZEvmcA_s5o63zGBHIiNBlbiATbEMkdgC_wUScJ0NIM7EQ2-DJhDO0YXRpelW86GFMePmwXxQ_vlzfXt2U6-9fv12t1qWVtJnLulLcSmiF6ihtG0VB9wDILOiOdU1HecWprDlq6JWqW960rOaC9orJRshaXBSfjrq7pZ2ws-jnCKPZRTdB3JsAzvyb8W4wm3BnpGJaSJ4F3h8Fhie0m9XaHGKU1TXVDb9jGfvuoVgMPxdMs5lcsjiO4DEsyTCtqjygih9k3z6BbsMSff6KjGpExRvBD4L8iMoTSCli_9gBo-ZgEHM0SG5CmT8GMftMenP65EfKXztkgDgCUk7lMcWT2v-XvQetCcjJ</recordid><startdate>20171207</startdate><enddate>20171207</enddate><creator>Veillet, Florian</creator><creator>Gaillard, Cécile</creator><creator>Lemonnier, Pauline</creator><creator>Coutos-Thévenot, Pierre</creator><creator>La Camera, Sylvain</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6892-6825</orcidid><orcidid>https://orcid.org/0000-0002-3131-1560</orcidid></search><sort><creationdate>20171207</creationdate><title>The molecular dialogue between Arabidopsis thaliana and the necrotrophic fungus Botrytis cinerea leads to major changes in host carbon metabolism</title><author>Veillet, Florian ; Gaillard, Cécile ; Lemonnier, Pauline ; Coutos-Thévenot, Pierre ; La Camera, Sylvain</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c508t-6472c5ab37d00b870a9faae1ca9d1d8d02420562e9af776b28b16230f71583563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>38/77</topic><topic>631/449/1736</topic><topic>631/449/2661/2666</topic><topic>82</topic><topic>Apoplast</topic><topic>Arabidopsis</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis - microbiology</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Arabidopsis thaliana</topic><topic>Biodegradation</topic><topic>Botrytis - pathogenicity</topic><topic>Botrytis cinerea</topic><topic>Carbohydrates</topic><topic>Cell culture</topic><topic>Cell Respiration</topic><topic>Fructose</topic><topic>Glycolysis</topic><topic>Hexoses - metabolism</topic><topic>Host plants</topic><topic>Host-Pathogen Interactions</topic><topic>Humanities and Social Sciences</topic><topic>Life Sciences</topic><topic>Lymphocytes B</topic><topic>Metabolism</topic><topic>Monosaccharide Transport Proteins - genetics</topic><topic>Monosaccharide Transport Proteins - metabolism</topic><topic>Monosaccharides</topic><topic>multidisciplinary</topic><topic>Oxygen consumption</topic><topic>Pathogens</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Sucrose</topic><topic>Sugar</topic><topic>Transcription activation</topic><topic>Vegetal Biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Veillet, Florian</creatorcontrib><creatorcontrib>Gaillard, Cécile</creatorcontrib><creatorcontrib>Lemonnier, Pauline</creatorcontrib><creatorcontrib>Coutos-Thévenot, Pierre</creatorcontrib><creatorcontrib>La Camera, Sylvain</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database (ProQuest)</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Veillet, Florian</au><au>Gaillard, Cécile</au><au>Lemonnier, Pauline</au><au>Coutos-Thévenot, Pierre</au><au>La Camera, Sylvain</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The molecular dialogue between Arabidopsis thaliana and the necrotrophic fungus Botrytis cinerea leads to major changes in host carbon metabolism</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2017-12-07</date><risdate>2017</risdate><volume>7</volume><issue>1</issue><spage>17121</spage><epage>13</epage><pages>17121-13</pages><artnum>17121</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Photoassimilates play crucial roles during plant-pathogen interactions, as colonizing pathogens rely on the supply of sugars from hosts. The competition for sugar acquisition at the plant-pathogen interface involves different strategies from both partners which are critical for the outcome of the interaction. Here, we dissect individual mechanisms of sugar uptake during the interaction of Arabidopsis thaliana with the necrotrophic fungus Botrytis cinerea using millicell culture insert, that enables molecular communication without physical contact. We demonstrate that B. cinerea is able to actively absorb glucose and fructose with equal capacities. Challenged Arabidopsis cells compete for extracellular monosaccharides through transcriptional reprogramming of host sugar transporter genes and activation of a complex sugar uptake system which displays differential specificity and affinity for hexoses. We provide evidence that the molecular dialogue between Arabidopsis cells and B. cinerea triggers major changes in host metabolism, including apoplastic sucrose degradation and consumption of carbohydrates and oxygen, suggesting an enhanced activity of the glycolysis and the cellular respiration. We conclude that beside a role in sugar deprivation of the pathogen by competing for sugar availability in the apoplast, the enhanced uptake of hexoses also contributes to sustain the increased activity of respiratory metabolism to fuel plant defences.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>29215097</pmid><doi>10.1038/s41598-017-17413-y</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-6892-6825</orcidid><orcidid>https://orcid.org/0000-0002-3131-1560</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2017-12, Vol.7 (1), p.17121-13, Article 17121
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5719352
source MEDLINE; Nature Free; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; Springer Nature OA Free Journals
subjects 38/77
631/449/1736
631/449/2661/2666
82
Apoplast
Arabidopsis
Arabidopsis - genetics
Arabidopsis - metabolism
Arabidopsis - microbiology
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
Arabidopsis thaliana
Biodegradation
Botrytis - pathogenicity
Botrytis cinerea
Carbohydrates
Cell culture
Cell Respiration
Fructose
Glycolysis
Hexoses - metabolism
Host plants
Host-Pathogen Interactions
Humanities and Social Sciences
Life Sciences
Lymphocytes B
Metabolism
Monosaccharide Transport Proteins - genetics
Monosaccharide Transport Proteins - metabolism
Monosaccharides
multidisciplinary
Oxygen consumption
Pathogens
Science
Science (multidisciplinary)
Sucrose
Sugar
Transcription activation
Vegetal Biology
title The molecular dialogue between Arabidopsis thaliana and the necrotrophic fungus Botrytis cinerea leads to major changes in host carbon metabolism
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T03%3A57%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20molecular%20dialogue%20between%20Arabidopsis%20thaliana%20and%20the%20necrotrophic%20fungus%20Botrytis%20cinerea%20leads%20to%20major%20changes%20in%20host%20carbon%20metabolism&rft.jtitle=Scientific%20reports&rft.au=Veillet,%20Florian&rft.date=2017-12-07&rft.volume=7&rft.issue=1&rft.spage=17121&rft.epage=13&rft.pages=17121-13&rft.artnum=17121&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-017-17413-y&rft_dat=%3Cproquest_pubme%3E1983428321%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1983428321&rft_id=info:pmid/29215097&rfr_iscdi=true