Ventral striatal network connectivity reflects reward learning and behavior in patients with Parkinson's disease

A subgroup of Parkinson's disease (PD) patients treated with dopaminergic therapy develop compulsive reward‐driven behaviors, which can result in life‐altering morbidity. The mesocorticolimbic dopamine network guides reward‐motivated behavior; however, its role in this treatment‐related behavio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Human brain mapping 2018-01, Vol.39 (1), p.509-521
Hauptverfasser: Petersen, Kalen, Van Wouwe, Nelleke, Stark, Adam, Lin, Ya‐Chen, Kang, Hakmook, Trujillo‐Diaz, Paula, Kessler, Robert, Zald, David, Donahue, Manus J., Claassen, Daniel O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 521
container_issue 1
container_start_page 509
container_title Human brain mapping
container_volume 39
creator Petersen, Kalen
Van Wouwe, Nelleke
Stark, Adam
Lin, Ya‐Chen
Kang, Hakmook
Trujillo‐Diaz, Paula
Kessler, Robert
Zald, David
Donahue, Manus J.
Claassen, Daniel O.
description A subgroup of Parkinson's disease (PD) patients treated with dopaminergic therapy develop compulsive reward‐driven behaviors, which can result in life‐altering morbidity. The mesocorticolimbic dopamine network guides reward‐motivated behavior; however, its role in this treatment‐related behavioral phenotype is incompletely understood. Here, mesocorticolimbic network function in PD patients who develop impulsive and compulsive behaviors (ICB) in response to dopamine agonists was assessed using BOLD fMRI. The tested hypothesis was that network connectivity between the ventral striatum and the limbic cortex is elevated in patients with ICB and that reward‐learning proficiency reflects the extent of mesocorticolimbic network connectivity. To evaluate this hypothesis, 3.0T BOLD‐fMRI was applied to measure baseline functional connectivity on and off dopamine agonist therapy in age and sex‐matched PD patients with (n = 19) or without (n = 18) ICB. An incentive‐based task was administered to a subset of patients (n = 20) to quantify positively or negatively reinforced learning. Whole‐brain voxelwise analyses and region‐of‐interest‐based mixed linear effects modeling were performed. Elevated ventral striatal connectivity to the anterior cingulate gyrus (P = 0.013), orbitofrontal cortex (P = 0.034), insula (P = 0.044), putamen (P = 0.014), globus pallidus (P 
doi_str_mv 10.1002/hbm.23860
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5718974</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1958535620</sourcerecordid><originalsourceid>FETCH-LOGICAL-p3340-89a2777680633fa3e4d6d5f646a0a1c451ba28e8282697bb7a659d30be44866e3</originalsourceid><addsrcrecordid>eNpdkctuFDEURC0EIg9Y8APIEguy6cSP9muDBBEQpCBYAFvrdvedjJMeu2P3zGj-HicTImDlsu5RqUpFyCvOTjlj4mzZrU6FtJo9IYecOdMw7uTTO61V41rDD8hRKdeMca4Yf04OhGNWt5odkukXxjnDSMucA8xVRJy3Kd_QPsWI_Rw2Yd7RjIuxfkoVW8gDHRFyDPGKQhxoh0vYhJRpiHSCOVTHQrdhXtLvkG9CLCm-LXQIBaHgC_JsAWPBlw_vMfn56eOP84vm8tvnL-fvL5tJypY11oEwxmjLtJQLkNgOelCLGhoY8L5VvANh0QortDNdZ0ArN0jWYdtarVEek3d732ndrXDo9zX9lMMK8s4nCP7fSwxLf5U2XhlunWmrwcmDQU63ayyzX4XS4zhCxLQunjtllVRasIq--Q-9Tusca71KGeFcbWIq9frvRI9R_oxRgbM9sA0j7h7vnPm7lX1d2d-v7C8-fL0X8jfGc5uX</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1972997777</pqid></control><display><type>article</type><title>Ventral striatal network connectivity reflects reward learning and behavior in patients with Parkinson's disease</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Petersen, Kalen ; Van Wouwe, Nelleke ; Stark, Adam ; Lin, Ya‐Chen ; Kang, Hakmook ; Trujillo‐Diaz, Paula ; Kessler, Robert ; Zald, David ; Donahue, Manus J. ; Claassen, Daniel O.</creator><creatorcontrib>Petersen, Kalen ; Van Wouwe, Nelleke ; Stark, Adam ; Lin, Ya‐Chen ; Kang, Hakmook ; Trujillo‐Diaz, Paula ; Kessler, Robert ; Zald, David ; Donahue, Manus J. ; Claassen, Daniel O.</creatorcontrib><description>A subgroup of Parkinson's disease (PD) patients treated with dopaminergic therapy develop compulsive reward‐driven behaviors, which can result in life‐altering morbidity. The mesocorticolimbic dopamine network guides reward‐motivated behavior; however, its role in this treatment‐related behavioral phenotype is incompletely understood. Here, mesocorticolimbic network function in PD patients who develop impulsive and compulsive behaviors (ICB) in response to dopamine agonists was assessed using BOLD fMRI. The tested hypothesis was that network connectivity between the ventral striatum and the limbic cortex is elevated in patients with ICB and that reward‐learning proficiency reflects the extent of mesocorticolimbic network connectivity. To evaluate this hypothesis, 3.0T BOLD‐fMRI was applied to measure baseline functional connectivity on and off dopamine agonist therapy in age and sex‐matched PD patients with (n = 19) or without (n = 18) ICB. An incentive‐based task was administered to a subset of patients (n = 20) to quantify positively or negatively reinforced learning. Whole‐brain voxelwise analyses and region‐of‐interest‐based mixed linear effects modeling were performed. Elevated ventral striatal connectivity to the anterior cingulate gyrus (P = 0.013), orbitofrontal cortex (P = 0.034), insula (P = 0.044), putamen (P = 0.014), globus pallidus (P &lt; 0.01), and thalamus (P &lt; 0.01) was observed in patients with ICB. A strong trend for elevated amygdala‐to‐midbrain connectivity was found in ICB patients on dopamine agonist. Ventral striatum‐to‐subgenual cingulate connectivity correlated with reward learning (P &lt; 0.01), but not with punishment‐avoidance learning. These data indicate that PD‐ICB patients have elevated network connectivity in the mesocorticolimbic network. Behaviorally, proficient reward‐based learning is related to this enhanced limbic and ventral striatal connectivity. Hum Brain Mapp 39:509–521, 2018. © 2017 Wiley Periodicals, Inc.</description><identifier>ISSN: 1065-9471</identifier><identifier>EISSN: 1097-0193</identifier><identifier>DOI: 10.1002/hbm.23860</identifier><identifier>PMID: 29086460</identifier><language>eng</language><publisher>United States: John Wiley &amp; Sons, Inc</publisher><subject>Amygdala ; Analysis of Variance ; Antiparkinson Agents - therapeutic use ; Avoidance learning ; Behavior ; BOLD ; Brain ; Brain Mapping ; Cerebrovascular Circulation - drug effects ; Cerebrovascular Circulation - physiology ; connectivity ; Dopamine ; Dopamine Agonists - therapeutic use ; Dopamine receptors ; Female ; Functional magnetic resonance imaging ; Globus pallidus ; Humans ; Hypotheses ; impulse control disorder ; Learning ; Linear Models ; Magnetic Resonance Imaging ; Male ; Mesencephalon ; Middle Aged ; Morbidity ; Motivation ; Movement disorders ; MRI ; Neostriatum ; Neural networks ; Neural Pathways - diagnostic imaging ; Neural Pathways - drug effects ; Neural Pathways - physiopathology ; Neurodegenerative diseases ; Neuropsychological Tests ; Oxygen - blood ; Parkinson Disease - diagnostic imaging ; Parkinson Disease - drug therapy ; Parkinson Disease - physiopathology ; Parkinson Disease - psychology ; Parkinson's disease ; Patients ; Punishment ; Putamen ; Reinforcement ; Reward ; Thalamus ; Therapy ; Ventral Striatum - diagnostic imaging ; Ventral Striatum - drug effects ; Ventral Striatum - physiopathology</subject><ispartof>Human brain mapping, 2018-01, Vol.39 (1), p.509-521</ispartof><rights>2017 Wiley Periodicals, Inc.</rights><rights>2018 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-4864-9648</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5718974/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5718974/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,27901,27902,45550,45551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29086460$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Petersen, Kalen</creatorcontrib><creatorcontrib>Van Wouwe, Nelleke</creatorcontrib><creatorcontrib>Stark, Adam</creatorcontrib><creatorcontrib>Lin, Ya‐Chen</creatorcontrib><creatorcontrib>Kang, Hakmook</creatorcontrib><creatorcontrib>Trujillo‐Diaz, Paula</creatorcontrib><creatorcontrib>Kessler, Robert</creatorcontrib><creatorcontrib>Zald, David</creatorcontrib><creatorcontrib>Donahue, Manus J.</creatorcontrib><creatorcontrib>Claassen, Daniel O.</creatorcontrib><title>Ventral striatal network connectivity reflects reward learning and behavior in patients with Parkinson's disease</title><title>Human brain mapping</title><addtitle>Hum Brain Mapp</addtitle><description>A subgroup of Parkinson's disease (PD) patients treated with dopaminergic therapy develop compulsive reward‐driven behaviors, which can result in life‐altering morbidity. The mesocorticolimbic dopamine network guides reward‐motivated behavior; however, its role in this treatment‐related behavioral phenotype is incompletely understood. Here, mesocorticolimbic network function in PD patients who develop impulsive and compulsive behaviors (ICB) in response to dopamine agonists was assessed using BOLD fMRI. The tested hypothesis was that network connectivity between the ventral striatum and the limbic cortex is elevated in patients with ICB and that reward‐learning proficiency reflects the extent of mesocorticolimbic network connectivity. To evaluate this hypothesis, 3.0T BOLD‐fMRI was applied to measure baseline functional connectivity on and off dopamine agonist therapy in age and sex‐matched PD patients with (n = 19) or without (n = 18) ICB. An incentive‐based task was administered to a subset of patients (n = 20) to quantify positively or negatively reinforced learning. Whole‐brain voxelwise analyses and region‐of‐interest‐based mixed linear effects modeling were performed. Elevated ventral striatal connectivity to the anterior cingulate gyrus (P = 0.013), orbitofrontal cortex (P = 0.034), insula (P = 0.044), putamen (P = 0.014), globus pallidus (P &lt; 0.01), and thalamus (P &lt; 0.01) was observed in patients with ICB. A strong trend for elevated amygdala‐to‐midbrain connectivity was found in ICB patients on dopamine agonist. Ventral striatum‐to‐subgenual cingulate connectivity correlated with reward learning (P &lt; 0.01), but not with punishment‐avoidance learning. These data indicate that PD‐ICB patients have elevated network connectivity in the mesocorticolimbic network. Behaviorally, proficient reward‐based learning is related to this enhanced limbic and ventral striatal connectivity. Hum Brain Mapp 39:509–521, 2018. © 2017 Wiley Periodicals, Inc.</description><subject>Amygdala</subject><subject>Analysis of Variance</subject><subject>Antiparkinson Agents - therapeutic use</subject><subject>Avoidance learning</subject><subject>Behavior</subject><subject>BOLD</subject><subject>Brain</subject><subject>Brain Mapping</subject><subject>Cerebrovascular Circulation - drug effects</subject><subject>Cerebrovascular Circulation - physiology</subject><subject>connectivity</subject><subject>Dopamine</subject><subject>Dopamine Agonists - therapeutic use</subject><subject>Dopamine receptors</subject><subject>Female</subject><subject>Functional magnetic resonance imaging</subject><subject>Globus pallidus</subject><subject>Humans</subject><subject>Hypotheses</subject><subject>impulse control disorder</subject><subject>Learning</subject><subject>Linear Models</subject><subject>Magnetic Resonance Imaging</subject><subject>Male</subject><subject>Mesencephalon</subject><subject>Middle Aged</subject><subject>Morbidity</subject><subject>Motivation</subject><subject>Movement disorders</subject><subject>MRI</subject><subject>Neostriatum</subject><subject>Neural networks</subject><subject>Neural Pathways - diagnostic imaging</subject><subject>Neural Pathways - drug effects</subject><subject>Neural Pathways - physiopathology</subject><subject>Neurodegenerative diseases</subject><subject>Neuropsychological Tests</subject><subject>Oxygen - blood</subject><subject>Parkinson Disease - diagnostic imaging</subject><subject>Parkinson Disease - drug therapy</subject><subject>Parkinson Disease - physiopathology</subject><subject>Parkinson Disease - psychology</subject><subject>Parkinson's disease</subject><subject>Patients</subject><subject>Punishment</subject><subject>Putamen</subject><subject>Reinforcement</subject><subject>Reward</subject><subject>Thalamus</subject><subject>Therapy</subject><subject>Ventral Striatum - diagnostic imaging</subject><subject>Ventral Striatum - drug effects</subject><subject>Ventral Striatum - physiopathology</subject><issn>1065-9471</issn><issn>1097-0193</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkctuFDEURC0EIg9Y8APIEguy6cSP9muDBBEQpCBYAFvrdvedjJMeu2P3zGj-HicTImDlsu5RqUpFyCvOTjlj4mzZrU6FtJo9IYecOdMw7uTTO61V41rDD8hRKdeMca4Yf04OhGNWt5odkukXxjnDSMucA8xVRJy3Kd_QPsWI_Rw2Yd7RjIuxfkoVW8gDHRFyDPGKQhxoh0vYhJRpiHSCOVTHQrdhXtLvkG9CLCm-LXQIBaHgC_JsAWPBlw_vMfn56eOP84vm8tvnL-fvL5tJypY11oEwxmjLtJQLkNgOelCLGhoY8L5VvANh0QortDNdZ0ArN0jWYdtarVEek3d732ndrXDo9zX9lMMK8s4nCP7fSwxLf5U2XhlunWmrwcmDQU63ayyzX4XS4zhCxLQunjtllVRasIq--Q-9Tusca71KGeFcbWIq9frvRI9R_oxRgbM9sA0j7h7vnPm7lX1d2d-v7C8-fL0X8jfGc5uX</recordid><startdate>201801</startdate><enddate>201801</enddate><creator>Petersen, Kalen</creator><creator>Van Wouwe, Nelleke</creator><creator>Stark, Adam</creator><creator>Lin, Ya‐Chen</creator><creator>Kang, Hakmook</creator><creator>Trujillo‐Diaz, Paula</creator><creator>Kessler, Robert</creator><creator>Zald, David</creator><creator>Donahue, Manus J.</creator><creator>Claassen, Daniel O.</creator><general>John Wiley &amp; Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4864-9648</orcidid></search><sort><creationdate>201801</creationdate><title>Ventral striatal network connectivity reflects reward learning and behavior in patients with Parkinson's disease</title><author>Petersen, Kalen ; Van Wouwe, Nelleke ; Stark, Adam ; Lin, Ya‐Chen ; Kang, Hakmook ; Trujillo‐Diaz, Paula ; Kessler, Robert ; Zald, David ; Donahue, Manus J. ; Claassen, Daniel O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p3340-89a2777680633fa3e4d6d5f646a0a1c451ba28e8282697bb7a659d30be44866e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Amygdala</topic><topic>Analysis of Variance</topic><topic>Antiparkinson Agents - therapeutic use</topic><topic>Avoidance learning</topic><topic>Behavior</topic><topic>BOLD</topic><topic>Brain</topic><topic>Brain Mapping</topic><topic>Cerebrovascular Circulation - drug effects</topic><topic>Cerebrovascular Circulation - physiology</topic><topic>connectivity</topic><topic>Dopamine</topic><topic>Dopamine Agonists - therapeutic use</topic><topic>Dopamine receptors</topic><topic>Female</topic><topic>Functional magnetic resonance imaging</topic><topic>Globus pallidus</topic><topic>Humans</topic><topic>Hypotheses</topic><topic>impulse control disorder</topic><topic>Learning</topic><topic>Linear Models</topic><topic>Magnetic Resonance Imaging</topic><topic>Male</topic><topic>Mesencephalon</topic><topic>Middle Aged</topic><topic>Morbidity</topic><topic>Motivation</topic><topic>Movement disorders</topic><topic>MRI</topic><topic>Neostriatum</topic><topic>Neural networks</topic><topic>Neural Pathways - diagnostic imaging</topic><topic>Neural Pathways - drug effects</topic><topic>Neural Pathways - physiopathology</topic><topic>Neurodegenerative diseases</topic><topic>Neuropsychological Tests</topic><topic>Oxygen - blood</topic><topic>Parkinson Disease - diagnostic imaging</topic><topic>Parkinson Disease - drug therapy</topic><topic>Parkinson Disease - physiopathology</topic><topic>Parkinson Disease - psychology</topic><topic>Parkinson's disease</topic><topic>Patients</topic><topic>Punishment</topic><topic>Putamen</topic><topic>Reinforcement</topic><topic>Reward</topic><topic>Thalamus</topic><topic>Therapy</topic><topic>Ventral Striatum - diagnostic imaging</topic><topic>Ventral Striatum - drug effects</topic><topic>Ventral Striatum - physiopathology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Petersen, Kalen</creatorcontrib><creatorcontrib>Van Wouwe, Nelleke</creatorcontrib><creatorcontrib>Stark, Adam</creatorcontrib><creatorcontrib>Lin, Ya‐Chen</creatorcontrib><creatorcontrib>Kang, Hakmook</creatorcontrib><creatorcontrib>Trujillo‐Diaz, Paula</creatorcontrib><creatorcontrib>Kessler, Robert</creatorcontrib><creatorcontrib>Zald, David</creatorcontrib><creatorcontrib>Donahue, Manus J.</creatorcontrib><creatorcontrib>Claassen, Daniel O.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Human brain mapping</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Petersen, Kalen</au><au>Van Wouwe, Nelleke</au><au>Stark, Adam</au><au>Lin, Ya‐Chen</au><au>Kang, Hakmook</au><au>Trujillo‐Diaz, Paula</au><au>Kessler, Robert</au><au>Zald, David</au><au>Donahue, Manus J.</au><au>Claassen, Daniel O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ventral striatal network connectivity reflects reward learning and behavior in patients with Parkinson's disease</atitle><jtitle>Human brain mapping</jtitle><addtitle>Hum Brain Mapp</addtitle><date>2018-01</date><risdate>2018</risdate><volume>39</volume><issue>1</issue><spage>509</spage><epage>521</epage><pages>509-521</pages><issn>1065-9471</issn><eissn>1097-0193</eissn><abstract>A subgroup of Parkinson's disease (PD) patients treated with dopaminergic therapy develop compulsive reward‐driven behaviors, which can result in life‐altering morbidity. The mesocorticolimbic dopamine network guides reward‐motivated behavior; however, its role in this treatment‐related behavioral phenotype is incompletely understood. Here, mesocorticolimbic network function in PD patients who develop impulsive and compulsive behaviors (ICB) in response to dopamine agonists was assessed using BOLD fMRI. The tested hypothesis was that network connectivity between the ventral striatum and the limbic cortex is elevated in patients with ICB and that reward‐learning proficiency reflects the extent of mesocorticolimbic network connectivity. To evaluate this hypothesis, 3.0T BOLD‐fMRI was applied to measure baseline functional connectivity on and off dopamine agonist therapy in age and sex‐matched PD patients with (n = 19) or without (n = 18) ICB. An incentive‐based task was administered to a subset of patients (n = 20) to quantify positively or negatively reinforced learning. Whole‐brain voxelwise analyses and region‐of‐interest‐based mixed linear effects modeling were performed. Elevated ventral striatal connectivity to the anterior cingulate gyrus (P = 0.013), orbitofrontal cortex (P = 0.034), insula (P = 0.044), putamen (P = 0.014), globus pallidus (P &lt; 0.01), and thalamus (P &lt; 0.01) was observed in patients with ICB. A strong trend for elevated amygdala‐to‐midbrain connectivity was found in ICB patients on dopamine agonist. Ventral striatum‐to‐subgenual cingulate connectivity correlated with reward learning (P &lt; 0.01), but not with punishment‐avoidance learning. These data indicate that PD‐ICB patients have elevated network connectivity in the mesocorticolimbic network. Behaviorally, proficient reward‐based learning is related to this enhanced limbic and ventral striatal connectivity. Hum Brain Mapp 39:509–521, 2018. © 2017 Wiley Periodicals, Inc.</abstract><cop>United States</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>29086460</pmid><doi>10.1002/hbm.23860</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-4864-9648</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1065-9471
ispartof Human brain mapping, 2018-01, Vol.39 (1), p.509-521
issn 1065-9471
1097-0193
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5718974
source MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Amygdala
Analysis of Variance
Antiparkinson Agents - therapeutic use
Avoidance learning
Behavior
BOLD
Brain
Brain Mapping
Cerebrovascular Circulation - drug effects
Cerebrovascular Circulation - physiology
connectivity
Dopamine
Dopamine Agonists - therapeutic use
Dopamine receptors
Female
Functional magnetic resonance imaging
Globus pallidus
Humans
Hypotheses
impulse control disorder
Learning
Linear Models
Magnetic Resonance Imaging
Male
Mesencephalon
Middle Aged
Morbidity
Motivation
Movement disorders
MRI
Neostriatum
Neural networks
Neural Pathways - diagnostic imaging
Neural Pathways - drug effects
Neural Pathways - physiopathology
Neurodegenerative diseases
Neuropsychological Tests
Oxygen - blood
Parkinson Disease - diagnostic imaging
Parkinson Disease - drug therapy
Parkinson Disease - physiopathology
Parkinson Disease - psychology
Parkinson's disease
Patients
Punishment
Putamen
Reinforcement
Reward
Thalamus
Therapy
Ventral Striatum - diagnostic imaging
Ventral Striatum - drug effects
Ventral Striatum - physiopathology
title Ventral striatal network connectivity reflects reward learning and behavior in patients with Parkinson's disease
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T11%3A55%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ventral%20striatal%20network%20connectivity%20reflects%20reward%20learning%20and%20behavior%20in%20patients%20with%20Parkinson's%20disease&rft.jtitle=Human%20brain%20mapping&rft.au=Petersen,%20Kalen&rft.date=2018-01&rft.volume=39&rft.issue=1&rft.spage=509&rft.epage=521&rft.pages=509-521&rft.issn=1065-9471&rft.eissn=1097-0193&rft_id=info:doi/10.1002/hbm.23860&rft_dat=%3Cproquest_pubme%3E1958535620%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1972997777&rft_id=info:pmid/29086460&rfr_iscdi=true