Ventral striatal network connectivity reflects reward learning and behavior in patients with Parkinson's disease
A subgroup of Parkinson's disease (PD) patients treated with dopaminergic therapy develop compulsive reward‐driven behaviors, which can result in life‐altering morbidity. The mesocorticolimbic dopamine network guides reward‐motivated behavior; however, its role in this treatment‐related behavio...
Gespeichert in:
Veröffentlicht in: | Human brain mapping 2018-01, Vol.39 (1), p.509-521 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 521 |
---|---|
container_issue | 1 |
container_start_page | 509 |
container_title | Human brain mapping |
container_volume | 39 |
creator | Petersen, Kalen Van Wouwe, Nelleke Stark, Adam Lin, Ya‐Chen Kang, Hakmook Trujillo‐Diaz, Paula Kessler, Robert Zald, David Donahue, Manus J. Claassen, Daniel O. |
description | A subgroup of Parkinson's disease (PD) patients treated with dopaminergic therapy develop compulsive reward‐driven behaviors, which can result in life‐altering morbidity. The mesocorticolimbic dopamine network guides reward‐motivated behavior; however, its role in this treatment‐related behavioral phenotype is incompletely understood. Here, mesocorticolimbic network function in PD patients who develop impulsive and compulsive behaviors (ICB) in response to dopamine agonists was assessed using BOLD fMRI. The tested hypothesis was that network connectivity between the ventral striatum and the limbic cortex is elevated in patients with ICB and that reward‐learning proficiency reflects the extent of mesocorticolimbic network connectivity. To evaluate this hypothesis, 3.0T BOLD‐fMRI was applied to measure baseline functional connectivity on and off dopamine agonist therapy in age and sex‐matched PD patients with (n = 19) or without (n = 18) ICB. An incentive‐based task was administered to a subset of patients (n = 20) to quantify positively or negatively reinforced learning. Whole‐brain voxelwise analyses and region‐of‐interest‐based mixed linear effects modeling were performed. Elevated ventral striatal connectivity to the anterior cingulate gyrus (P = 0.013), orbitofrontal cortex (P = 0.034), insula (P = 0.044), putamen (P = 0.014), globus pallidus (P |
doi_str_mv | 10.1002/hbm.23860 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5718974</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1958535620</sourcerecordid><originalsourceid>FETCH-LOGICAL-p3340-89a2777680633fa3e4d6d5f646a0a1c451ba28e8282697bb7a659d30be44866e3</originalsourceid><addsrcrecordid>eNpdkctuFDEURC0EIg9Y8APIEguy6cSP9muDBBEQpCBYAFvrdvedjJMeu2P3zGj-HicTImDlsu5RqUpFyCvOTjlj4mzZrU6FtJo9IYecOdMw7uTTO61V41rDD8hRKdeMca4Yf04OhGNWt5odkukXxjnDSMucA8xVRJy3Kd_QPsWI_Rw2Yd7RjIuxfkoVW8gDHRFyDPGKQhxoh0vYhJRpiHSCOVTHQrdhXtLvkG9CLCm-LXQIBaHgC_JsAWPBlw_vMfn56eOP84vm8tvnL-fvL5tJypY11oEwxmjLtJQLkNgOelCLGhoY8L5VvANh0QortDNdZ0ArN0jWYdtarVEek3d732ndrXDo9zX9lMMK8s4nCP7fSwxLf5U2XhlunWmrwcmDQU63ayyzX4XS4zhCxLQunjtllVRasIq--Q-9Tusca71KGeFcbWIq9frvRI9R_oxRgbM9sA0j7h7vnPm7lX1d2d-v7C8-fL0X8jfGc5uX</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1972997777</pqid></control><display><type>article</type><title>Ventral striatal network connectivity reflects reward learning and behavior in patients with Parkinson's disease</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Petersen, Kalen ; Van Wouwe, Nelleke ; Stark, Adam ; Lin, Ya‐Chen ; Kang, Hakmook ; Trujillo‐Diaz, Paula ; Kessler, Robert ; Zald, David ; Donahue, Manus J. ; Claassen, Daniel O.</creator><creatorcontrib>Petersen, Kalen ; Van Wouwe, Nelleke ; Stark, Adam ; Lin, Ya‐Chen ; Kang, Hakmook ; Trujillo‐Diaz, Paula ; Kessler, Robert ; Zald, David ; Donahue, Manus J. ; Claassen, Daniel O.</creatorcontrib><description>A subgroup of Parkinson's disease (PD) patients treated with dopaminergic therapy develop compulsive reward‐driven behaviors, which can result in life‐altering morbidity. The mesocorticolimbic dopamine network guides reward‐motivated behavior; however, its role in this treatment‐related behavioral phenotype is incompletely understood. Here, mesocorticolimbic network function in PD patients who develop impulsive and compulsive behaviors (ICB) in response to dopamine agonists was assessed using BOLD fMRI. The tested hypothesis was that network connectivity between the ventral striatum and the limbic cortex is elevated in patients with ICB and that reward‐learning proficiency reflects the extent of mesocorticolimbic network connectivity. To evaluate this hypothesis, 3.0T BOLD‐fMRI was applied to measure baseline functional connectivity on and off dopamine agonist therapy in age and sex‐matched PD patients with (n = 19) or without (n = 18) ICB. An incentive‐based task was administered to a subset of patients (n = 20) to quantify positively or negatively reinforced learning. Whole‐brain voxelwise analyses and region‐of‐interest‐based mixed linear effects modeling were performed. Elevated ventral striatal connectivity to the anterior cingulate gyrus (P = 0.013), orbitofrontal cortex (P = 0.034), insula (P = 0.044), putamen (P = 0.014), globus pallidus (P < 0.01), and thalamus (P < 0.01) was observed in patients with ICB. A strong trend for elevated amygdala‐to‐midbrain connectivity was found in ICB patients on dopamine agonist. Ventral striatum‐to‐subgenual cingulate connectivity correlated with reward learning (P < 0.01), but not with punishment‐avoidance learning. These data indicate that PD‐ICB patients have elevated network connectivity in the mesocorticolimbic network. Behaviorally, proficient reward‐based learning is related to this enhanced limbic and ventral striatal connectivity. Hum Brain Mapp 39:509–521, 2018. © 2017 Wiley Periodicals, Inc.</description><identifier>ISSN: 1065-9471</identifier><identifier>EISSN: 1097-0193</identifier><identifier>DOI: 10.1002/hbm.23860</identifier><identifier>PMID: 29086460</identifier><language>eng</language><publisher>United States: John Wiley & Sons, Inc</publisher><subject>Amygdala ; Analysis of Variance ; Antiparkinson Agents - therapeutic use ; Avoidance learning ; Behavior ; BOLD ; Brain ; Brain Mapping ; Cerebrovascular Circulation - drug effects ; Cerebrovascular Circulation - physiology ; connectivity ; Dopamine ; Dopamine Agonists - therapeutic use ; Dopamine receptors ; Female ; Functional magnetic resonance imaging ; Globus pallidus ; Humans ; Hypotheses ; impulse control disorder ; Learning ; Linear Models ; Magnetic Resonance Imaging ; Male ; Mesencephalon ; Middle Aged ; Morbidity ; Motivation ; Movement disorders ; MRI ; Neostriatum ; Neural networks ; Neural Pathways - diagnostic imaging ; Neural Pathways - drug effects ; Neural Pathways - physiopathology ; Neurodegenerative diseases ; Neuropsychological Tests ; Oxygen - blood ; Parkinson Disease - diagnostic imaging ; Parkinson Disease - drug therapy ; Parkinson Disease - physiopathology ; Parkinson Disease - psychology ; Parkinson's disease ; Patients ; Punishment ; Putamen ; Reinforcement ; Reward ; Thalamus ; Therapy ; Ventral Striatum - diagnostic imaging ; Ventral Striatum - drug effects ; Ventral Striatum - physiopathology</subject><ispartof>Human brain mapping, 2018-01, Vol.39 (1), p.509-521</ispartof><rights>2017 Wiley Periodicals, Inc.</rights><rights>2018 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-4864-9648</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5718974/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5718974/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,27901,27902,45550,45551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29086460$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Petersen, Kalen</creatorcontrib><creatorcontrib>Van Wouwe, Nelleke</creatorcontrib><creatorcontrib>Stark, Adam</creatorcontrib><creatorcontrib>Lin, Ya‐Chen</creatorcontrib><creatorcontrib>Kang, Hakmook</creatorcontrib><creatorcontrib>Trujillo‐Diaz, Paula</creatorcontrib><creatorcontrib>Kessler, Robert</creatorcontrib><creatorcontrib>Zald, David</creatorcontrib><creatorcontrib>Donahue, Manus J.</creatorcontrib><creatorcontrib>Claassen, Daniel O.</creatorcontrib><title>Ventral striatal network connectivity reflects reward learning and behavior in patients with Parkinson's disease</title><title>Human brain mapping</title><addtitle>Hum Brain Mapp</addtitle><description>A subgroup of Parkinson's disease (PD) patients treated with dopaminergic therapy develop compulsive reward‐driven behaviors, which can result in life‐altering morbidity. The mesocorticolimbic dopamine network guides reward‐motivated behavior; however, its role in this treatment‐related behavioral phenotype is incompletely understood. Here, mesocorticolimbic network function in PD patients who develop impulsive and compulsive behaviors (ICB) in response to dopamine agonists was assessed using BOLD fMRI. The tested hypothesis was that network connectivity between the ventral striatum and the limbic cortex is elevated in patients with ICB and that reward‐learning proficiency reflects the extent of mesocorticolimbic network connectivity. To evaluate this hypothesis, 3.0T BOLD‐fMRI was applied to measure baseline functional connectivity on and off dopamine agonist therapy in age and sex‐matched PD patients with (n = 19) or without (n = 18) ICB. An incentive‐based task was administered to a subset of patients (n = 20) to quantify positively or negatively reinforced learning. Whole‐brain voxelwise analyses and region‐of‐interest‐based mixed linear effects modeling were performed. Elevated ventral striatal connectivity to the anterior cingulate gyrus (P = 0.013), orbitofrontal cortex (P = 0.034), insula (P = 0.044), putamen (P = 0.014), globus pallidus (P < 0.01), and thalamus (P < 0.01) was observed in patients with ICB. A strong trend for elevated amygdala‐to‐midbrain connectivity was found in ICB patients on dopamine agonist. Ventral striatum‐to‐subgenual cingulate connectivity correlated with reward learning (P < 0.01), but not with punishment‐avoidance learning. These data indicate that PD‐ICB patients have elevated network connectivity in the mesocorticolimbic network. Behaviorally, proficient reward‐based learning is related to this enhanced limbic and ventral striatal connectivity. Hum Brain Mapp 39:509–521, 2018. © 2017 Wiley Periodicals, Inc.</description><subject>Amygdala</subject><subject>Analysis of Variance</subject><subject>Antiparkinson Agents - therapeutic use</subject><subject>Avoidance learning</subject><subject>Behavior</subject><subject>BOLD</subject><subject>Brain</subject><subject>Brain Mapping</subject><subject>Cerebrovascular Circulation - drug effects</subject><subject>Cerebrovascular Circulation - physiology</subject><subject>connectivity</subject><subject>Dopamine</subject><subject>Dopamine Agonists - therapeutic use</subject><subject>Dopamine receptors</subject><subject>Female</subject><subject>Functional magnetic resonance imaging</subject><subject>Globus pallidus</subject><subject>Humans</subject><subject>Hypotheses</subject><subject>impulse control disorder</subject><subject>Learning</subject><subject>Linear Models</subject><subject>Magnetic Resonance Imaging</subject><subject>Male</subject><subject>Mesencephalon</subject><subject>Middle Aged</subject><subject>Morbidity</subject><subject>Motivation</subject><subject>Movement disorders</subject><subject>MRI</subject><subject>Neostriatum</subject><subject>Neural networks</subject><subject>Neural Pathways - diagnostic imaging</subject><subject>Neural Pathways - drug effects</subject><subject>Neural Pathways - physiopathology</subject><subject>Neurodegenerative diseases</subject><subject>Neuropsychological Tests</subject><subject>Oxygen - blood</subject><subject>Parkinson Disease - diagnostic imaging</subject><subject>Parkinson Disease - drug therapy</subject><subject>Parkinson Disease - physiopathology</subject><subject>Parkinson Disease - psychology</subject><subject>Parkinson's disease</subject><subject>Patients</subject><subject>Punishment</subject><subject>Putamen</subject><subject>Reinforcement</subject><subject>Reward</subject><subject>Thalamus</subject><subject>Therapy</subject><subject>Ventral Striatum - diagnostic imaging</subject><subject>Ventral Striatum - drug effects</subject><subject>Ventral Striatum - physiopathology</subject><issn>1065-9471</issn><issn>1097-0193</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkctuFDEURC0EIg9Y8APIEguy6cSP9muDBBEQpCBYAFvrdvedjJMeu2P3zGj-HicTImDlsu5RqUpFyCvOTjlj4mzZrU6FtJo9IYecOdMw7uTTO61V41rDD8hRKdeMca4Yf04OhGNWt5odkukXxjnDSMucA8xVRJy3Kd_QPsWI_Rw2Yd7RjIuxfkoVW8gDHRFyDPGKQhxoh0vYhJRpiHSCOVTHQrdhXtLvkG9CLCm-LXQIBaHgC_JsAWPBlw_vMfn56eOP84vm8tvnL-fvL5tJypY11oEwxmjLtJQLkNgOelCLGhoY8L5VvANh0QortDNdZ0ArN0jWYdtarVEek3d732ndrXDo9zX9lMMK8s4nCP7fSwxLf5U2XhlunWmrwcmDQU63ayyzX4XS4zhCxLQunjtllVRasIq--Q-9Tusca71KGeFcbWIq9frvRI9R_oxRgbM9sA0j7h7vnPm7lX1d2d-v7C8-fL0X8jfGc5uX</recordid><startdate>201801</startdate><enddate>201801</enddate><creator>Petersen, Kalen</creator><creator>Van Wouwe, Nelleke</creator><creator>Stark, Adam</creator><creator>Lin, Ya‐Chen</creator><creator>Kang, Hakmook</creator><creator>Trujillo‐Diaz, Paula</creator><creator>Kessler, Robert</creator><creator>Zald, David</creator><creator>Donahue, Manus J.</creator><creator>Claassen, Daniel O.</creator><general>John Wiley & Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4864-9648</orcidid></search><sort><creationdate>201801</creationdate><title>Ventral striatal network connectivity reflects reward learning and behavior in patients with Parkinson's disease</title><author>Petersen, Kalen ; Van Wouwe, Nelleke ; Stark, Adam ; Lin, Ya‐Chen ; Kang, Hakmook ; Trujillo‐Diaz, Paula ; Kessler, Robert ; Zald, David ; Donahue, Manus J. ; Claassen, Daniel O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p3340-89a2777680633fa3e4d6d5f646a0a1c451ba28e8282697bb7a659d30be44866e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Amygdala</topic><topic>Analysis of Variance</topic><topic>Antiparkinson Agents - therapeutic use</topic><topic>Avoidance learning</topic><topic>Behavior</topic><topic>BOLD</topic><topic>Brain</topic><topic>Brain Mapping</topic><topic>Cerebrovascular Circulation - drug effects</topic><topic>Cerebrovascular Circulation - physiology</topic><topic>connectivity</topic><topic>Dopamine</topic><topic>Dopamine Agonists - therapeutic use</topic><topic>Dopamine receptors</topic><topic>Female</topic><topic>Functional magnetic resonance imaging</topic><topic>Globus pallidus</topic><topic>Humans</topic><topic>Hypotheses</topic><topic>impulse control disorder</topic><topic>Learning</topic><topic>Linear Models</topic><topic>Magnetic Resonance Imaging</topic><topic>Male</topic><topic>Mesencephalon</topic><topic>Middle Aged</topic><topic>Morbidity</topic><topic>Motivation</topic><topic>Movement disorders</topic><topic>MRI</topic><topic>Neostriatum</topic><topic>Neural networks</topic><topic>Neural Pathways - diagnostic imaging</topic><topic>Neural Pathways - drug effects</topic><topic>Neural Pathways - physiopathology</topic><topic>Neurodegenerative diseases</topic><topic>Neuropsychological Tests</topic><topic>Oxygen - blood</topic><topic>Parkinson Disease - diagnostic imaging</topic><topic>Parkinson Disease - drug therapy</topic><topic>Parkinson Disease - physiopathology</topic><topic>Parkinson Disease - psychology</topic><topic>Parkinson's disease</topic><topic>Patients</topic><topic>Punishment</topic><topic>Putamen</topic><topic>Reinforcement</topic><topic>Reward</topic><topic>Thalamus</topic><topic>Therapy</topic><topic>Ventral Striatum - diagnostic imaging</topic><topic>Ventral Striatum - drug effects</topic><topic>Ventral Striatum - physiopathology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Petersen, Kalen</creatorcontrib><creatorcontrib>Van Wouwe, Nelleke</creatorcontrib><creatorcontrib>Stark, Adam</creatorcontrib><creatorcontrib>Lin, Ya‐Chen</creatorcontrib><creatorcontrib>Kang, Hakmook</creatorcontrib><creatorcontrib>Trujillo‐Diaz, Paula</creatorcontrib><creatorcontrib>Kessler, Robert</creatorcontrib><creatorcontrib>Zald, David</creatorcontrib><creatorcontrib>Donahue, Manus J.</creatorcontrib><creatorcontrib>Claassen, Daniel O.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Human brain mapping</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Petersen, Kalen</au><au>Van Wouwe, Nelleke</au><au>Stark, Adam</au><au>Lin, Ya‐Chen</au><au>Kang, Hakmook</au><au>Trujillo‐Diaz, Paula</au><au>Kessler, Robert</au><au>Zald, David</au><au>Donahue, Manus J.</au><au>Claassen, Daniel O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ventral striatal network connectivity reflects reward learning and behavior in patients with Parkinson's disease</atitle><jtitle>Human brain mapping</jtitle><addtitle>Hum Brain Mapp</addtitle><date>2018-01</date><risdate>2018</risdate><volume>39</volume><issue>1</issue><spage>509</spage><epage>521</epage><pages>509-521</pages><issn>1065-9471</issn><eissn>1097-0193</eissn><abstract>A subgroup of Parkinson's disease (PD) patients treated with dopaminergic therapy develop compulsive reward‐driven behaviors, which can result in life‐altering morbidity. The mesocorticolimbic dopamine network guides reward‐motivated behavior; however, its role in this treatment‐related behavioral phenotype is incompletely understood. Here, mesocorticolimbic network function in PD patients who develop impulsive and compulsive behaviors (ICB) in response to dopamine agonists was assessed using BOLD fMRI. The tested hypothesis was that network connectivity between the ventral striatum and the limbic cortex is elevated in patients with ICB and that reward‐learning proficiency reflects the extent of mesocorticolimbic network connectivity. To evaluate this hypothesis, 3.0T BOLD‐fMRI was applied to measure baseline functional connectivity on and off dopamine agonist therapy in age and sex‐matched PD patients with (n = 19) or without (n = 18) ICB. An incentive‐based task was administered to a subset of patients (n = 20) to quantify positively or negatively reinforced learning. Whole‐brain voxelwise analyses and region‐of‐interest‐based mixed linear effects modeling were performed. Elevated ventral striatal connectivity to the anterior cingulate gyrus (P = 0.013), orbitofrontal cortex (P = 0.034), insula (P = 0.044), putamen (P = 0.014), globus pallidus (P < 0.01), and thalamus (P < 0.01) was observed in patients with ICB. A strong trend for elevated amygdala‐to‐midbrain connectivity was found in ICB patients on dopamine agonist. Ventral striatum‐to‐subgenual cingulate connectivity correlated with reward learning (P < 0.01), but not with punishment‐avoidance learning. These data indicate that PD‐ICB patients have elevated network connectivity in the mesocorticolimbic network. Behaviorally, proficient reward‐based learning is related to this enhanced limbic and ventral striatal connectivity. Hum Brain Mapp 39:509–521, 2018. © 2017 Wiley Periodicals, Inc.</abstract><cop>United States</cop><pub>John Wiley & Sons, Inc</pub><pmid>29086460</pmid><doi>10.1002/hbm.23860</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-4864-9648</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1065-9471 |
ispartof | Human brain mapping, 2018-01, Vol.39 (1), p.509-521 |
issn | 1065-9471 1097-0193 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5718974 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Amygdala Analysis of Variance Antiparkinson Agents - therapeutic use Avoidance learning Behavior BOLD Brain Brain Mapping Cerebrovascular Circulation - drug effects Cerebrovascular Circulation - physiology connectivity Dopamine Dopamine Agonists - therapeutic use Dopamine receptors Female Functional magnetic resonance imaging Globus pallidus Humans Hypotheses impulse control disorder Learning Linear Models Magnetic Resonance Imaging Male Mesencephalon Middle Aged Morbidity Motivation Movement disorders MRI Neostriatum Neural networks Neural Pathways - diagnostic imaging Neural Pathways - drug effects Neural Pathways - physiopathology Neurodegenerative diseases Neuropsychological Tests Oxygen - blood Parkinson Disease - diagnostic imaging Parkinson Disease - drug therapy Parkinson Disease - physiopathology Parkinson Disease - psychology Parkinson's disease Patients Punishment Putamen Reinforcement Reward Thalamus Therapy Ventral Striatum - diagnostic imaging Ventral Striatum - drug effects Ventral Striatum - physiopathology |
title | Ventral striatal network connectivity reflects reward learning and behavior in patients with Parkinson's disease |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T11%3A55%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ventral%20striatal%20network%20connectivity%20reflects%20reward%20learning%20and%20behavior%20in%20patients%20with%20Parkinson's%20disease&rft.jtitle=Human%20brain%20mapping&rft.au=Petersen,%20Kalen&rft.date=2018-01&rft.volume=39&rft.issue=1&rft.spage=509&rft.epage=521&rft.pages=509-521&rft.issn=1065-9471&rft.eissn=1097-0193&rft_id=info:doi/10.1002/hbm.23860&rft_dat=%3Cproquest_pubme%3E1958535620%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1972997777&rft_id=info:pmid/29086460&rfr_iscdi=true |